dp_maddf.c 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * IEEE754 floating point arithmetic
 * double precision: MADDF.f (Fused Multiply Add)
 * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
 *
 * MIPS floating point support
 * Copyright (C) 2015 Imagination Technologies, Ltd.
 * Author: Markos Chandras <markos.chandras@imgtec.com>
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; version 2 of the License.
 */

#include "ieee754dp.h"

17 18 19 20 21 22
enum maddf_flags {
	maddf_negate_product	= 1 << 0,
};

static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x,
				 union ieee754dp y, enum maddf_flags flags)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
{
	int re;
	int rs;
	u64 rm;
	unsigned lxm;
	unsigned hxm;
	unsigned lym;
	unsigned hym;
	u64 lrm;
	u64 hrm;
	u64 t;
	u64 at;
	int s;

	COMPXDP;
	COMPYDP;
39
	COMPZDP;
40 41 42

	EXPLODEXDP;
	EXPLODEYDP;
43
	EXPLODEZDP;
44 45 46

	FLUSHXDP;
	FLUSHYDP;
47
	FLUSHZDP;
48 49 50

	ieee754_clearcx();

51 52 53 54 55
	/*
	 * Handle the cases when at least one of x, y or z is a NaN.
	 * Order of precedence is sNaN, qNaN and z, x, y.
	 */
	if (zc == IEEE754_CLASS_SNAN)
56
		return ieee754dp_nanxcpt(z);
57
	if (xc == IEEE754_CLASS_SNAN)
58
		return ieee754dp_nanxcpt(x);
59 60 61 62 63 64 65
	if (yc == IEEE754_CLASS_SNAN)
		return ieee754dp_nanxcpt(y);
	if (zc == IEEE754_CLASS_QNAN)
		return z;
	if (xc == IEEE754_CLASS_QNAN)
		return x;
	if (yc == IEEE754_CLASS_QNAN)
66 67
		return y;

68 69 70
	if (zc == IEEE754_CLASS_DNORM)
		DPDNORMZ;
	/* ZERO z cases are handled separately below */
71

72
	switch (CLPAIR(xc, yc)) {
73 74 75 76 77 78 79 80 81 82 83 84 85 86

	/*
	 * Infinity handling
	 */
	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
		ieee754_setcx(IEEE754_INVALID_OPERATION);
		return ieee754dp_indef();

	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
		if ((zc == IEEE754_CLASS_INF) &&
		    ((!(flags & maddf_negate_product) && (zs != (xs ^ ys))) ||
		     ((flags & maddf_negate_product) && (zs == (xs ^ ys))))) {
			/*
			 * Cases of addition of infinities with opposite signs
			 * or subtraction of infinities with same signs.
			 */
			ieee754_setcx(IEEE754_INVALID_OPERATION);
			return ieee754dp_indef();
		}
		/*
		 * z is here either not an infinity, or an infinity having the
		 * same sign as product (x*y) (in case of MADDF.D instruction)
		 * or product -(x*y) (in MSUBF.D case). The result must be an
		 * infinity, and its sign is determined only by the value of
		 * (flags & maddf_negate_product) and the signs of x and y.
		 */
		if (flags & maddf_negate_product)
			return ieee754dp_inf(1 ^ (xs ^ ys));
		else
			return ieee754dp_inf(xs ^ ys);
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
		if (zc == IEEE754_CLASS_INF)
			return ieee754dp_inf(zs);
		/* Multiplication is 0 so just return z */
		return z;

	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
		DPDNORMX;

	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
123
		if (zc == IEEE754_CLASS_INF)
124 125 126 127 128
			return ieee754dp_inf(zs);
		DPDNORMY;
		break;

	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
129
		if (zc == IEEE754_CLASS_INF)
130 131 132 133 134
			return ieee754dp_inf(zs);
		DPDNORMX;
		break;

	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
135
		if (zc == IEEE754_CLASS_INF)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
			return ieee754dp_inf(zs);
		/* fall through to real computations */
	}

	/* Finally get to do some computation */

	/*
	 * Do the multiplication bit first
	 *
	 * rm = xm * ym, re = xe + ye basically
	 *
	 * At this point xm and ym should have been normalized.
	 */
	assert(xm & DP_HIDDEN_BIT);
	assert(ym & DP_HIDDEN_BIT);

	re = xe + ye;
	rs = xs ^ ys;
154 155
	if (flags & maddf_negate_product)
		rs ^= 1;
156 157 158 159 160 161

	/* shunt to top of word */
	xm <<= 64 - (DP_FBITS + 1);
	ym <<= 64 - (DP_FBITS + 1);

	/*
162
	 * Multiply 64 bits xm, ym to give high 64 bits rm with stickness.
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	 */

	/* 32 * 32 => 64 */
#define DPXMULT(x, y)	((u64)(x) * (u64)y)

	lxm = xm;
	hxm = xm >> 32;
	lym = ym;
	hym = ym >> 32;

	lrm = DPXMULT(lxm, lym);
	hrm = DPXMULT(hxm, hym);

	t = DPXMULT(lxm, hym);

	at = lrm + (t << 32);
	hrm += at < lrm;
	lrm = at;

	hrm = hrm + (t >> 32);

	t = DPXMULT(hxm, lym);

	at = lrm + (t << 32);
	hrm += at < lrm;
	lrm = at;

	hrm = hrm + (t >> 32);

	rm = hrm | (lrm != 0);

	/*
	 * Sticky shift down to normal rounding precision.
	 */
	if ((s64) rm < 0) {
		rm = (rm >> (64 - (DP_FBITS + 1 + 3))) |
		     ((rm << (DP_FBITS + 1 + 3)) != 0);
200
		re++;
201 202 203 204 205 206
	} else {
		rm = (rm >> (64 - (DP_FBITS + 1 + 3 + 1))) |
		     ((rm << (DP_FBITS + 1 + 3 + 1)) != 0);
	}
	assert(rm & (DP_HIDDEN_BIT << 3));

207 208 209
	if (zc == IEEE754_CLASS_ZERO)
		return ieee754dp_format(rs, re, rm);

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	/* And now the addition */
	assert(zm & DP_HIDDEN_BIT);

	/*
	 * Provide guard,round and stick bit space.
	 */
	zm <<= 3;

	if (ze > re) {
		/*
		 * Have to shift y fraction right to align.
		 */
		s = ze - re;
		rm = XDPSRS(rm, s);
		re += s;
	} else if (re > ze) {
		/*
		 * Have to shift x fraction right to align.
		 */
		s = re - ze;
		zm = XDPSRS(zm, s);
		ze += s;
	}
	assert(ze == re);
	assert(ze <= DP_EMAX);

	if (zs == rs) {
		/*
		 * Generate 28 bit result of adding two 27 bit numbers
		 * leaving result in xm, xs and xe.
		 */
		zm = zm + rm;

		if (zm >> (DP_FBITS + 1 + 3)) { /* carry out */
			zm = XDPSRS1(zm);
			ze++;
		}
	} else {
		if (zm >= rm) {
			zm = zm - rm;
		} else {
			zm = rm - zm;
			zs = rs;
		}
		if (zm == 0)
			return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);

		/*
		 * Normalize to rounding precision.
		 */
		while ((zm >> (DP_FBITS + 3)) == 0) {
			zm <<= 1;
			ze--;
		}
	}

	return ieee754dp_format(zs, ze, zm);
}
268 269 270 271 272 273 274 275 276 277 278 279

union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
				union ieee754dp y)
{
	return _dp_maddf(z, x, y, 0);
}

union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x,
				union ieee754dp y)
{
	return _dp_maddf(z, x, y, maddf_negate_product);
}