kasan.c 21.6 KB
Newer Older
1 2 3 4
/*
 * This file contains shadow memory manipulation code.
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5
 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
6
 *
7
 * Some code borrowed from https://github.com/xairy/kasan-prototype by
8 9 10 11 12 13 14 15 16 17 18 19
 *        Andrey Konovalov <adech.fo@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DISABLE_BRANCH_PROFILING

#include <linux/export.h>
20
#include <linux/interrupt.h>
21
#include <linux/init.h>
22
#include <linux/kasan.h>
23
#include <linux/kernel.h>
24
#include <linux/kmemleak.h>
25
#include <linux/linkage.h>
26
#include <linux/memblock.h>
27
#include <linux/memory.h>
28
#include <linux/mm.h>
29
#include <linux/module.h>
30 31
#include <linux/printk.h>
#include <linux/sched.h>
32
#include <linux/sched/task_stack.h>
33 34 35 36
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
37
#include <linux/vmalloc.h>
38
#include <linux/bug.h>
39 40

#include "kasan.h"
41
#include "../slab.h"
42

43 44 45 46 47 48 49 50 51 52
void kasan_enable_current(void)
{
	current->kasan_depth++;
}

void kasan_disable_current(void)
{
	current->kasan_depth--;
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
 */
static void kasan_poison_shadow(const void *address, size_t size, u8 value)
{
	void *shadow_start, *shadow_end;

	shadow_start = kasan_mem_to_shadow(address);
	shadow_end = kasan_mem_to_shadow(address + size);

	memset(shadow_start, value, shadow_end - shadow_start);
}

void kasan_unpoison_shadow(const void *address, size_t size)
{
	kasan_poison_shadow(address, size, 0);

	if (size & KASAN_SHADOW_MASK) {
		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
		*shadow = size & KASAN_SHADOW_MASK;
	}
}

77
static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
78 79 80 81 82 83 84 85 86 87 88 89 90 91
{
	void *base = task_stack_page(task);
	size_t size = sp - base;

	kasan_unpoison_shadow(base, size);
}

/* Unpoison the entire stack for a task. */
void kasan_unpoison_task_stack(struct task_struct *task)
{
	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
}

/* Unpoison the stack for the current task beyond a watermark sp value. */
92
asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
93
{
94 95 96 97 98 99 100 101
	/*
	 * Calculate the task stack base address.  Avoid using 'current'
	 * because this function is called by early resume code which hasn't
	 * yet set up the percpu register (%gs).
	 */
	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));

	kasan_unpoison_shadow(base, watermark - base);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
}

/*
 * Clear all poison for the region between the current SP and a provided
 * watermark value, as is sometimes required prior to hand-crafted asm function
 * returns in the middle of functions.
 */
void kasan_unpoison_stack_above_sp_to(const void *watermark)
{
	const void *sp = __builtin_frame_address(0);
	size_t size = watermark - sp;

	if (WARN_ON(sp > watermark))
		return;
	kasan_unpoison_shadow(sp, size);
117
}
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

/*
 * All functions below always inlined so compiler could
 * perform better optimizations in each of __asan_loadX/__assn_storeX
 * depending on memory access size X.
 */

static __always_inline bool memory_is_poisoned_1(unsigned long addr)
{
	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);

	if (unlikely(shadow_value)) {
		s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
		return unlikely(last_accessible_byte >= shadow_value);
	}

	return false;
}

137 138
static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
						unsigned long size)
139
{
140
	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
141

142 143 144 145 146 147
	/*
	 * Access crosses 8(shadow size)-byte boundary. Such access maps
	 * into 2 shadow bytes, so we need to check them both.
	 */
	if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
148

149
	return memory_is_poisoned_1(addr + size - 1);
150 151 152 153
}

static __always_inline bool memory_is_poisoned_16(unsigned long addr)
{
154
	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
155

156 157 158
	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
	if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
		return *shadow_addr || memory_is_poisoned_1(addr + 15);
159

160
	return *shadow_addr;
161 162
}

163
static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
164 165 166 167 168 169 170 171 172 173 174 175
					size_t size)
{
	while (size) {
		if (unlikely(*start))
			return (unsigned long)start;
		start++;
		size--;
	}

	return 0;
}

176
static __always_inline unsigned long memory_is_nonzero(const void *start,
177 178 179 180 181 182 183
						const void *end)
{
	unsigned int words;
	unsigned long ret;
	unsigned int prefix = (unsigned long)start % 8;

	if (end - start <= 16)
184
		return bytes_is_nonzero(start, end - start);
185 186 187

	if (prefix) {
		prefix = 8 - prefix;
188
		ret = bytes_is_nonzero(start, prefix);
189 190 191 192 193 194 195 196
		if (unlikely(ret))
			return ret;
		start += prefix;
	}

	words = (end - start) / 8;
	while (words) {
		if (unlikely(*(u64 *)start))
197
			return bytes_is_nonzero(start, 8);
198 199 200 201
		start += 8;
		words--;
	}

202
	return bytes_is_nonzero(start, (end - start) % 8);
203 204 205 206 207 208 209
}

static __always_inline bool memory_is_poisoned_n(unsigned long addr,
						size_t size)
{
	unsigned long ret;

210
	ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
211 212 213 214 215 216 217
			kasan_mem_to_shadow((void *)addr + size - 1) + 1);

	if (unlikely(ret)) {
		unsigned long last_byte = addr + size - 1;
		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);

		if (unlikely(ret != (unsigned long)last_shadow ||
218
			((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
219 220 221 222 223 224 225 226 227 228 229 230 231 232
			return true;
	}
	return false;
}

static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
{
	if (__builtin_constant_p(size)) {
		switch (size) {
		case 1:
			return memory_is_poisoned_1(addr);
		case 2:
		case 4:
		case 8:
233
			return memory_is_poisoned_2_4_8(addr, size);
234 235 236 237 238 239 240 241 242 243
		case 16:
			return memory_is_poisoned_16(addr);
		default:
			BUILD_BUG();
		}
	}

	return memory_is_poisoned_n(addr, size);
}

244 245 246
static __always_inline void check_memory_region_inline(unsigned long addr,
						size_t size, bool write,
						unsigned long ret_ip)
247 248 249 250 251 252
{
	if (unlikely(size == 0))
		return;

	if (unlikely((void *)addr <
		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
253
		kasan_report(addr, size, write, ret_ip);
254 255 256 257 258 259
		return;
	}

	if (likely(!memory_is_poisoned(addr, size)))
		return;

260
	kasan_report(addr, size, write, ret_ip);
261 262
}

263 264 265 266 267 268
static void check_memory_region(unsigned long addr,
				size_t size, bool write,
				unsigned long ret_ip)
{
	check_memory_region_inline(addr, size, write, ret_ip);
}
269

270
void kasan_check_read(const volatile void *p, unsigned int size)
271 272 273 274 275
{
	check_memory_region((unsigned long)p, size, false, _RET_IP_);
}
EXPORT_SYMBOL(kasan_check_read);

276
void kasan_check_write(const volatile void *p, unsigned int size)
277 278 279 280 281
{
	check_memory_region((unsigned long)p, size, true, _RET_IP_);
}
EXPORT_SYMBOL(kasan_check_write);

282 283 284
#undef memset
void *memset(void *addr, int c, size_t len)
{
285
	check_memory_region((unsigned long)addr, len, true, _RET_IP_);
286 287 288 289 290 291 292

	return __memset(addr, c, len);
}

#undef memmove
void *memmove(void *dest, const void *src, size_t len)
{
293 294
	check_memory_region((unsigned long)src, len, false, _RET_IP_);
	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
295 296 297 298 299 300 301

	return __memmove(dest, src, len);
}

#undef memcpy
void *memcpy(void *dest, const void *src, size_t len)
{
302 303
	check_memory_region((unsigned long)src, len, false, _RET_IP_);
	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
304 305 306 307

	return __memcpy(dest, src, len);
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321
void kasan_alloc_pages(struct page *page, unsigned int order)
{
	if (likely(!PageHighMem(page)))
		kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
}

void kasan_free_pages(struct page *page, unsigned int order)
{
	if (likely(!PageHighMem(page)))
		kasan_poison_shadow(page_address(page),
				PAGE_SIZE << order,
				KASAN_FREE_PAGE);
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
 * For larger allocations larger redzones are used.
 */
static size_t optimal_redzone(size_t object_size)
{
	int rz =
		object_size <= 64        - 16   ? 16 :
		object_size <= 128       - 32   ? 32 :
		object_size <= 512       - 64   ? 64 :
		object_size <= 4096      - 128  ? 128 :
		object_size <= (1 << 14) - 256  ? 256 :
		object_size <= (1 << 15) - 512  ? 512 :
		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
	return rz;
}

void kasan_cache_create(struct kmem_cache *cache, size_t *size,
340
			slab_flags_t *flags)
341 342
{
	int redzone_adjust;
343 344
	int orig_size = *size;

345 346 347 348 349
	/* Add alloc meta. */
	cache->kasan_info.alloc_meta_offset = *size;
	*size += sizeof(struct kasan_alloc_meta);

	/* Add free meta. */
350
	if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
351 352 353 354 355 356
	    cache->object_size < sizeof(struct kasan_free_meta)) {
		cache->kasan_info.free_meta_offset = *size;
		*size += sizeof(struct kasan_free_meta);
	}
	redzone_adjust = optimal_redzone(cache->object_size) -
		(*size - cache->object_size);
357

358 359
	if (redzone_adjust > 0)
		*size += redzone_adjust;
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

	*size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size +
					optimal_redzone(cache->object_size)));

	/*
	 * If the metadata doesn't fit, don't enable KASAN at all.
	 */
	if (*size <= cache->kasan_info.alloc_meta_offset ||
			*size <= cache->kasan_info.free_meta_offset) {
		cache->kasan_info.alloc_meta_offset = 0;
		cache->kasan_info.free_meta_offset = 0;
		*size = orig_size;
		return;
	}

	*flags |= SLAB_KASAN;
376 377
}

378 379 380 381 382
void kasan_cache_shrink(struct kmem_cache *cache)
{
	quarantine_remove_cache(cache);
}

383
void kasan_cache_shutdown(struct kmem_cache *cache)
384 385 386 387
{
	quarantine_remove_cache(cache);
}

388 389 390 391 392 393 394 395
size_t kasan_metadata_size(struct kmem_cache *cache)
{
	return (cache->kasan_info.alloc_meta_offset ?
		sizeof(struct kasan_alloc_meta) : 0) +
		(cache->kasan_info.free_meta_offset ?
		sizeof(struct kasan_free_meta) : 0);
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
void kasan_poison_slab(struct page *page)
{
	kasan_poison_shadow(page_address(page),
			PAGE_SIZE << compound_order(page),
			KASAN_KMALLOC_REDZONE);
}

void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
{
	kasan_unpoison_shadow(object, cache->object_size);
}

void kasan_poison_object_data(struct kmem_cache *cache, void *object)
{
	kasan_poison_shadow(object,
			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
			KASAN_KMALLOC_REDZONE);
}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static inline int in_irqentry_text(unsigned long ptr)
{
	return (ptr >= (unsigned long)&__irqentry_text_start &&
		ptr < (unsigned long)&__irqentry_text_end) ||
		(ptr >= (unsigned long)&__softirqentry_text_start &&
		 ptr < (unsigned long)&__softirqentry_text_end);
}

static inline void filter_irq_stacks(struct stack_trace *trace)
{
	int i;

	if (!trace->nr_entries)
		return;
	for (i = 0; i < trace->nr_entries; i++)
		if (in_irqentry_text(trace->entries[i])) {
			/* Include the irqentry function into the stack. */
			trace->nr_entries = i + 1;
			break;
		}
}

static inline depot_stack_handle_t save_stack(gfp_t flags)
{
	unsigned long entries[KASAN_STACK_DEPTH];
	struct stack_trace trace = {
		.nr_entries = 0,
		.entries = entries,
		.max_entries = KASAN_STACK_DEPTH,
		.skip = 0
	};

	save_stack_trace(&trace);
	filter_irq_stacks(&trace);
	if (trace.nr_entries != 0 &&
	    trace.entries[trace.nr_entries-1] == ULONG_MAX)
		trace.nr_entries--;

	return depot_save_stack(&trace, flags);
}

static inline void set_track(struct kasan_track *track, gfp_t flags)
457 458
{
	track->pid = current->pid;
459
	track->stack = save_stack(flags);
460 461 462 463 464
}

struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
					const void *object)
{
465
	BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
466 467 468 469 470 471
	return (void *)object + cache->kasan_info.alloc_meta_offset;
}

struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
				      const void *object)
{
472
	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
473 474 475
	return (void *)object + cache->kasan_info.free_meta_offset;
}

476 477 478 479 480 481 482 483 484 485 486
void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
{
	struct kasan_alloc_meta *alloc_info;

	if (!(cache->flags & SLAB_KASAN))
		return;

	alloc_info = get_alloc_info(cache, object);
	__memset(alloc_info, 0, sizeof(*alloc_info));
}

487
void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
488
{
489
	kasan_kmalloc(cache, object, cache->object_size, flags);
490 491
}

492 493
static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
			      unsigned long ip, bool quarantine)
494
{
495
	s8 shadow_byte;
496
	unsigned long rounded_up_size;
497

498 499 500 501 502 503
	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
	    object)) {
		kasan_report_invalid_free(object, ip);
		return true;
	}

504
	/* RCU slabs could be legally used after free within the RCU period */
505
	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
506 507
		return false;

508 509
	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
	if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
510
		kasan_report_invalid_free(object, ip);
511 512
		return true;
	}
513

514 515
	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
516

517
	if (!quarantine || unlikely(!(cache->flags & SLAB_KASAN)))
518 519 520 521 522
		return false;

	set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
	quarantine_put(get_free_info(cache, object), cache);
	return true;
523 524
}

525 526 527 528 529
bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
{
	return __kasan_slab_free(cache, object, ip, true);
}

530 531
void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
		   gfp_t flags)
532 533 534 535
{
	unsigned long redzone_start;
	unsigned long redzone_end;

536
	if (gfpflags_allow_blocking(flags))
537 538
		quarantine_reduce();

539 540 541 542 543 544 545 546 547 548 549
	if (unlikely(object == NULL))
		return;

	redzone_start = round_up((unsigned long)(object + size),
				KASAN_SHADOW_SCALE_SIZE);
	redzone_end = round_up((unsigned long)object + cache->object_size,
				KASAN_SHADOW_SCALE_SIZE);

	kasan_unpoison_shadow(object, size);
	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
		KASAN_KMALLOC_REDZONE);
550

551 552
	if (cache->flags & SLAB_KASAN)
		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
553 554 555
}
EXPORT_SYMBOL(kasan_kmalloc);

556
void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
557 558 559 560 561
{
	struct page *page;
	unsigned long redzone_start;
	unsigned long redzone_end;

562
	if (gfpflags_allow_blocking(flags))
563 564
		quarantine_reduce();

565 566 567 568 569 570 571 572 573 574 575 576 577
	if (unlikely(ptr == NULL))
		return;

	page = virt_to_page(ptr);
	redzone_start = round_up((unsigned long)(ptr + size),
				KASAN_SHADOW_SCALE_SIZE);
	redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));

	kasan_unpoison_shadow(ptr, size);
	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
		KASAN_PAGE_REDZONE);
}

578
void kasan_krealloc(const void *object, size_t size, gfp_t flags)
579 580 581 582 583 584 585 586 587
{
	struct page *page;

	if (unlikely(object == ZERO_SIZE_PTR))
		return;

	page = virt_to_head_page(object);

	if (unlikely(!PageSlab(page)))
588
		kasan_kmalloc_large(object, size, flags);
589
	else
590
		kasan_kmalloc(page->slab_cache, object, size, flags);
591 592
}

593
void kasan_poison_kfree(void *ptr, unsigned long ip)
594 595 596 597 598
{
	struct page *page;

	page = virt_to_head_page(ptr);

599 600 601 602 603
	if (unlikely(!PageSlab(page))) {
		if (ptr != page_address(page)) {
			kasan_report_invalid_free(ptr, ip);
			return;
		}
604 605
		kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
				KASAN_FREE_PAGE);
606
	} else {
607
		__kasan_slab_free(page->slab_cache, ptr, ip, false);
608
	}
609 610
}

611
void kasan_kfree_large(void *ptr, unsigned long ip)
612
{
613
	if (ptr != page_address(virt_to_head_page(ptr)))
614
		kasan_report_invalid_free(ptr, ip);
615
	/* The object will be poisoned by page_alloc. */
616 617
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
int kasan_module_alloc(void *addr, size_t size)
{
	void *ret;
	size_t shadow_size;
	unsigned long shadow_start;

	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
	shadow_size = round_up(size >> KASAN_SHADOW_SCALE_SHIFT,
			PAGE_SIZE);

	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
		return -EINVAL;

	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
			shadow_start + shadow_size,
633
			GFP_KERNEL | __GFP_ZERO,
634 635
			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
			__builtin_return_address(0));
636 637 638

	if (ret) {
		find_vm_area(addr)->flags |= VM_KASAN;
639
		kmemleak_ignore(ret);
640 641 642 643
		return 0;
	}

	return -ENOMEM;
644 645
}

646
void kasan_free_shadow(const struct vm_struct *vm)
647
{
648 649
	if (vm->flags & VM_KASAN)
		vfree(kasan_mem_to_shadow(vm->addr));
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
}

static void register_global(struct kasan_global *global)
{
	size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);

	kasan_unpoison_shadow(global->beg, global->size);

	kasan_poison_shadow(global->beg + aligned_size,
		global->size_with_redzone - aligned_size,
		KASAN_GLOBAL_REDZONE);
}

void __asan_register_globals(struct kasan_global *globals, size_t size)
{
	int i;

	for (i = 0; i < size; i++)
		register_global(&globals[i]);
}
EXPORT_SYMBOL(__asan_register_globals);

void __asan_unregister_globals(struct kasan_global *globals, size_t size)
{
}
EXPORT_SYMBOL(__asan_unregister_globals);

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
#define DEFINE_ASAN_LOAD_STORE(size)					\
	void __asan_load##size(unsigned long addr)			\
	{								\
		check_memory_region_inline(addr, size, false, _RET_IP_);\
	}								\
	EXPORT_SYMBOL(__asan_load##size);				\
	__alias(__asan_load##size)					\
	void __asan_load##size##_noabort(unsigned long);		\
	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
	void __asan_store##size(unsigned long addr)			\
	{								\
		check_memory_region_inline(addr, size, true, _RET_IP_);	\
	}								\
	EXPORT_SYMBOL(__asan_store##size);				\
	__alias(__asan_store##size)					\
	void __asan_store##size##_noabort(unsigned long);		\
693 694 695 696 697 698 699 700 701 702
	EXPORT_SYMBOL(__asan_store##size##_noabort)

DEFINE_ASAN_LOAD_STORE(1);
DEFINE_ASAN_LOAD_STORE(2);
DEFINE_ASAN_LOAD_STORE(4);
DEFINE_ASAN_LOAD_STORE(8);
DEFINE_ASAN_LOAD_STORE(16);

void __asan_loadN(unsigned long addr, size_t size)
{
703
	check_memory_region(addr, size, false, _RET_IP_);
704 705 706 707 708 709 710 711 712
}
EXPORT_SYMBOL(__asan_loadN);

__alias(__asan_loadN)
void __asan_loadN_noabort(unsigned long, size_t);
EXPORT_SYMBOL(__asan_loadN_noabort);

void __asan_storeN(unsigned long addr, size_t size)
{
713
	check_memory_region(addr, size, true, _RET_IP_);
714 715 716 717 718 719 720 721 722 723
}
EXPORT_SYMBOL(__asan_storeN);

__alias(__asan_storeN)
void __asan_storeN_noabort(unsigned long, size_t);
EXPORT_SYMBOL(__asan_storeN_noabort);

/* to shut up compiler complaints */
void __asan_handle_no_return(void) {}
EXPORT_SYMBOL(__asan_handle_no_return);
724

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
/* Emitted by compiler to poison large objects when they go out of scope. */
void __asan_poison_stack_memory(const void *addr, size_t size)
{
	/*
	 * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
	 * by redzones, so we simply round up size to simplify logic.
	 */
	kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
			    KASAN_USE_AFTER_SCOPE);
}
EXPORT_SYMBOL(__asan_poison_stack_memory);

/* Emitted by compiler to unpoison large objects when they go into scope. */
void __asan_unpoison_stack_memory(const void *addr, size_t size)
{
	kasan_unpoison_shadow(addr, size);
}
EXPORT_SYMBOL(__asan_unpoison_stack_memory);

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
/* Emitted by compiler to poison alloca()ed objects. */
void __asan_alloca_poison(unsigned long addr, size_t size)
{
	size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
			rounded_up_size;
	size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE);

	const void *left_redzone = (const void *)(addr -
			KASAN_ALLOCA_REDZONE_SIZE);
	const void *right_redzone = (const void *)(addr + rounded_up_size);

	WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));

	kasan_unpoison_shadow((const void *)(addr + rounded_down_size),
			      size - rounded_down_size);
	kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
			KASAN_ALLOCA_LEFT);
	kasan_poison_shadow(right_redzone,
			padding_size + KASAN_ALLOCA_REDZONE_SIZE,
			KASAN_ALLOCA_RIGHT);
}
EXPORT_SYMBOL(__asan_alloca_poison);

/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
{
	if (unlikely(!stack_top || stack_top > stack_bottom))
		return;

	kasan_unpoison_shadow(stack_top, stack_bottom - stack_top);
}
EXPORT_SYMBOL(__asan_allocas_unpoison);

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/* Emitted by the compiler to [un]poison local variables. */
#define DEFINE_ASAN_SET_SHADOW(byte) \
	void __asan_set_shadow_##byte(const void *addr, size_t size)	\
	{								\
		__memset((void *)addr, 0x##byte, size);			\
	}								\
	EXPORT_SYMBOL(__asan_set_shadow_##byte)

DEFINE_ASAN_SET_SHADOW(00);
DEFINE_ASAN_SET_SHADOW(f1);
DEFINE_ASAN_SET_SHADOW(f2);
DEFINE_ASAN_SET_SHADOW(f3);
DEFINE_ASAN_SET_SHADOW(f5);
DEFINE_ASAN_SET_SHADOW(f8);

793
#ifdef CONFIG_MEMORY_HOTPLUG
794
static int __meminit kasan_mem_notifier(struct notifier_block *nb,
795 796
			unsigned long action, void *data)
{
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	struct memory_notify *mem_data = data;
	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
	unsigned long shadow_end, shadow_size;

	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
	shadow_size = nr_shadow_pages << PAGE_SHIFT;
	shadow_end = shadow_start + shadow_size;

	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
		return NOTIFY_BAD;

	switch (action) {
	case MEM_GOING_ONLINE: {
		void *ret;

		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
					shadow_end, GFP_KERNEL,
					PAGE_KERNEL, VM_NO_GUARD,
					pfn_to_nid(mem_data->start_pfn),
					__builtin_return_address(0));
		if (!ret)
			return NOTIFY_BAD;

		kmemleak_ignore(ret);
		return NOTIFY_OK;
	}
	case MEM_OFFLINE:
		vfree((void *)shadow_start);
	}

	return NOTIFY_OK;
831 832 833 834 835 836 837 838 839 840 841
}

static int __init kasan_memhotplug_init(void)
{
	hotplug_memory_notifier(kasan_mem_notifier, 0);

	return 0;
}

module_init(kasan_memhotplug_init);
#endif
新手
引导
客服 返回
顶部