dp_maddf.c 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * IEEE754 floating point arithmetic
 * double precision: MADDF.f (Fused Multiply Add)
 * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
 *
 * MIPS floating point support
 * Copyright (C) 2015 Imagination Technologies, Ltd.
 * Author: Markos Chandras <markos.chandras@imgtec.com>
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; version 2 of the License.
 */

#include "ieee754dp.h"

17 18 19

static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x,
				 union ieee754dp y, enum maddf_flags flags)
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
{
	int re;
	int rs;
	u64 rm;
	unsigned lxm;
	unsigned hxm;
	unsigned lym;
	unsigned hym;
	u64 lrm;
	u64 hrm;
	u64 t;
	u64 at;
	int s;

	COMPXDP;
	COMPYDP;
36
	COMPZDP;
37 38 39

	EXPLODEXDP;
	EXPLODEYDP;
40
	EXPLODEZDP;
41 42 43

	FLUSHXDP;
	FLUSHYDP;
44
	FLUSHZDP;
45 46 47

	ieee754_clearcx();

48 49 50 51 52
	/*
	 * Handle the cases when at least one of x, y or z is a NaN.
	 * Order of precedence is sNaN, qNaN and z, x, y.
	 */
	if (zc == IEEE754_CLASS_SNAN)
53
		return ieee754dp_nanxcpt(z);
54
	if (xc == IEEE754_CLASS_SNAN)
55
		return ieee754dp_nanxcpt(x);
56 57 58 59 60 61 62
	if (yc == IEEE754_CLASS_SNAN)
		return ieee754dp_nanxcpt(y);
	if (zc == IEEE754_CLASS_QNAN)
		return z;
	if (xc == IEEE754_CLASS_QNAN)
		return x;
	if (yc == IEEE754_CLASS_QNAN)
63 64
		return y;

65 66 67
	if (zc == IEEE754_CLASS_DNORM)
		DPDNORMZ;
	/* ZERO z cases are handled separately below */
68

69
	switch (CLPAIR(xc, yc)) {
70 71 72 73 74 75 76 77 78 79 80 81 82 83

	/*
	 * Infinity handling
	 */
	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
		ieee754_setcx(IEEE754_INVALID_OPERATION);
		return ieee754dp_indef();

	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
84
		if ((zc == IEEE754_CLASS_INF) &&
85 86
		    ((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) ||
		     ((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) {
87 88 89 90 91 92 93 94 95 96 97 98
			/*
			 * Cases of addition of infinities with opposite signs
			 * or subtraction of infinities with same signs.
			 */
			ieee754_setcx(IEEE754_INVALID_OPERATION);
			return ieee754dp_indef();
		}
		/*
		 * z is here either not an infinity, or an infinity having the
		 * same sign as product (x*y) (in case of MADDF.D instruction)
		 * or product -(x*y) (in MSUBF.D case). The result must be an
		 * infinity, and its sign is determined only by the value of
99
		 * (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y.
100
		 */
101
		if (flags & MADDF_NEGATE_PRODUCT)
102 103 104
			return ieee754dp_inf(1 ^ (xs ^ ys));
		else
			return ieee754dp_inf(xs ^ ys);
105 106 107 108 109 110 111 112

	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
		if (zc == IEEE754_CLASS_INF)
			return ieee754dp_inf(zs);
113 114
		if (zc == IEEE754_CLASS_ZERO) {
			/* Handle cases +0 + (-0) and similar ones. */
115
			if ((!(flags & MADDF_NEGATE_PRODUCT)
116
					&& (zs == (xs ^ ys))) ||
117
			    ((flags & MADDF_NEGATE_PRODUCT)
118 119 120 121 122 123 124 125 126 127 128 129
					&& (zs != (xs ^ ys))))
				/*
				 * Cases of addition of zeros of equal signs
				 * or subtraction of zeroes of opposite signs.
				 * The sign of the resulting zero is in any
				 * such case determined only by the sign of z.
				 */
				return z;

			return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
		}
		/* x*y is here 0, and z is not 0, so just return z */
130 131 132 133 134 135
		return z;

	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
		DPDNORMX;

	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
136
		if (zc == IEEE754_CLASS_INF)
137 138 139 140 141
			return ieee754dp_inf(zs);
		DPDNORMY;
		break;

	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
142
		if (zc == IEEE754_CLASS_INF)
143 144 145 146 147
			return ieee754dp_inf(zs);
		DPDNORMX;
		break;

	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
148
		if (zc == IEEE754_CLASS_INF)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
			return ieee754dp_inf(zs);
		/* fall through to real computations */
	}

	/* Finally get to do some computation */

	/*
	 * Do the multiplication bit first
	 *
	 * rm = xm * ym, re = xe + ye basically
	 *
	 * At this point xm and ym should have been normalized.
	 */
	assert(xm & DP_HIDDEN_BIT);
	assert(ym & DP_HIDDEN_BIT);

	re = xe + ye;
	rs = xs ^ ys;
167
	if (flags & MADDF_NEGATE_PRODUCT)
168
		rs ^= 1;
169 170 171 172 173 174

	/* shunt to top of word */
	xm <<= 64 - (DP_FBITS + 1);
	ym <<= 64 - (DP_FBITS + 1);

	/*
175
	 * Multiply 64 bits xm, ym to give high 64 bits rm with stickness.
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	 */

	/* 32 * 32 => 64 */
#define DPXMULT(x, y)	((u64)(x) * (u64)y)

	lxm = xm;
	hxm = xm >> 32;
	lym = ym;
	hym = ym >> 32;

	lrm = DPXMULT(lxm, lym);
	hrm = DPXMULT(hxm, hym);

	t = DPXMULT(lxm, hym);

	at = lrm + (t << 32);
	hrm += at < lrm;
	lrm = at;

	hrm = hrm + (t >> 32);

	t = DPXMULT(hxm, lym);

	at = lrm + (t << 32);
	hrm += at < lrm;
	lrm = at;

	hrm = hrm + (t >> 32);

	rm = hrm | (lrm != 0);

	/*
	 * Sticky shift down to normal rounding precision.
	 */
	if ((s64) rm < 0) {
		rm = (rm >> (64 - (DP_FBITS + 1 + 3))) |
		     ((rm << (DP_FBITS + 1 + 3)) != 0);
213
		re++;
214 215 216 217 218 219
	} else {
		rm = (rm >> (64 - (DP_FBITS + 1 + 3 + 1))) |
		     ((rm << (DP_FBITS + 1 + 3 + 1)) != 0);
	}
	assert(rm & (DP_HIDDEN_BIT << 3));

220 221 222
	if (zc == IEEE754_CLASS_ZERO)
		return ieee754dp_format(rs, re, rm);

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	/* And now the addition */
	assert(zm & DP_HIDDEN_BIT);

	/*
	 * Provide guard,round and stick bit space.
	 */
	zm <<= 3;

	if (ze > re) {
		/*
		 * Have to shift y fraction right to align.
		 */
		s = ze - re;
		rm = XDPSRS(rm, s);
		re += s;
	} else if (re > ze) {
		/*
		 * Have to shift x fraction right to align.
		 */
		s = re - ze;
		zm = XDPSRS(zm, s);
		ze += s;
	}
	assert(ze == re);
	assert(ze <= DP_EMAX);

	if (zs == rs) {
		/*
		 * Generate 28 bit result of adding two 27 bit numbers
		 * leaving result in xm, xs and xe.
		 */
		zm = zm + rm;

		if (zm >> (DP_FBITS + 1 + 3)) { /* carry out */
			zm = XDPSRS1(zm);
			ze++;
		}
	} else {
		if (zm >= rm) {
			zm = zm - rm;
		} else {
			zm = rm - zm;
			zs = rs;
		}
		if (zm == 0)
			return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);

		/*
		 * Normalize to rounding precision.
		 */
		while ((zm >> (DP_FBITS + 3)) == 0) {
			zm <<= 1;
			ze--;
		}
	}

	return ieee754dp_format(zs, ze, zm);
}
281 282 283 284 285 286 287 288 289 290

union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
				union ieee754dp y)
{
	return _dp_maddf(z, x, y, 0);
}

union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x,
				union ieee754dp y)
{
291
	return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
292
}