spi.c 44.1 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
23
#include <linux/kmod.h>
24 25 26
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
27
#include <linux/mutex.h>
28
#include <linux/of_device.h>
29
#include <linux/of_irq.h>
30
#include <linux/slab.h>
31
#include <linux/mod_devicetable.h>
32
#include <linux/spi/spi.h>
33
#include <linux/of_gpio.h>
M
Mark Brown 已提交
34
#include <linux/pm_runtime.h>
35
#include <linux/export.h>
36 37 38
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/kthread.h>
39 40 41

static void spidev_release(struct device *dev)
{
42
	struct spi_device	*spi = to_spi_device(dev);
43 44 45 46 47

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
48
	spi_master_put(spi->master);
49
	kfree(spi);
50 51 52 53 54 55 56
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);

57
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
58 59 60 61 62 63 64 65 66 67 68
}

static struct device_attribute spi_dev_attrs[] = {
	__ATTR_RO(modalias),
	__ATTR_NULL,
};

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

88 89 90
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
91 92
	const struct spi_driver	*sdrv = to_spi_driver(drv);

93 94 95 96
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

97 98
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
99

100
	return strcmp(spi->modalias, drv->name) == 0;
101 102
}

103
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
104 105 106
{
	const struct spi_device		*spi = to_spi_device(dev);

107
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
108 109 110
	return 0;
}

M
Mark Brown 已提交
111 112
#ifdef CONFIG_PM_SLEEP
static int spi_legacy_suspend(struct device *dev, pm_message_t message)
113
{
114
	int			value = 0;
115
	struct spi_driver	*drv = to_spi_driver(dev->driver);
116 117

	/* suspend will stop irqs and dma; no more i/o */
118 119 120 121 122 123
	if (drv) {
		if (drv->suspend)
			value = drv->suspend(to_spi_device(dev), message);
		else
			dev_dbg(dev, "... can't suspend\n");
	}
124 125 126
	return value;
}

M
Mark Brown 已提交
127
static int spi_legacy_resume(struct device *dev)
128
{
129
	int			value = 0;
130
	struct spi_driver	*drv = to_spi_driver(dev->driver);
131 132

	/* resume may restart the i/o queue */
133 134 135 136 137 138
	if (drv) {
		if (drv->resume)
			value = drv->resume(to_spi_device(dev));
		else
			dev_dbg(dev, "... can't resume\n");
	}
139 140 141
	return value;
}

M
Mark Brown 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static int spi_pm_suspend(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_suspend(dev);
	else
		return spi_legacy_suspend(dev, PMSG_SUSPEND);
}

static int spi_pm_resume(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_resume(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_freeze(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_freeze(dev);
	else
		return spi_legacy_suspend(dev, PMSG_FREEZE);
}

static int spi_pm_thaw(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_thaw(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_poweroff(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_poweroff(dev);
	else
		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
}

static int spi_pm_restore(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_restore(dev);
	else
		return spi_legacy_resume(dev);
}
201
#else
M
Mark Brown 已提交
202 203 204 205 206 207
#define spi_pm_suspend	NULL
#define spi_pm_resume	NULL
#define spi_pm_freeze	NULL
#define spi_pm_thaw	NULL
#define spi_pm_poweroff	NULL
#define spi_pm_restore	NULL
208 209
#endif

M
Mark Brown 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223
static const struct dev_pm_ops spi_pm = {
	.suspend = spi_pm_suspend,
	.resume = spi_pm_resume,
	.freeze = spi_pm_freeze,
	.thaw = spi_pm_thaw,
	.poweroff = spi_pm_poweroff,
	.restore = spi_pm_restore,
	SET_RUNTIME_PM_OPS(
		pm_generic_runtime_suspend,
		pm_generic_runtime_resume,
		pm_generic_runtime_idle
	)
};

224 225 226 227 228
struct bus_type spi_bus_type = {
	.name		= "spi",
	.dev_attrs	= spi_dev_attrs,
	.match		= spi_match_device,
	.uevent		= spi_uevent,
M
Mark Brown 已提交
229
	.pm		= &spi_pm,
230 231 232
};
EXPORT_SYMBOL_GPL(spi_bus_type);

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->probe(to_spi_device(dev));
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->remove(to_spi_device(dev));
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
255 256 257 258 259
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
260 261 262 263 264 265 266 267 268 269 270 271 272
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

273 274 275 276 277 278 279 280 281 282
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
283
	struct spi_board_info	board_info;
284 285 286
};

static LIST_HEAD(board_list);
287 288 289 290 291 292
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
293
static DEFINE_MUTEX(board_lock);
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;
	struct device		*dev = master->dev.parent;

	if (!spi_master_get(master))
		return NULL;

	spi = kzalloc(sizeof *spi, GFP_KERNEL);
	if (!spi) {
		dev_err(dev, "cannot alloc spi_device\n");
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
328
	spi->dev.parent = &master->dev;
329 330
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
331
	spi->cs_gpio = -EINVAL;
332 333 334 335 336 337 338 339 340 341 342 343
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
344
 * Returns 0 on success; negative errno on failure
345 346 347
 */
int spi_add_device(struct spi_device *spi)
{
348
	static DEFINE_MUTEX(spi_add_lock);
349 350
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
351
	struct device *d;
352 353 354
	int status;

	/* Chipselects are numbered 0..max; validate. */
355
	if (spi->chip_select >= master->num_chipselect) {
356 357
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
358
			master->num_chipselect);
359 360 361 362
		return -EINVAL;
	}

	/* Set the bus ID string */
363
	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
364 365
			spi->chip_select);

366 367 368 369 370 371 372

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

373 374
	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
	if (d != NULL) {
375 376
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
377
		put_device(d);
378 379 380 381
		status = -EBUSY;
		goto done;
	}

382 383 384
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

385 386 387 388
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
389
	status = spi_setup(spi);
390
	if (status < 0) {
391 392
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
393
		goto done;
394 395
	}

396
	/* Device may be bound to an active driver when this returns */
397
	status = device_add(&spi->dev);
398
	if (status < 0)
399 400
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
401
	else
402
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
403

404 405 406
done:
	mutex_unlock(&spi_add_lock);
	return status;
407 408
}
EXPORT_SYMBOL_GPL(spi_add_device);
409

D
David Brownell 已提交
410 411 412 413 414 415 416
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
417 418 419 420
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
421 422
 *
 * Returns the new device, or NULL.
423
 */
424 425
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
426 427 428 429
{
	struct spi_device	*proxy;
	int			status;

430 431 432 433 434 435 436
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

437 438
	proxy = spi_alloc_device(master);
	if (!proxy)
439 440
		return NULL;

441 442
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

443 444
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
445
	proxy->mode = chip->mode;
446
	proxy->irq = chip->irq;
447
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
448 449 450 451
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

452
	status = spi_add_device(proxy);
453
	if (status < 0) {
454 455
		spi_dev_put(proxy);
		return NULL;
456 457 458 459 460 461
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

462 463 464 465 466 467 468 469 470 471 472 473 474 475
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
476 477 478 479 480 481
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
482 483 484 485 486 487 488 489 490 491 492 493 494
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
495
int __devinit
496 497
spi_register_board_info(struct spi_board_info const *info, unsigned n)
{
498 499
	struct boardinfo *bi;
	int i;
500

501
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
502 503 504
	if (!bi)
		return -ENOMEM;

505 506
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
507

508 509 510 511 512 513
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
514
	}
515 516

	return 0;
517 518 519 520
}

/*-------------------------------------------------------------------------*/

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);
	unsigned long flags;
	bool was_busy = false;
	int ret;

	/* Lock queue and check for queue work */
	spin_lock_irqsave(&master->queue_lock, flags);
	if (list_empty(&master->queue) || !master->running) {
541
		if (master->busy && master->unprepare_transfer_hardware) {
542 543
			ret = master->unprepare_transfer_hardware(master);
			if (ret) {
544
				spin_unlock_irqrestore(&master->queue_lock, flags);
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
				dev_err(&master->dev,
					"failed to unprepare transfer hardware\n");
				return;
			}
		}
		master->busy = false;
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}
	/* Extract head of queue */
	master->cur_msg =
	    list_entry(master->queue.next, struct spi_message, queue);

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

571
	if (!was_busy && master->prepare_transfer_hardware) {
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
			return;
		}
	}

	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
			"failed to transfer one message from queue\n");
		return;
	}
}

static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
					   &master->kworker,
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
		return -ENOMEM;
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
	if (list_empty(&master->queue))
		next = NULL;
	else
		next = list_entry(master->queue.next,
				  struct spi_message, queue);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	master->cur_msg = NULL;

	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		msleep(10);
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
	if (master->running && !master->busy)
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->queued = true;
	master->transfer = spi_queued_transfer;

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
err_init_queue:
	spi_destroy_queue(master);
	return ret;
}

/*-------------------------------------------------------------------------*/

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
#if defined(CONFIG_OF) && !defined(CONFIG_SPARC)
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;
	const __be32 *prop;
	int rc;
	int len;

	if (!master->dev.of_node)
		return;

	for_each_child_of_node(master->dev.of_node, nc) {
		/* Alloc an spi_device */
		spi = spi_alloc_device(master);
		if (!spi) {
			dev_err(&master->dev, "spi_device alloc error for %s\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}

		/* Select device driver */
		if (of_modalias_node(nc, spi->modalias,
				     sizeof(spi->modalias)) < 0) {
			dev_err(&master->dev, "cannot find modalias for %s\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}

		/* Device address */
		prop = of_get_property(nc, "reg", &len);
		if (!prop || len < sizeof(*prop)) {
			dev_err(&master->dev, "%s has no 'reg' property\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}
		spi->chip_select = be32_to_cpup(prop);

		/* Mode (clock phase/polarity/etc.) */
		if (of_find_property(nc, "spi-cpha", NULL))
			spi->mode |= SPI_CPHA;
		if (of_find_property(nc, "spi-cpol", NULL))
			spi->mode |= SPI_CPOL;
		if (of_find_property(nc, "spi-cs-high", NULL))
			spi->mode |= SPI_CS_HIGH;

		/* Device speed */
		prop = of_get_property(nc, "spi-max-frequency", &len);
		if (!prop || len < sizeof(*prop)) {
			dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}
		spi->max_speed_hz = be32_to_cpup(prop);

		/* IRQ */
		spi->irq = irq_of_parse_and_map(nc, 0);

		/* Store a pointer to the node in the device structure */
		of_node_get(nc);
		spi->dev.of_node = nc;

		/* Register the new device */
		request_module(spi->modalias);
		rc = spi_add_device(spi);
		if (rc) {
			dev_err(&master->dev, "spi_device register error %s\n",
				nc->full_name);
			spi_dev_put(spi);
		}

	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

T
Tony Jones 已提交
897
static void spi_master_release(struct device *dev)
898 899 900
{
	struct spi_master *master;

T
Tony Jones 已提交
901
	master = container_of(dev, struct spi_master, dev);
902 903 904 905 906 907
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
908
	.dev_release	= spi_master_release,
909 910 911
};


912

913 914 915
/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
916
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
917
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
918
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
919
 * Context: can sleep
920 921 922
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
923
 * an spi_master structure, prior to calling spi_register_master().
924 925 926 927 928
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
929
 * the master's methods before calling spi_register_master(); and (after errors
930 931
 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 * leak.
932
 */
933
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
934 935 936
{
	struct spi_master	*master;

D
David Brownell 已提交
937 938 939
	if (!dev)
		return NULL;

940
	master = kzalloc(size + sizeof *master, GFP_KERNEL);
941 942 943
	if (!master)
		return NULL;

T
Tony Jones 已提交
944
	device_initialize(&master->dev);
945 946
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
947 948
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
949
	spi_master_set_devdata(master, &master[1]);
950 951 952 953 954

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
	u16 nb;
	int i, *cs;
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
	master->num_chipselect = max(nb, master->num_chipselect);

	if (nb < 1)
		return 0;

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

	memset(cs, -EINVAL, master->num_chipselect);

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

993 994 995
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
996
 * Context: can sleep
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1010 1011
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1012
 */
1013
int spi_register_master(struct spi_master *master)
1014
{
1015
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1016
	struct device		*dev = master->dev.parent;
1017
	struct boardinfo	*bi;
1018 1019 1020
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1021 1022 1023
	if (!dev)
		return -ENODEV;

1024 1025 1026 1027
	status = of_spi_register_master(master);
	if (status)
		return status;

1028 1029 1030 1031 1032 1033
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1034
	/* convention:  dynamically assigned bus IDs count down from the max */
1035
	if (master->bus_num < 0) {
1036 1037 1038
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1039
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1040
		dynamic = 1;
1041 1042
	}

1043 1044 1045 1046
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;

1047 1048 1049
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1050
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1051
	status = device_add(&master->dev);
1052
	if (status < 0)
1053
		goto done;
1054
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1055 1056
			dynamic ? " (dynamic)" : "");

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
			device_unregister(&master->dev);
			goto done;
		}
	}

1068 1069 1070 1071 1072 1073
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1074 1075
	/* Register devices from the device tree */
	of_register_spi_devices(master);
1076 1077 1078 1079 1080
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1081
static int __unregister(struct device *dev, void *null)
1082
{
1083
	spi_unregister_device(to_spi_device(dev));
1084 1085 1086 1087 1088 1089
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1090
 * Context: can sleep
1091 1092 1093 1094 1095 1096 1097 1098
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1099 1100
	int dummy;

1101 1102 1103 1104 1105
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1106 1107 1108 1109
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1110
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1111
	device_unregister(&master->dev);
1112 1113 1114
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

D
Dave Young 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154
static int __spi_master_match(struct device *dev, void *data)
{
	struct spi_master *m;
	u16 *bus_num = data;

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1155 1156 1157
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1158
 * Context: can sleep
1159 1160 1161 1162 1163 1164 1165 1166
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
1167
	struct device		*dev;
1168
	struct spi_master	*master = NULL;
D
Dave Young 已提交
1169

1170
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
1171 1172 1173 1174
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
1175
	return master;
1176 1177 1178 1179 1180 1181
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
1206
	unsigned	bad_bits;
1207
	int		status = 0;
1208

1209 1210 1211 1212 1213
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
	if (bad_bits) {
1214
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1215 1216 1217 1218
			bad_bits);
		return -EINVAL;
	}

1219 1220 1221
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

1222 1223
	if (spi->master->setup)
		status = spi->master->setup(spi);
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
				"%u bits/w, %u Hz max --> %d\n",
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

1239 1240 1241
static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
1242
	struct spi_transfer *xfer;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

1263 1264 1265 1266 1267 1268 1269 1270 1271
	/**
	 * Set transfer bits_per_word as spi device default if it is not
	 * set for this transfer.
	 */
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
	}

1272 1273 1274 1275 1276
	message->spi = spi;
	message->status = -EINPROGRESS;
	return master->transfer(spi, message);
}

D
David Brownell 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
1309 1310
	int ret;
	unsigned long flags;
D
David Brownell 已提交
1311

1312
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
1313

1314 1315 1316 1317
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
1318

1319 1320 1321
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
1322 1323 1324
}
EXPORT_SYMBOL_GPL(spi_async);

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

1371 1372 1373 1374 1375 1376 1377 1378

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

1379 1380 1381 1382 1383
static void spi_complete(void *arg)
{
	complete(arg);
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;

	message->complete = spi_complete;
	message->context = &done;

	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

	status = spi_async_locked(spi, message);

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

1410 1411 1412 1413
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
1414
 * Context: can sleep
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
1426 1427 1428
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
1429
 * It returns zero on success, else a negative error code.
1430 1431 1432
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
1433
	return __spi_sync(spi, message, 0);
1434 1435 1436
}
EXPORT_SYMBOL_GPL(spi_sync);

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
1448
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

1513 1514
/* portable code must never pass more than 32 bytes */
#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1515 1516 1517 1518 1519 1520 1521 1522

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
1523 1524
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
1525
 * Context: can sleep
1526 1527 1528 1529
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
1530
 * This call may only be used from a context that may sleep.
1531
 *
D
David Brownell 已提交
1532
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
1533 1534
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
1535
 * spi_{async,sync}() calls with dma-safe buffers.
1536 1537
 */
int spi_write_then_read(struct spi_device *spi,
1538 1539
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
1540
{
D
David Brownell 已提交
1541
	static DEFINE_MUTEX(lock);
1542 1543 1544

	int			status;
	struct spi_message	message;
1545
	struct spi_transfer	x[2];
1546 1547
	u8			*local_buf;

1548 1549 1550 1551
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
1552
	 */
1553 1554 1555 1556 1557 1558 1559
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
		local_buf = kmalloc(max(SPI_BUFSIZ, n_tx + n_rx), GFP_KERNEL);
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
1560

1561
	spi_message_init(&message);
1562 1563 1564 1565 1566 1567 1568 1569 1570
	memset(x, 0, sizeof x);
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
1571

1572
	memcpy(local_buf, txbuf, n_tx);
1573 1574
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
1575 1576 1577

	/* do the i/o */
	status = spi_sync(spi, &message);
1578
	if (status == 0)
1579
		memcpy(rxbuf, x[1].rx_buf, n_rx);
1580

1581
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
1582
		mutex_unlock(&lock);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
1594 1595
	int	status;

1596
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1597 1598 1599 1600 1601 1602 1603 1604
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
1605

1606 1607 1608
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
1609
	return 0;
1610 1611 1612 1613 1614 1615 1616 1617

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
1618
}
1619

1620 1621
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
1622 1623 1624 1625
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
1626
 */
1627
postcore_initcall(spi_init);
1628