/* * This file contains shadow memory manipulation code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov <adech.fo@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define DISABLE_BRANCH_PROFILING #include <linux/export.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/kasan.h> #include <linux/kernel.h> #include <linux/kmemleak.h> #include <linux/linkage.h> #include <linux/memblock.h> #include <linux/memory.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/printk.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/slab.h> #include <linux/stacktrace.h> #include <linux/string.h> #include <linux/types.h> #include <linux/vmalloc.h> #include <linux/bug.h> #include "kasan.h" #include "../slab.h" void kasan_enable_current(void) { current->kasan_depth++; } void kasan_disable_current(void) { current->kasan_depth--; } /* * Poisons the shadow memory for 'size' bytes starting from 'addr'. * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. */ static void kasan_poison_shadow(const void *address, size_t size, u8 value) { void *shadow_start, *shadow_end; shadow_start = kasan_mem_to_shadow(address); shadow_end = kasan_mem_to_shadow(address + size); memset(shadow_start, value, shadow_end - shadow_start); } void kasan_unpoison_shadow(const void *address, size_t size) { kasan_poison_shadow(address, size, 0); if (size & KASAN_SHADOW_MASK) { u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); *shadow = size & KASAN_SHADOW_MASK; } } static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) { void *base = task_stack_page(task); size_t size = sp - base; kasan_unpoison_shadow(base, size); } /* Unpoison the entire stack for a task. */ void kasan_unpoison_task_stack(struct task_struct *task) { __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); } /* Unpoison the stack for the current task beyond a watermark sp value. */ asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) { /* * Calculate the task stack base address. Avoid using 'current' * because this function is called by early resume code which hasn't * yet set up the percpu register (%gs). */ void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); kasan_unpoison_shadow(base, watermark - base); } /* * Clear all poison for the region between the current SP and a provided * watermark value, as is sometimes required prior to hand-crafted asm function * returns in the middle of functions. */ void kasan_unpoison_stack_above_sp_to(const void *watermark) { const void *sp = __builtin_frame_address(0); size_t size = watermark - sp; if (WARN_ON(sp > watermark)) return; kasan_unpoison_shadow(sp, size); } /* * All functions below always inlined so compiler could * perform better optimizations in each of __asan_loadX/__assn_storeX * depending on memory access size X. */ static __always_inline bool memory_is_poisoned_1(unsigned long addr) { s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr); if (unlikely(shadow_value)) { s8 last_accessible_byte = addr & KASAN_SHADOW_MASK; return unlikely(last_accessible_byte >= shadow_value); } return false; } static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr, unsigned long size) { u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr); /* * Access crosses 8(shadow size)-byte boundary. Such access maps * into 2 shadow bytes, so we need to check them both. */ if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1)) return *shadow_addr || memory_is_poisoned_1(addr + size - 1); return memory_is_poisoned_1(addr + size - 1); } static __always_inline bool memory_is_poisoned_16(unsigned long addr) { u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr); /* Unaligned 16-bytes access maps into 3 shadow bytes. */ if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE))) return *shadow_addr || memory_is_poisoned_1(addr + 15); return *shadow_addr; } static __always_inline unsigned long bytes_is_nonzero(const u8 *start, size_t size) { while (size) { if (unlikely(*start)) return (unsigned long)start; start++; size--; } return 0; } static __always_inline unsigned long memory_is_nonzero(const void *start, const void *end) { unsigned int words; unsigned long ret; unsigned int prefix = (unsigned long)start % 8; if (end - start <= 16) return bytes_is_nonzero(start, end - start); if (prefix) { prefix = 8 - prefix; ret = bytes_is_nonzero(start, prefix); if (unlikely(ret)) return ret; start += prefix; } words = (end - start) / 8; while (words) { if (unlikely(*(u64 *)start)) return bytes_is_nonzero(start, 8); start += 8; words--; } return bytes_is_nonzero(start, (end - start) % 8); } static __always_inline bool memory_is_poisoned_n(unsigned long addr, size_t size) { unsigned long ret; ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr), kasan_mem_to_shadow((void *)addr + size - 1) + 1); if (unlikely(ret)) { unsigned long last_byte = addr + size - 1; s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte); if (unlikely(ret != (unsigned long)last_shadow || ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow))) return true; } return false; } static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size) { if (__builtin_constant_p(size)) { switch (size) { case 1: return memory_is_poisoned_1(addr); case 2: case 4: case 8: return memory_is_poisoned_2_4_8(addr, size); case 16: return memory_is_poisoned_16(addr); default: BUILD_BUG(); } } return memory_is_poisoned_n(addr, size); } static __always_inline void check_memory_region_inline(unsigned long addr, size_t size, bool write, unsigned long ret_ip) { if (unlikely(size == 0)) return; if (unlikely((void *)addr < kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) { kasan_report(addr, size, write, ret_ip); return; } if (likely(!memory_is_poisoned(addr, size))) return; kasan_report(addr, size, write, ret_ip); } static void check_memory_region(unsigned long addr, size_t size, bool write, unsigned long ret_ip) { check_memory_region_inline(addr, size, write, ret_ip); } void kasan_check_read(const volatile void *p, unsigned int size) { check_memory_region((unsigned long)p, size, false, _RET_IP_); } EXPORT_SYMBOL(kasan_check_read); void kasan_check_write(const volatile void *p, unsigned int size) { check_memory_region((unsigned long)p, size, true, _RET_IP_); } EXPORT_SYMBOL(kasan_check_write); #undef memset void *memset(void *addr, int c, size_t len) { check_memory_region((unsigned long)addr, len, true, _RET_IP_); return __memset(addr, c, len); } #undef memmove void *memmove(void *dest, const void *src, size_t len) { check_memory_region((unsigned long)src, len, false, _RET_IP_); check_memory_region((unsigned long)dest, len, true, _RET_IP_); return __memmove(dest, src, len); } #undef memcpy void *memcpy(void *dest, const void *src, size_t len) { check_memory_region((unsigned long)src, len, false, _RET_IP_); check_memory_region((unsigned long)dest, len, true, _RET_IP_); return __memcpy(dest, src, len); } void kasan_alloc_pages(struct page *page, unsigned int order) { if (likely(!PageHighMem(page))) kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); } void kasan_free_pages(struct page *page, unsigned int order) { if (likely(!PageHighMem(page))) kasan_poison_shadow(page_address(page), PAGE_SIZE << order, KASAN_FREE_PAGE); } /* * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. * For larger allocations larger redzones are used. */ static size_t optimal_redzone(size_t object_size) { int rz = object_size <= 64 - 16 ? 16 : object_size <= 128 - 32 ? 32 : object_size <= 512 - 64 ? 64 : object_size <= 4096 - 128 ? 128 : object_size <= (1 << 14) - 256 ? 256 : object_size <= (1 << 15) - 512 ? 512 : object_size <= (1 << 16) - 1024 ? 1024 : 2048; return rz; } void kasan_cache_create(struct kmem_cache *cache, size_t *size, slab_flags_t *flags) { int redzone_adjust; int orig_size = *size; /* Add alloc meta. */ cache->kasan_info.alloc_meta_offset = *size; *size += sizeof(struct kasan_alloc_meta); /* Add free meta. */ if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || cache->object_size < sizeof(struct kasan_free_meta)) { cache->kasan_info.free_meta_offset = *size; *size += sizeof(struct kasan_free_meta); } redzone_adjust = optimal_redzone(cache->object_size) - (*size - cache->object_size); if (redzone_adjust > 0) *size += redzone_adjust; *size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size + optimal_redzone(cache->object_size))); /* * If the metadata doesn't fit, don't enable KASAN at all. */ if (*size <= cache->kasan_info.alloc_meta_offset || *size <= cache->kasan_info.free_meta_offset) { cache->kasan_info.alloc_meta_offset = 0; cache->kasan_info.free_meta_offset = 0; *size = orig_size; return; } *flags |= SLAB_KASAN; } void kasan_cache_shrink(struct kmem_cache *cache) { quarantine_remove_cache(cache); } void kasan_cache_shutdown(struct kmem_cache *cache) { quarantine_remove_cache(cache); } size_t kasan_metadata_size(struct kmem_cache *cache) { return (cache->kasan_info.alloc_meta_offset ? sizeof(struct kasan_alloc_meta) : 0) + (cache->kasan_info.free_meta_offset ? sizeof(struct kasan_free_meta) : 0); } void kasan_poison_slab(struct page *page) { kasan_poison_shadow(page_address(page), PAGE_SIZE << compound_order(page), KASAN_KMALLOC_REDZONE); } void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) { kasan_unpoison_shadow(object, cache->object_size); } void kasan_poison_object_data(struct kmem_cache *cache, void *object) { kasan_poison_shadow(object, round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), KASAN_KMALLOC_REDZONE); } static inline int in_irqentry_text(unsigned long ptr) { return (ptr >= (unsigned long)&__irqentry_text_start && ptr < (unsigned long)&__irqentry_text_end) || (ptr >= (unsigned long)&__softirqentry_text_start && ptr < (unsigned long)&__softirqentry_text_end); } static inline void filter_irq_stacks(struct stack_trace *trace) { int i; if (!trace->nr_entries) return; for (i = 0; i < trace->nr_entries; i++) if (in_irqentry_text(trace->entries[i])) { /* Include the irqentry function into the stack. */ trace->nr_entries = i + 1; break; } } static inline depot_stack_handle_t save_stack(gfp_t flags) { unsigned long entries[KASAN_STACK_DEPTH]; struct stack_trace trace = { .nr_entries = 0, .entries = entries, .max_entries = KASAN_STACK_DEPTH, .skip = 0 }; save_stack_trace(&trace); filter_irq_stacks(&trace); if (trace.nr_entries != 0 && trace.entries[trace.nr_entries-1] == ULONG_MAX) trace.nr_entries--; return depot_save_stack(&trace, flags); } static inline void set_track(struct kasan_track *track, gfp_t flags) { track->pid = current->pid; track->stack = save_stack(flags); } struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, const void *object) { BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32); return (void *)object + cache->kasan_info.alloc_meta_offset; } struct kasan_free_meta *get_free_info(struct kmem_cache *cache, const void *object) { BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); return (void *)object + cache->kasan_info.free_meta_offset; } void kasan_init_slab_obj(struct kmem_cache *cache, const void *object) { struct kasan_alloc_meta *alloc_info; if (!(cache->flags & SLAB_KASAN)) return; alloc_info = get_alloc_info(cache, object); __memset(alloc_info, 0, sizeof(*alloc_info)); } void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags) { kasan_kmalloc(cache, object, cache->object_size, flags); } static bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip, bool quarantine) { s8 shadow_byte; unsigned long rounded_up_size; if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != object)) { kasan_report_invalid_free(object, ip); return true; } /* RCU slabs could be legally used after free within the RCU period */ if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) return false; shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) { kasan_report_invalid_free(object, ip); return true; } rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); if (!quarantine || unlikely(!(cache->flags & SLAB_KASAN))) return false; set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT); quarantine_put(get_free_info(cache, object), cache); return true; } bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) { return __kasan_slab_free(cache, object, ip, true); } void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size, gfp_t flags) { unsigned long redzone_start; unsigned long redzone_end; if (gfpflags_allow_blocking(flags)) quarantine_reduce(); if (unlikely(object == NULL)) return; redzone_start = round_up((unsigned long)(object + size), KASAN_SHADOW_SCALE_SIZE); redzone_end = round_up((unsigned long)object + cache->object_size, KASAN_SHADOW_SCALE_SIZE); kasan_unpoison_shadow(object, size); kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, KASAN_KMALLOC_REDZONE); if (cache->flags & SLAB_KASAN) set_track(&get_alloc_info(cache, object)->alloc_track, flags); } EXPORT_SYMBOL(kasan_kmalloc); void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) { struct page *page; unsigned long redzone_start; unsigned long redzone_end; if (gfpflags_allow_blocking(flags)) quarantine_reduce(); if (unlikely(ptr == NULL)) return; page = virt_to_page(ptr); redzone_start = round_up((unsigned long)(ptr + size), KASAN_SHADOW_SCALE_SIZE); redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page)); kasan_unpoison_shadow(ptr, size); kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, KASAN_PAGE_REDZONE); } void kasan_krealloc(const void *object, size_t size, gfp_t flags) { struct page *page; if (unlikely(object == ZERO_SIZE_PTR)) return; page = virt_to_head_page(object); if (unlikely(!PageSlab(page))) kasan_kmalloc_large(object, size, flags); else kasan_kmalloc(page->slab_cache, object, size, flags); } void kasan_poison_kfree(void *ptr, unsigned long ip) { struct page *page; page = virt_to_head_page(ptr); if (unlikely(!PageSlab(page))) { if (ptr != page_address(page)) { kasan_report_invalid_free(ptr, ip); return; } kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page), KASAN_FREE_PAGE); } else { __kasan_slab_free(page->slab_cache, ptr, ip, false); } } void kasan_kfree_large(void *ptr, unsigned long ip) { if (ptr != page_address(virt_to_head_page(ptr))) kasan_report_invalid_free(ptr, ip); /* The object will be poisoned by page_alloc. */ } int kasan_module_alloc(void *addr, size_t size) { void *ret; size_t shadow_size; unsigned long shadow_start; shadow_start = (unsigned long)kasan_mem_to_shadow(addr); shadow_size = round_up(size >> KASAN_SHADOW_SCALE_SHIFT, PAGE_SIZE); if (WARN_ON(!PAGE_ALIGNED(shadow_start))) return -EINVAL; ret = __vmalloc_node_range(shadow_size, 1, shadow_start, shadow_start + shadow_size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, __builtin_return_address(0)); if (ret) { find_vm_area(addr)->flags |= VM_KASAN; kmemleak_ignore(ret); return 0; } return -ENOMEM; } void kasan_free_shadow(const struct vm_struct *vm) { if (vm->flags & VM_KASAN) vfree(kasan_mem_to_shadow(vm->addr)); } static void register_global(struct kasan_global *global) { size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE); kasan_unpoison_shadow(global->beg, global->size); kasan_poison_shadow(global->beg + aligned_size, global->size_with_redzone - aligned_size, KASAN_GLOBAL_REDZONE); } void __asan_register_globals(struct kasan_global *globals, size_t size) { int i; for (i = 0; i < size; i++) register_global(&globals[i]); } EXPORT_SYMBOL(__asan_register_globals); void __asan_unregister_globals(struct kasan_global *globals, size_t size) { } EXPORT_SYMBOL(__asan_unregister_globals); #define DEFINE_ASAN_LOAD_STORE(size) \ void __asan_load##size(unsigned long addr) \ { \ check_memory_region_inline(addr, size, false, _RET_IP_);\ } \ EXPORT_SYMBOL(__asan_load##size); \ __alias(__asan_load##size) \ void __asan_load##size##_noabort(unsigned long); \ EXPORT_SYMBOL(__asan_load##size##_noabort); \ void __asan_store##size(unsigned long addr) \ { \ check_memory_region_inline(addr, size, true, _RET_IP_); \ } \ EXPORT_SYMBOL(__asan_store##size); \ __alias(__asan_store##size) \ void __asan_store##size##_noabort(unsigned long); \ EXPORT_SYMBOL(__asan_store##size##_noabort) DEFINE_ASAN_LOAD_STORE(1); DEFINE_ASAN_LOAD_STORE(2); DEFINE_ASAN_LOAD_STORE(4); DEFINE_ASAN_LOAD_STORE(8); DEFINE_ASAN_LOAD_STORE(16); void __asan_loadN(unsigned long addr, size_t size) { check_memory_region(addr, size, false, _RET_IP_); } EXPORT_SYMBOL(__asan_loadN); __alias(__asan_loadN) void __asan_loadN_noabort(unsigned long, size_t); EXPORT_SYMBOL(__asan_loadN_noabort); void __asan_storeN(unsigned long addr, size_t size) { check_memory_region(addr, size, true, _RET_IP_); } EXPORT_SYMBOL(__asan_storeN); __alias(__asan_storeN) void __asan_storeN_noabort(unsigned long, size_t); EXPORT_SYMBOL(__asan_storeN_noabort); /* to shut up compiler complaints */ void __asan_handle_no_return(void) {} EXPORT_SYMBOL(__asan_handle_no_return); /* Emitted by compiler to poison large objects when they go out of scope. */ void __asan_poison_stack_memory(const void *addr, size_t size) { /* * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded * by redzones, so we simply round up size to simplify logic. */ kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE), KASAN_USE_AFTER_SCOPE); } EXPORT_SYMBOL(__asan_poison_stack_memory); /* Emitted by compiler to unpoison large objects when they go into scope. */ void __asan_unpoison_stack_memory(const void *addr, size_t size) { kasan_unpoison_shadow(addr, size); } EXPORT_SYMBOL(__asan_unpoison_stack_memory); /* Emitted by compiler to poison alloca()ed objects. */ void __asan_alloca_poison(unsigned long addr, size_t size) { size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE); size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) - rounded_up_size; size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE); const void *left_redzone = (const void *)(addr - KASAN_ALLOCA_REDZONE_SIZE); const void *right_redzone = (const void *)(addr + rounded_up_size); WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE)); kasan_unpoison_shadow((const void *)(addr + rounded_down_size), size - rounded_down_size); kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE, KASAN_ALLOCA_LEFT); kasan_poison_shadow(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE, KASAN_ALLOCA_RIGHT); } EXPORT_SYMBOL(__asan_alloca_poison); /* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */ void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom) { if (unlikely(!stack_top || stack_top > stack_bottom)) return; kasan_unpoison_shadow(stack_top, stack_bottom - stack_top); } EXPORT_SYMBOL(__asan_allocas_unpoison); /* Emitted by the compiler to [un]poison local variables. */ #define DEFINE_ASAN_SET_SHADOW(byte) \ void __asan_set_shadow_##byte(const void *addr, size_t size) \ { \ __memset((void *)addr, 0x##byte, size); \ } \ EXPORT_SYMBOL(__asan_set_shadow_##byte) DEFINE_ASAN_SET_SHADOW(00); DEFINE_ASAN_SET_SHADOW(f1); DEFINE_ASAN_SET_SHADOW(f2); DEFINE_ASAN_SET_SHADOW(f3); DEFINE_ASAN_SET_SHADOW(f5); DEFINE_ASAN_SET_SHADOW(f8); #ifdef CONFIG_MEMORY_HOTPLUG static int __meminit kasan_mem_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct memory_notify *mem_data = data; unsigned long nr_shadow_pages, start_kaddr, shadow_start; unsigned long shadow_end, shadow_size; nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); shadow_size = nr_shadow_pages << PAGE_SHIFT; shadow_end = shadow_start + shadow_size; if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) return NOTIFY_BAD; switch (action) { case MEM_GOING_ONLINE: { void *ret; ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, shadow_end, GFP_KERNEL, PAGE_KERNEL, VM_NO_GUARD, pfn_to_nid(mem_data->start_pfn), __builtin_return_address(0)); if (!ret) return NOTIFY_BAD; kmemleak_ignore(ret); return NOTIFY_OK; } case MEM_OFFLINE: vfree((void *)shadow_start); } return NOTIFY_OK; } static int __init kasan_memhotplug_init(void) { hotplug_memory_notifier(kasan_mem_notifier, 0); return 0; } module_init(kasan_memhotplug_init); #endif