xfs_reflink.c 42.9 KB
Newer Older
D
Darrick J. Wong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 *
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
43
#include "xfs_btree.h"
D
Darrick J. Wong 已提交
44 45 46 47 48 49 50 51 52 53 54
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_reflink.h"
55
#include "xfs_iomap.h"
56
#include "xfs_rmap_btree.h"
57 58
#include "xfs_sb.h"
#include "xfs_ag_resv.h"
D
Darrick J. Wong 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

/*
 * Copy on Write of Shared Blocks
 *
 * XFS must preserve "the usual" file semantics even when two files share
 * the same physical blocks.  This means that a write to one file must not
 * alter the blocks in a different file; the way that we'll do that is
 * through the use of a copy-on-write mechanism.  At a high level, that
 * means that when we want to write to a shared block, we allocate a new
 * block, write the data to the new block, and if that succeeds we map the
 * new block into the file.
 *
 * XFS provides a "delayed allocation" mechanism that defers the allocation
 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
 * possible.  This reduces fragmentation by enabling the filesystem to ask
 * for bigger chunks less often, which is exactly what we want for CoW.
 *
 * The delalloc mechanism begins when the kernel wants to make a block
 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
 * create a delalloc mapping, which is a regular in-core extent, but without
 * a real startblock.  (For delalloc mappings, the startblock encodes both
 * a flag that this is a delalloc mapping, and a worst-case estimate of how
 * many blocks might be required to put the mapping into the BMBT.)  delalloc
 * mappings are a reservation against the free space in the filesystem;
 * adjacent mappings can also be combined into fewer larger mappings.
 *
85 86 87 88 89 90 91 92
 * As an optimization, the CoW extent size hint (cowextsz) creates
 * outsized aligned delalloc reservations in the hope of landing out of
 * order nearby CoW writes in a single extent on disk, thereby reducing
 * fragmentation and improving future performance.
 *
 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
 * C: ------DDDDDDD--------- (CoW fork)
 *
D
Darrick J. Wong 已提交
93
 * When dirty pages are being written out (typically in writepage), the
94 95 96 97 98 99 100
 * delalloc reservations are converted into unwritten mappings by
 * allocating blocks and replacing the delalloc mapping with real ones.
 * A delalloc mapping can be replaced by several unwritten ones if the
 * free space is fragmented.
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUUUUUU---------
D
Darrick J. Wong 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114
 *
 * We want to adapt the delalloc mechanism for copy-on-write, since the
 * write paths are similar.  The first two steps (creating the reservation
 * and allocating the blocks) are exactly the same as delalloc except that
 * the mappings must be stored in a separate CoW fork because we do not want
 * to disturb the mapping in the data fork until we're sure that the write
 * succeeded.  IO completion in this case is the process of removing the old
 * mapping from the data fork and moving the new mapping from the CoW fork to
 * the data fork.  This will be discussed shortly.
 *
 * For now, unaligned directio writes will be bounced back to the page cache.
 * Block-aligned directio writes will use the same mechanism as buffered
 * writes.
 *
115 116 117 118 119 120 121 122
 * Just prior to submitting the actual disk write requests, we convert
 * the extents representing the range of the file actually being written
 * (as opposed to extra pieces created for the cowextsize hint) to real
 * extents.  This will become important in the next step:
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUrrUUU---------
 *
D
Darrick J. Wong 已提交
123 124 125 126 127 128
 * CoW remapping must be done after the data block write completes,
 * because we don't want to destroy the old data fork map until we're sure
 * the new block has been written.  Since the new mappings are kept in a
 * separate fork, we can simply iterate these mappings to find the ones
 * that cover the file blocks that we just CoW'd.  For each extent, simply
 * unmap the corresponding range in the data fork, map the new range into
129 130 131 132 133 134 135 136 137
 * the data fork, and remove the extent from the CoW fork.  Because of
 * the presence of the cowextsize hint, however, we must be careful
 * only to remap the blocks that we've actually written out --  we must
 * never remap delalloc reservations nor CoW staging blocks that have
 * yet to be written.  This corresponds exactly to the real extents in
 * the CoW fork:
 *
 * D: --RRRRRRrrSRRRRRRRR---
 * C: ------UU--UUU---------
D
Darrick J. Wong 已提交
138 139 140 141 142 143 144 145 146
 *
 * Since the remapping operation can be applied to an arbitrary file
 * range, we record the need for the remap step as a flag in the ioend
 * instead of declaring a new IO type.  This is required for direct io
 * because we only have ioend for the whole dio, and we have to be able to
 * remember the presence of unwritten blocks and CoW blocks with a single
 * ioend structure.  Better yet, the more ground we can cover with one
 * ioend, the better.
 */
147 148 149 150 151 152 153 154 155 156 157

/*
 * Given an AG extent, find the lowest-numbered run of shared blocks
 * within that range and return the range in fbno/flen.  If
 * find_end_of_shared is true, return the longest contiguous extent of
 * shared blocks.  If there are no shared extents, fbno and flen will
 * be set to NULLAGBLOCK and 0, respectively.
 */
int
xfs_reflink_find_shared(
	struct xfs_mount	*mp,
158
	struct xfs_trans	*tp,
159 160 161 162 163 164 165 166 167 168 169
	xfs_agnumber_t		agno,
	xfs_agblock_t		agbno,
	xfs_extlen_t		aglen,
	xfs_agblock_t		*fbno,
	xfs_extlen_t		*flen,
	bool			find_end_of_shared)
{
	struct xfs_buf		*agbp;
	struct xfs_btree_cur	*cur;
	int			error;

170
	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
171 172
	if (error)
		return error;
173 174
	if (!agbp)
		return -ENOMEM;
175

176
	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno, NULL);
177 178 179 180 181 182

	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
			find_end_of_shared);

	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);

183
	xfs_trans_brelse(tp, agbp);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	return error;
}

/*
 * Trim the mapping to the next block where there's a change in the
 * shared/unshared status.  More specifically, this means that we
 * find the lowest-numbered extent of shared blocks that coincides with
 * the given block mapping.  If the shared extent overlaps the start of
 * the mapping, trim the mapping to the end of the shared extent.  If
 * the shared region intersects the mapping, trim the mapping to the
 * start of the shared extent.  If there are no shared regions that
 * overlap, just return the original extent.
 */
int
xfs_reflink_trim_around_shared(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	bool			*shared,
	bool			*trimmed)
{
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		fbno;
	xfs_extlen_t		flen;
	int			error = 0;

	/* Holes, unwritten, and delalloc extents cannot be shared */
212
	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
213 214 215 216 217 218 219 220 221 222
		*shared = false;
		return 0;
	}

	trace_xfs_reflink_trim_around_shared(ip, irec);

	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
	aglen = irec->br_blockcount;

223
	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
			aglen, &fbno, &flen, true);
	if (error)
		return error;

	*shared = *trimmed = false;
	if (fbno == NULLAGBLOCK) {
		/* No shared blocks at all. */
		return 0;
	} else if (fbno == agbno) {
		/*
		 * The start of this extent is shared.  Truncate the
		 * mapping at the end of the shared region so that a
		 * subsequent iteration starts at the start of the
		 * unshared region.
		 */
		irec->br_blockcount = flen;
		*shared = true;
		if (flen != aglen)
			*trimmed = true;
		return 0;
	} else {
		/*
		 * There's a shared extent midway through this extent.
		 * Truncate the mapping at the start of the shared
		 * extent so that a subsequent iteration starts at the
		 * start of the shared region.
		 */
		irec->br_blockcount = fbno - agbno;
		*trimmed = true;
		return 0;
	}
}

257 258 259 260 261 262 263 264 265 266 267
/*
 * Trim the passed in imap to the next shared/unshared extent boundary, and
 * if imap->br_startoff points to a shared extent reserve space for it in the
 * COW fork.  In this case *shared is set to true, else to false.
 *
 * Note that imap will always contain the block numbers for the existing blocks
 * in the data fork, as the upper layers need them for read-modify-write
 * operations.
 */
int
xfs_reflink_reserve_cow(
268
	struct xfs_inode	*ip,
269 270
	struct xfs_bmbt_irec	*imap,
	bool			*shared)
271
{
272 273 274 275
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	struct xfs_bmbt_irec	got;
	int			error = 0;
	bool			eof = false, trimmed;
276
	struct xfs_iext_cursor	icur;
277

278 279 280 281 282 283 284 285
	/*
	 * Search the COW fork extent list first.  This serves two purposes:
	 * first this implement the speculative preallocation using cowextisze,
	 * so that we also unshared block adjacent to shared blocks instead
	 * of just the shared blocks themselves.  Second the lookup in the
	 * extent list is generally faster than going out to the shared extent
	 * tree.
	 */
286

287
	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
288
		eof = true;
289 290 291
	if (!eof && got.br_startoff <= imap->br_startoff) {
		trace_xfs_reflink_cow_found(ip, imap);
		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
292

293 294 295
		*shared = true;
		return 0;
	}
296 297

	/* Trim the mapping to the nearest shared extent boundary. */
298
	error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
299
	if (error)
300
		return error;
301 302

	/* Not shared?  Just report the (potentially capped) extent. */
303 304
	if (!*shared)
		return 0;
305 306 307 308 309 310 311

	/*
	 * Fork all the shared blocks from our write offset until the end of
	 * the extent.
	 */
	error = xfs_qm_dqattach_locked(ip, 0);
	if (error)
312 313 314
		return error;

	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
315
			imap->br_blockcount, 0, &got, &icur, eof);
316
	if (error == -ENOSPC || error == -EDQUOT)
317
		trace_xfs_reflink_cow_enospc(ip, imap);
318
	if (error)
319
		return error;
320

321
	trace_xfs_reflink_cow_alloc(ip, &got);
322
	return 0;
323
}
324

325 326 327 328 329 330 331 332 333
/* Convert part of an unwritten CoW extent to a real one. */
STATIC int
xfs_reflink_convert_cow_extent(
	struct xfs_inode		*ip,
	struct xfs_bmbt_irec		*imap,
	xfs_fileoff_t			offset_fsb,
	xfs_filblks_t			count_fsb,
	struct xfs_defer_ops		*dfops)
{
334
	xfs_fsblock_t			first_block = NULLFSBLOCK;
335 336 337 338 339
	int				nimaps = 1;

	if (imap->br_state == XFS_EXT_NORM)
		return 0;

340 341 342
	xfs_trim_extent(imap, offset_fsb, count_fsb);
	trace_xfs_reflink_convert_cow(ip, imap);
	if (imap->br_blockcount == 0)
343
		return 0;
344
	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
345
			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, &first_block,
346
			0, imap, &nimaps, dfops);
347 348 349 350 351 352 353 354 355 356 357 358
}

/* Convert all of the unwritten CoW extents in a file's range to real ones. */
int
xfs_reflink_convert_cow(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
359 360 361 362 363
	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
	struct xfs_bmbt_irec	imap;
	struct xfs_defer_ops	dfops;
	xfs_fsblock_t		first_block = NULLFSBLOCK;
	int			nimaps = 1, error = 0;
364

365
	ASSERT(count != 0);
366

367 368 369 370 371
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
			XFS_BMAPI_CONVERT_ONLY, &first_block, 0, &imap, &nimaps,
			&dfops);
372 373 374 375
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

376
/* Allocate all CoW reservations covering a range of blocks in a file. */
377 378
int
xfs_reflink_allocate_cow(
379
	struct xfs_inode	*ip,
380 381 382
	struct xfs_bmbt_irec	*imap,
	bool			*shared,
	uint			*lockmode)
383 384
{
	struct xfs_mount	*mp = ip->i_mount;
385 386 387
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
	struct xfs_bmbt_irec	got;
388
	struct xfs_defer_ops	dfops;
389
	struct xfs_trans	*tp = NULL;
390
	xfs_fsblock_t		first_block;
391 392
	int			nimaps, error = 0;
	bool			trimmed;
393
	xfs_filblks_t		resaligned;
394
	xfs_extlen_t		resblks = 0;
395
	struct xfs_iext_cursor	icur;
396

397 398 399
retry:
	ASSERT(xfs_is_reflink_inode(ip));
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
400

401 402 403 404
	/*
	 * Even if the extent is not shared we might have a preallocation for
	 * it in the COW fork.  If so use it.
	 */
405
	if (xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) &&
406 407 408
	    got.br_startoff <= offset_fsb) {
		*shared = true;

409 410
		/* If we have a real allocation in the COW fork we're done. */
		if (!isnullstartblock(got.br_startblock)) {
411 412 413
			xfs_trim_extent(&got, offset_fsb, count_fsb);
			*imap = got;
			goto convert;
414
		}
415 416

		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
417
	} else {
418 419 420 421
		error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
		if (error || !*shared)
			goto out;
	}
422

423 424 425 426
	if (!tp) {
		resaligned = xfs_aligned_fsb_count(imap->br_startoff,
			imap->br_blockcount, xfs_get_cowextsz_hint(ip));
		resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
427

428 429 430 431
		xfs_iunlock(ip, *lockmode);
		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
		*lockmode = XFS_ILOCK_EXCL;
		xfs_ilock(ip, *lockmode);
432

433 434 435 436 437 438 439
		if (error)
			return error;

		error = xfs_qm_dqattach_locked(ip, 0);
		if (error)
			goto out;
		goto retry;
440 441 442 443
	}

	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
444
	if (error)
445
		goto out;
446

447 448 449 450
	xfs_trans_ijoin(tp, ip, 0);

	xfs_defer_init(&dfops, &first_block);
	nimaps = 1;
451

452
	/* Allocate the entire reservation as unwritten blocks. */
453
	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
454
			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, &first_block,
455
			resblks, imap, &nimaps, &dfops);
456
	if (error)
457
		goto out_bmap_cancel;
458

459
	/* Finish up. */
460
	error = xfs_defer_finish(&tp, &dfops);
461
	if (error)
462
		goto out_bmap_cancel;
463 464

	error = xfs_trans_commit(tp);
465
	if (error)
466 467 468 469
		return error;
convert:
	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb,
			&dfops);
470
out_bmap_cancel:
471
	xfs_defer_cancel(&dfops);
472 473
	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
474 475 476 477
out:
	if (tp)
		xfs_trans_cancel(tp);
	return error;
478 479
}

480
/*
481
 * Find the CoW reservation for a given byte offset of a file.
482 483 484 485 486
 */
bool
xfs_reflink_find_cow_mapping(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
487
	struct xfs_bmbt_irec		*imap)
488
{
489 490 491
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	xfs_fileoff_t			offset_fsb;
	struct xfs_bmbt_irec		got;
492
	struct xfs_iext_cursor		icur;
493 494 495 496

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
	ASSERT(xfs_is_reflink_inode(ip));

497
	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
498
	if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &icur, &got))
499
		return false;
500
	if (got.br_startoff > offset_fsb)
501 502 503
		return false;

	trace_xfs_reflink_find_cow_mapping(ip, offset, 1, XFS_IO_OVERWRITE,
504 505
			&got);
	*imap = got;
506 507 508 509 510 511
	return true;
}

/*
 * Trim an extent to end at the next CoW reservation past offset_fsb.
 */
512
void
513 514 515 516 517
xfs_reflink_trim_irec_to_next_cow(
	struct xfs_inode		*ip,
	xfs_fileoff_t			offset_fsb,
	struct xfs_bmbt_irec		*imap)
{
518 519
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	struct xfs_bmbt_irec		got;
520
	struct xfs_iext_cursor		icur;
521 522

	if (!xfs_is_reflink_inode(ip))
523
		return;
524 525

	/* Find the extent in the CoW fork. */
526
	if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &icur, &got))
527
		return;
528 529

	/* This is the extent before; try sliding up one. */
530
	if (got.br_startoff < offset_fsb) {
531
		if (!xfs_iext_next_extent(ifp, &icur, &got))
532
			return;
533 534
	}

535 536
	if (got.br_startoff >= imap->br_startoff + imap->br_blockcount)
		return;
537

538
	imap->br_blockcount = got.br_startoff - imap->br_startoff;
539 540
	trace_xfs_reflink_trim_irec(ip, imap);
}
541 542

/*
543 544 545 546
 * Cancel CoW reservations for some block range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
547 548 549 550 551 552
 */
int
xfs_reflink_cancel_cow_blocks(
	struct xfs_inode		*ip,
	struct xfs_trans		**tpp,
	xfs_fileoff_t			offset_fsb,
553 554
	xfs_fileoff_t			end_fsb,
	bool				cancel_real)
555
{
556
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
557
	struct xfs_bmbt_irec		got, del;
558
	struct xfs_iext_cursor		icur;
559 560
	xfs_fsblock_t			firstfsb;
	struct xfs_defer_ops		dfops;
561
	int				error = 0;
562 563 564

	if (!xfs_is_reflink_inode(ip))
		return 0;
565
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
566
		return 0;
567

568 569
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
570 571
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
572 573 574 575 576 577 578

		/* Extent delete may have bumped ext forward */
		if (!del.br_blockcount) {
			xfs_iext_prev(ifp, &icur);
			goto next_extent;
		}

579
		trace_xfs_reflink_cancel_cow(ip, &del);
580

581 582
		if (isnullstartblock(del.br_startblock)) {
			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
583
					&icur, &got, &del);
584 585
			if (error)
				break;
586
		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
587 588 589
			xfs_trans_ijoin(*tpp, ip, 0);
			xfs_defer_init(&dfops, &firstfsb);

590 591
			/* Free the CoW orphan record. */
			error = xfs_refcount_free_cow_extent(ip->i_mount,
592 593
					&dfops, del.br_startblock,
					del.br_blockcount);
594 595 596
			if (error)
				break;

597
			xfs_bmap_add_free(ip->i_mount, &dfops,
598
					del.br_startblock, del.br_blockcount,
599 600 601 602
					NULL);

			/* Update quota accounting */
			xfs_trans_mod_dquot_byino(*tpp, ip, XFS_TRANS_DQ_BCOUNT,
603
					-(long)del.br_blockcount);
604 605

			/* Roll the transaction */
606 607
			xfs_defer_ijoin(&dfops, ip);
			error = xfs_defer_finish(tpp, &dfops);
608 609 610 611 612 613
			if (error) {
				xfs_defer_cancel(&dfops);
				break;
			}

			/* Remove the mapping from the CoW fork. */
614
			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
615
		}
616 617
next_extent:
		if (!xfs_iext_get_extent(ifp, &icur, &got))
618
			break;
619 620
	}

621 622 623 624
	/* clear tag if cow fork is emptied */
	if (!ifp->if_bytes)
		xfs_inode_clear_cowblocks_tag(ip);

625 626 627 628
	return error;
}

/*
629 630 631 632
 * Cancel CoW reservations for some byte range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
633 634 635 636 637
 */
int
xfs_reflink_cancel_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
638 639
	xfs_off_t		count,
	bool			cancel_real)
640 641 642 643 644 645 646
{
	struct xfs_trans	*tp;
	xfs_fileoff_t		offset_fsb;
	xfs_fileoff_t		end_fsb;
	int			error;

	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
647
	ASSERT(xfs_is_reflink_inode(ip));
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	if (count == NULLFILEOFF)
		end_fsb = NULLFILEOFF;
	else
		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
			0, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* Scrape out the old CoW reservations */
665 666
	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
			cancel_real);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	if (error)
		goto out_cancel;

	error = xfs_trans_commit(tp);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Remap parts of a file's data fork after a successful CoW.
 */
int
xfs_reflink_end_cow(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	xfs_off_t			count)
{
692
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
693
	struct xfs_bmbt_irec		got, del;
694 695 696 697 698
	struct xfs_trans		*tp;
	xfs_fileoff_t			offset_fsb;
	xfs_fileoff_t			end_fsb;
	xfs_fsblock_t			firstfsb;
	struct xfs_defer_ops		dfops;
699
	int				error;
700 701
	unsigned int			resblks;
	xfs_filblks_t			rlen;
702
	struct xfs_iext_cursor		icur;
703 704 705

	trace_xfs_reflink_end_cow(ip, offset, count);

706 707 708 709
	/* No COW extents?  That's easy! */
	if (ifp->if_bytes == 0)
		return 0;

710 711 712
	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	/*
	 * Start a rolling transaction to switch the mappings.  We're
	 * unlikely ever to have to remap 16T worth of single-block
	 * extents, so just cap the worst case extent count to 2^32-1.
	 * Stick a warning in just in case, and avoid 64-bit division.
	 */
	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
	if (end_fsb - offset_fsb > UINT_MAX) {
		error = -EFSCORRUPTED;
		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
		ASSERT(0);
		goto out;
	}
	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
			(unsigned int)(end_fsb - offset_fsb),
			XFS_DATA_FORK);
729 730 731 732 733 734 735 736
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
			resblks, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

737 738 739 740 741
	/*
	 * In case of racing, overlapping AIO writes no COW extents might be
	 * left by the time I/O completes for the loser of the race.  In that
	 * case we are done.
	 */
742
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
743
		goto out_cancel;
744

745 746 747 748 749
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);

750
		/* Extent delete may have bumped ext forward */
751
		if (!del.br_blockcount) {
752
			xfs_iext_prev(ifp, &icur);
753
			goto next_extent;
754 755 756
		}

		ASSERT(!isnullstartblock(got.br_startblock));
757

758 759 760 761 762 763
		/*
		 * Don't remap unwritten extents; these are
		 * speculatively preallocated CoW extents that have been
		 * allocated but have not yet been involved in a write.
		 */
		if (got.br_state == XFS_EXT_UNWRITTEN) {
764
			xfs_iext_prev(ifp, &icur);
765 766 767
			goto next_extent;
		}

768
		/* Unmap the old blocks in the data fork. */
769 770 771 772 773 774
		xfs_defer_init(&dfops, &firstfsb);
		rlen = del.br_blockcount;
		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1,
				&firstfsb, &dfops);
		if (error)
			goto out_defer;
775

776 777 778 779 780 781
		/* Trim the extent to whatever got unmapped. */
		if (rlen) {
			xfs_trim_extent(&del, del.br_startoff + rlen,
				del.br_blockcount - rlen);
		}
		trace_xfs_reflink_cow_remap(ip, &del);
782

783 784 785 786 787
		/* Free the CoW orphan record. */
		error = xfs_refcount_free_cow_extent(tp->t_mountp, &dfops,
				del.br_startblock, del.br_blockcount);
		if (error)
			goto out_defer;
788

789 790 791 792
		/* Map the new blocks into the data fork. */
		error = xfs_bmap_map_extent(tp->t_mountp, &dfops, ip, &del);
		if (error)
			goto out_defer;
793

794
		/* Remove the mapping from the CoW fork. */
795
		xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
796

797 798
		xfs_defer_ijoin(&dfops, ip);
		error = xfs_defer_finish(&tp, &dfops);
799 800
		if (error)
			goto out_defer;
801
next_extent:
802
		if (!xfs_iext_get_extent(ifp, &icur, &got))
803
			break;
804 805 806 807 808 809 810 811 812 813
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_defer:
	xfs_defer_cancel(&dfops);
814
out_cancel:
815 816 817 818 819 820
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
	return error;
}
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

/*
 * Free leftover CoW reservations that didn't get cleaned out.
 */
int
xfs_reflink_recover_cow(
	struct xfs_mount	*mp)
{
	xfs_agnumber_t		agno;
	int			error = 0;

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return 0;

	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
		error = xfs_refcount_recover_cow_leftovers(mp, agno);
		if (error)
			break;
	}

	return error;
}
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

/*
 * Reflinking (Block) Ranges of Two Files Together
 *
 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 * optimization to avoid unnecessary refcount btree lookups in the write path.
 *
 * Now we can iteratively remap the range of extents (and holes) in src to the
 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 * logical blocks in dest and src touched by the reflink operation.
 *
 * While the length of drange is greater than zero,
 *    - Read src's bmbt at the start of srange ("imap")
 *    - If imap doesn't exist, make imap appear to start at the end of srange
 *      with zero length.
 *    - If imap starts before srange, advance imap to start at srange.
 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 *    - Punch (imap start - srange start + imap len) blocks from dest at
 *      offset (drange start).
 *    - If imap points to a real range of pblks,
 *         > Increase the refcount of the imap's pblks
 *         > Map imap's pblks into dest at the offset
 *           (drange start + imap start - srange start)
 *    - Advance drange and srange by (imap start - srange start + imap len)
 *
 * Finally, if the reflink made dest longer, update both the in-core and
 * on-disk file sizes.
 *
 * ASCII Art Demonstration:
 *
 * Let's say we want to reflink this source file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 *   <-------------------->
 *
 * into this destination file:
 *
 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 *        <-------------------->
 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 * Observe that the range has different logical offsets in either file.
 *
 * Consider that the first extent in the source file doesn't line up with our
 * reflink range.  Unmapping  and remapping are separate operations, so we can
 * unmap more blocks from the destination file than we remap.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD---------DDDDD--DDD
 *        <------->
 *
 * Now remap the source extent into the destination file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD--SSSSSSSDDDDD--DDD
 *        <------->
 *
 * Do likewise with the second hole and extent in our range.  Holes in the
 * unmap range don't affect our operation.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *            <---->
 * --DDDDD--SSSSSSS-SSSSS-DDD
 *                 <---->
 *
 * Finally, unmap and remap part of the third extent.  This will increase the
 * size of the destination file.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *                  <----->
 * --DDDDD--SSSSSSS-SSSSS----SSS
 *                       <----->
 *
 * Once we update the destination file's i_size, we're done.
 */

/*
 * Ensure the reflink bit is set in both inodes.
 */
STATIC int
xfs_reflink_set_inode_flag(
	struct xfs_inode	*src,
	struct xfs_inode	*dest)
{
	struct xfs_mount	*mp = src->i_mount;
	int			error;
	struct xfs_trans	*tp;

	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	/* Lock both files against IO */
	if (src->i_ino == dest->i_ino)
		xfs_ilock(src, XFS_ILOCK_EXCL);
	else
		xfs_lock_two_inodes(src, dest, XFS_ILOCK_EXCL);

	if (!xfs_is_reflink_inode(src)) {
		trace_xfs_reflink_set_inode_flag(src);
		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
		xfs_ifork_init_cow(src);
	} else
		xfs_iunlock(src, XFS_ILOCK_EXCL);

	if (src->i_ino == dest->i_ino)
		goto commit_flags;

	if (!xfs_is_reflink_inode(dest)) {
		trace_xfs_reflink_set_inode_flag(dest);
		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
		xfs_ifork_init_cow(dest);
	} else
		xfs_iunlock(dest, XFS_ILOCK_EXCL);

commit_flags:
	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
	return error;
}

/*
978
 * Update destination inode size & cowextsize hint, if necessary.
979 980 981 982
 */
STATIC int
xfs_reflink_update_dest(
	struct xfs_inode	*dest,
983
	xfs_off_t		newlen,
984 985
	xfs_extlen_t		cowextsize,
	bool			is_dedupe)
986 987 988 989 990
{
	struct xfs_mount	*mp = dest->i_mount;
	struct xfs_trans	*tp;
	int			error;

991
	if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
992 993 994 995 996 997 998 999 1000
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	xfs_ilock(dest, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	if (newlen > i_size_read(VFS_I(dest))) {
		trace_xfs_reflink_update_inode_size(dest, newlen);
		i_size_write(VFS_I(dest), newlen);
		dest->i_d.di_size = newlen;
	}

	if (cowextsize) {
		dest->i_d.di_cowextsize = cowextsize;
		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
	}

1012 1013 1014 1015
	if (!is_dedupe) {
		xfs_trans_ichgtime(tp, dest,
				   XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);

	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
	return error;
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/*
 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 * btree already reserved all the space it needs, but the rmap btree can grow
 * infinitely, so we won't allow more reflinks when the AG is down to the
 * btree reserves.
 */
static int
xfs_reflink_ag_has_free_space(
	struct xfs_mount	*mp,
	xfs_agnumber_t		agno)
{
	struct xfs_perag	*pag;
	int			error = 0;

	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
		return 0;

	pag = xfs_perag_get(mp, agno);
	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_AGFL) ||
	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
		error = -ENOSPC;
	xfs_perag_put(pag);
	return error;
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/*
 * Unmap a range of blocks from a file, then map other blocks into the hole.
 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
 * The extent irec is mapped into dest at irec->br_startoff.
 */
STATIC int
xfs_reflink_remap_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	xfs_fileoff_t		destoff,
	xfs_off_t		new_isize)
{
	struct xfs_mount	*mp = ip->i_mount;
1066
	bool			real_extent = xfs_bmap_is_real_extent(irec);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	struct xfs_trans	*tp;
	xfs_fsblock_t		firstfsb;
	unsigned int		resblks;
	struct xfs_defer_ops	dfops;
	struct xfs_bmbt_irec	uirec;
	xfs_filblks_t		rlen;
	xfs_filblks_t		unmap_len;
	xfs_off_t		newlen;
	int			error;

	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);

1080 1081 1082 1083 1084 1085 1086 1087
	/* No reflinking if we're low on space */
	if (real_extent) {
		error = xfs_reflink_ag_has_free_space(mp,
				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
		if (error)
			goto out;
	}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	/* Start a rolling transaction to switch the mappings */
	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* If we're not just clearing space, then do we have enough quota? */
	if (real_extent) {
		error = xfs_trans_reserve_quota_nblks(tp, ip,
				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
		if (error)
			goto out_cancel;
	}

	trace_xfs_reflink_remap(ip, irec->br_startoff,
				irec->br_blockcount, irec->br_startblock);

	/* Unmap the old blocks in the data fork. */
	rlen = unmap_len;
	while (rlen) {
		xfs_defer_init(&dfops, &firstfsb);
		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1,
				&firstfsb, &dfops);
		if (error)
			goto out_defer;

		/*
		 * Trim the extent to whatever got unmapped.
		 * Remember, bunmapi works backwards.
		 */
		uirec.br_startblock = irec->br_startblock + rlen;
		uirec.br_startoff = irec->br_startoff + rlen;
		uirec.br_blockcount = unmap_len - rlen;
		unmap_len = rlen;

		/* If this isn't a real mapping, we're done. */
		if (!real_extent || uirec.br_blockcount == 0)
			goto next_extent;

		trace_xfs_reflink_remap(ip, uirec.br_startoff,
				uirec.br_blockcount, uirec.br_startblock);

		/* Update the refcount tree */
		error = xfs_refcount_increase_extent(mp, &dfops, &uirec);
		if (error)
			goto out_defer;

		/* Map the new blocks into the data fork. */
		error = xfs_bmap_map_extent(mp, &dfops, ip, &uirec);
		if (error)
			goto out_defer;

		/* Update quota accounting. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
				uirec.br_blockcount);

		/* Update dest isize if needed. */
		newlen = XFS_FSB_TO_B(mp,
				uirec.br_startoff + uirec.br_blockcount);
		newlen = min_t(xfs_off_t, newlen, new_isize);
		if (newlen > i_size_read(VFS_I(ip))) {
			trace_xfs_reflink_update_inode_size(ip, newlen);
			i_size_write(VFS_I(ip), newlen);
			ip->i_d.di_size = newlen;
			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
		}

next_extent:
		/* Process all the deferred stuff. */
1160 1161
		xfs_defer_ijoin(&dfops, ip);
		error = xfs_defer_finish(&tp, &dfops);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		if (error)
			goto out_defer;
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_defer:
	xfs_defer_cancel(&dfops);
out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Iteratively remap one file's extents (and holes) to another's.
 */
STATIC int
xfs_reflink_remap_blocks(
	struct xfs_inode	*src,
	xfs_fileoff_t		srcoff,
	struct xfs_inode	*dest,
	xfs_fileoff_t		destoff,
	xfs_filblks_t		len,
	xfs_off_t		new_isize)
{
	struct xfs_bmbt_irec	imap;
	int			nimaps;
	int			error = 0;
	xfs_filblks_t		range_len;

	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
	while (len) {
		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
				dest, destoff);
		/* Read extent from the source file */
		nimaps = 1;
		xfs_ilock(src, XFS_ILOCK_EXCL);
		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
		xfs_iunlock(src, XFS_ILOCK_EXCL);
		if (error)
			goto err;
		ASSERT(nimaps == 1);

		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
				&imap);

		/* Translate imap into the destination file. */
		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
		imap.br_startoff += destoff - srcoff;

		/* Clear dest from destoff to the end of imap and map it in. */
		error = xfs_reflink_remap_extent(dest, &imap, destoff,
				new_isize);
		if (error)
			goto err;

		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto err;
		}

		/* Advance drange/srange */
		srcoff += range_len;
		destoff += range_len;
		len -= range_len;
	}

	return 0;

err:
	trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
	return error;
}

/*
 * Link a range of blocks from one file to another.
 */
int
xfs_reflink_remap_range(
1248 1249 1250 1251 1252 1253
	struct file		*file_in,
	loff_t			pos_in,
	struct file		*file_out,
	loff_t			pos_out,
	u64			len,
	bool			is_dedupe)
1254
{
1255 1256 1257 1258
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
1259
	struct xfs_mount	*mp = src->i_mount;
1260
	bool			same_inode = (inode_in == inode_out);
1261 1262
	xfs_fileoff_t		sfsbno, dfsbno;
	xfs_filblks_t		fsblen;
1263
	xfs_extlen_t		cowextsize;
1264
	ssize_t			ret;
1265 1266 1267 1268 1269 1270 1271

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return -EOPNOTSUPP;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

1272
	/* Lock both files against IO */
1273 1274
	lock_two_nondirectories(inode_in, inode_out);
	if (same_inode)
1275
		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1276
	else
1277 1278
		xfs_lock_two_inodes(src, dest, XFS_MMAPLOCK_EXCL);

1279
	/* Check file eligibility and prepare for block sharing. */
1280
	ret = -EINVAL;
1281 1282
	/* Don't reflink realtime inodes */
	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1283 1284 1285 1286 1287 1288
		goto out_unlock;

	/* Don't share DAX file data for now. */
	if (IS_DAX(inode_in) || IS_DAX(inode_out))
		goto out_unlock;

1289 1290
	ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
			&len, is_dedupe);
1291
	if (ret <= 0)
1292 1293 1294
		goto out_unlock;

	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1295

1296
	/* Set flags and remap blocks. */
1297 1298 1299
	ret = xfs_reflink_set_inode_flag(src, dest);
	if (ret)
		goto out_unlock;
1300

1301 1302
	dfsbno = XFS_B_TO_FSBT(mp, pos_out);
	sfsbno = XFS_B_TO_FSBT(mp, pos_in);
1303
	fsblen = XFS_B_TO_FSB(mp, len);
1304 1305 1306 1307
	ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
			pos_out + len);
	if (ret)
		goto out_unlock;
1308

1309 1310 1311 1312
	/* Zap any page cache for the destination file's range. */
	truncate_inode_pages_range(&inode_out->i_data, pos_out,
				   PAGE_ALIGN(pos_out + len) - 1);

1313 1314 1315 1316 1317 1318
	/*
	 * Carry the cowextsize hint from src to dest if we're sharing the
	 * entire source file to the entire destination file, the source file
	 * has a cowextsize hint, and the destination file does not.
	 */
	cowextsize = 0;
1319
	if (pos_in == 0 && len == i_size_read(inode_in) &&
1320
	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1321
	    pos_out == 0 && len >= i_size_read(inode_out) &&
1322 1323 1324
	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
		cowextsize = src->i_d.di_cowextsize;

1325 1326
	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
			is_dedupe);
1327

1328 1329
out_unlock:
	xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
1330
	if (!same_inode)
1331
		xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1332
	unlock_two_nondirectories(inode_in, inode_out);
1333 1334 1335
	if (ret)
		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
	return ret;
1336
}
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * The user wants to preemptively CoW all shared blocks in this file,
 * which enables us to turn off the reflink flag.  Iterate all
 * extents which are not prealloc/delalloc to see which ranges are
 * mentioned in the refcount tree, then read those blocks into the
 * pagecache, dirty them, fsync them back out, and then we can update
 * the inode flag.  What happens if we run out of memory? :)
 */
STATIC int
xfs_reflink_dirty_extents(
	struct xfs_inode	*ip,
	xfs_fileoff_t		fbno,
	xfs_filblks_t		end,
	xfs_off_t		isize)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		rbno;
	xfs_extlen_t		rlen;
	xfs_off_t		fpos;
	xfs_off_t		flen;
	struct xfs_bmbt_irec	map[2];
	int			nmaps;
D
Darrick J. Wong 已提交
1363
	int			error = 0;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

	while (end - fbno > 0) {
		nmaps = 1;
		/*
		 * Look for extents in the file.  Skip holes, delalloc, or
		 * unwritten extents; they can't be reflinked.
		 */
		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
		if (error)
			goto out;
		if (nmaps == 0)
			break;
1376
		if (!xfs_bmap_is_real_extent(&map[0]))
1377 1378 1379 1380 1381 1382 1383 1384
			goto next;

		map[1] = map[0];
		while (map[1].br_blockcount) {
			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
			aglen = map[1].br_blockcount;

1385 1386
			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
					aglen, &rbno, &rlen, true);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
			if (error)
				goto out;
			if (rbno == NULLAGBLOCK)
				break;

			/* Dirty the pages */
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
					(rbno - agbno));
			flen = XFS_FSB_TO_B(mp, rlen);
			if (fpos + flen > isize)
				flen = isize - fpos;
			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
					&xfs_iomap_ops);
			xfs_ilock(ip, XFS_ILOCK_EXCL);
			if (error)
				goto out;

			map[1].br_blockcount -= (rbno - agbno + rlen);
			map[1].br_startoff += (rbno - agbno + rlen);
			map[1].br_startblock += (rbno - agbno + rlen);
		}

next:
		fbno = map[0].br_startoff + map[0].br_blockcount;
	}
out:
	return error;
}

1417
/* Does this inode need the reflink flag? */
1418
int
1419 1420 1421 1422
xfs_reflink_inode_has_shared_extents(
	struct xfs_trans		*tp,
	struct xfs_inode		*ip,
	bool				*has_shared)
1423
{
1424 1425 1426 1427 1428 1429 1430 1431
	struct xfs_bmbt_irec		got;
	struct xfs_mount		*mp = ip->i_mount;
	struct xfs_ifork		*ifp;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	xfs_extlen_t			aglen;
	xfs_agblock_t			rbno;
	xfs_extlen_t			rlen;
1432
	struct xfs_iext_cursor		icur;
1433 1434
	bool				found;
	int				error;
1435

1436 1437 1438
	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1439 1440
		if (error)
			return error;
1441
	}
1442

1443
	*has_shared = false;
1444
	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1445 1446 1447 1448 1449 1450 1451
	while (found) {
		if (isnullstartblock(got.br_startblock) ||
		    got.br_state != XFS_EXT_NORM)
			goto next;
		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
		aglen = got.br_blockcount;
1452

1453
		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1454 1455 1456 1457
				&rbno, &rlen, false);
		if (error)
			return error;
		/* Is there still a shared block here? */
1458 1459
		if (rbno != NULLAGBLOCK) {
			*has_shared = true;
1460
			return 0;
1461
		}
1462
next:
1463
		found = xfs_iext_next_extent(ifp, &icur, &got);
1464 1465
	}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	return 0;
}

/* Clear the inode reflink flag if there are no shared extents. */
int
xfs_reflink_clear_inode_flag(
	struct xfs_inode	*ip,
	struct xfs_trans	**tpp)
{
	bool			needs_flag;
	int			error = 0;

	ASSERT(xfs_is_reflink_inode(ip));

	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
	if (error || needs_flag)
		return error;

1484 1485 1486 1487
	/*
	 * We didn't find any shared blocks so turn off the reflink flag.
	 * First, get rid of any leftover CoW mappings.
	 */
1488
	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1489 1490 1491 1492 1493 1494
	if (error)
		return error;

	/* Clear the inode flag. */
	trace_xfs_reflink_unset_inode_flag(ip);
	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1495
	xfs_inode_clear_cowblocks_tag(ip);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	xfs_trans_ijoin(*tpp, ip, 0);
	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);

	return error;
}

/*
 * Clear the inode reflink flag if there are no shared extents and the size
 * hasn't changed.
 */
STATIC int
xfs_reflink_try_clear_inode_flag(
1508
	struct xfs_inode	*ip)
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error = 0;

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
	if (error)
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	error = xfs_reflink_clear_inode_flag(ip, &tp);
	if (error)
		goto cancel;

	error = xfs_trans_commit(tp);
	if (error)
		goto out;

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return 0;
cancel:
	xfs_trans_cancel(tp);
out:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

/*
 * Pre-COW all shared blocks within a given byte range of a file and turn off
 * the reflink flag if we unshare all of the file's blocks.
 */
int
xfs_reflink_unshare(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		len)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		fbno;
	xfs_filblks_t		end;
	xfs_off_t		isize;
	int			error;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	trace_xfs_reflink_unshare(ip, offset, len);

	inode_dio_wait(VFS_I(ip));

	/* Try to CoW the selected ranges */
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1564
	fbno = XFS_B_TO_FSBT(mp, offset);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	isize = i_size_read(VFS_I(ip));
	end = XFS_B_TO_FSB(mp, offset + len);
	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
	if (error)
		goto out_unlock;
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	/* Wait for the IO to finish */
	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
	if (error)
		goto out;

1577 1578 1579 1580
	/* Turn off the reflink flag if possible. */
	error = xfs_reflink_try_clear_inode_flag(ip);
	if (error)
		goto out;
1581 1582 1583 1584 1585 1586 1587 1588 1589

	return 0;

out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
	return error;
}