host.c 82.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/*
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 * The full GNU General Public License is included in this distribution
 * in the file called LICENSE.GPL.
 *
 * BSD LICENSE
 *
 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in
 *     the documentation and/or other materials provided with the
 *     distribution.
 *   * Neither the name of Intel Corporation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
55
#include <linux/circ_buf.h>
56 57 58
#include <linux/device.h>
#include <scsi/sas.h>
#include "host.h"
59 60
#include "isci.h"
#include "port.h"
61
#include "probe_roms.h"
62 63 64 65
#include "remote_device.h"
#include "request.h"
#include "scu_completion_codes.h"
#include "scu_event_codes.h"
66
#include "registers.h"
67 68
#include "scu_remote_node_context.h"
#include "scu_task_context.h"
69

70 71
#define SCU_CONTEXT_RAM_INIT_STALL_TIME      200

72
#define smu_max_ports(dcc_value) \
73 74 75 76 77
	(\
		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
	)

78
#define smu_max_task_contexts(dcc_value)	\
79 80 81 82 83
	(\
		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
	)

84
#define smu_max_rncs(dcc_value) \
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	(\
		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
	)

#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100

/**
 *
 *
 * The number of milliseconds to wait while a given phy is consuming power
 * before allowing another set of phys to consume power. Ultimately, this will
 * be specified by OEM parameter.
 */
#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500

/**
 * NORMALIZE_PUT_POINTER() -
 *
 * This macro will normalize the completion queue put pointer so its value can
 * be used as an array inde
 */
#define NORMALIZE_PUT_POINTER(x) \
	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)


/**
 * NORMALIZE_EVENT_POINTER() -
 *
 * This macro will normalize the completion queue event entry so its value can
 * be used as an index.
 */
#define NORMALIZE_EVENT_POINTER(x) \
	(\
		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
	)

/**
 * NORMALIZE_GET_POINTER() -
 *
 * This macro will normalize the completion queue get pointer so its value can
 * be used as an index into an array
 */
#define NORMALIZE_GET_POINTER(x) \
	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)

/**
 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
 *
 * This macro will normalize the completion queue cycle pointer so it matches
 * the completion queue cycle bit
 */
#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))

/**
 * COMPLETION_QUEUE_CYCLE_BIT() -
 *
 * This macro will return the cycle bit of the completion queue entry
 */
#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/* Init the state machine and call the state entry function (if any) */
void sci_init_sm(struct sci_base_state_machine *sm,
		 const struct sci_base_state *state_table, u32 initial_state)
{
	sci_state_transition_t handler;

	sm->initial_state_id    = initial_state;
	sm->previous_state_id   = initial_state;
	sm->current_state_id    = initial_state;
	sm->state_table         = state_table;

	handler = sm->state_table[initial_state].enter_state;
	if (handler)
		handler(sm);
}

/* Call the state exit fn, update the current state, call the state entry fn */
void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
{
	sci_state_transition_t handler;

	handler = sm->state_table[sm->current_state_id].exit_state;
	if (handler)
		handler(sm);

	sm->previous_state_id = sm->current_state_id;
	sm->current_state_id = next_state;

	handler = sm->state_table[sm->current_state_id].enter_state;
	if (handler)
		handler(sm);
}

181
static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
182
{
183
	u32 get_value = ihost->completion_queue_get;
184 185 186
	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;

	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
187
	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
188 189 190 191 192
		return true;

	return false;
}

193
static bool sci_controller_isr(struct isci_host *ihost)
194
{
D
Dan Williams 已提交
195
	if (sci_controller_completion_queue_has_entries(ihost))
196 197
		return true;

D
Dan Williams 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211
	/* we have a spurious interrupt it could be that we have already
	 * emptied the completion queue from a previous interrupt
	 * FIXME: really!?
	 */
	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);

	/* There is a race in the hardware that could cause us not to be
	 * notified of an interrupt completion if we do not take this
	 * step.  We will mask then unmask the interrupts so if there is
	 * another interrupt pending the clearing of the interrupt
	 * source we get the next interrupt message.
	 */
	spin_lock(&ihost->scic_lock);
	if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
212 213
		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
		writel(0, &ihost->smu_registers->interrupt_mask);
214
	}
D
Dan Williams 已提交
215
	spin_unlock(&ihost->scic_lock);
216 217 218 219

	return false;
}

220
irqreturn_t isci_msix_isr(int vec, void *data)
221
{
222 223
	struct isci_host *ihost = data;

224
	if (sci_controller_isr(ihost))
225
		tasklet_schedule(&ihost->completion_tasklet);
226

227
	return IRQ_HANDLED;
228 229
}

230
static bool sci_controller_error_isr(struct isci_host *ihost)
231 232 233 234
{
	u32 interrupt_status;

	interrupt_status =
235
		readl(&ihost->smu_registers->interrupt_status);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);

	if (interrupt_status != 0) {
		/*
		 * There is an error interrupt pending so let it through and handle
		 * in the callback */
		return true;
	}

	/*
	 * There is a race in the hardware that could cause us not to be notified
	 * of an interrupt completion if we do not take this step.  We will mask
	 * then unmask the error interrupts so if there was another interrupt
	 * pending we will be notified.
	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
251 252
	writel(0xff, &ihost->smu_registers->interrupt_mask);
	writel(0, &ihost->smu_registers->interrupt_mask);
253 254 255 256

	return false;
}

257
static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
258
{
259
	u32 index = SCU_GET_COMPLETION_INDEX(ent);
D
Dan Williams 已提交
260
	struct isci_request *ireq = ihost->reqs[index];
261 262

	/* Make sure that we really want to process this IO request */
D
Dan Williams 已提交
263
	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
264
	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
265
	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
266 267 268 269
		/* Yep this is a valid io request pass it along to the
		 * io request handler
		 */
		sci_io_request_tc_completion(ireq, ent);
270 271
}

272
static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
273 274
{
	u32 index;
275
	struct isci_request *ireq;
276
	struct isci_remote_device *idev;
277

278
	index = SCU_GET_COMPLETION_INDEX(ent);
279

280
	switch (scu_get_command_request_type(ent)) {
281 282
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
283 284
		ireq = ihost->reqs[index];
		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
285
			 __func__, ent, ireq);
286 287 288 289 290 291 292
		/* @todo For a post TC operation we need to fail the IO
		 * request
		 */
		break;
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
293 294
		idev = ihost->device_table[index];
		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
295
			 __func__, ent, idev);
296 297 298 299 300
		/* @todo For a port RNC operation we need to fail the
		 * device
		 */
		break;
	default:
301
		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
302
			 __func__, ent);
303 304 305 306
		break;
	}
}

307
static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
308 309 310 311 312
{
	u32 index;
	u32 frame_index;

	struct scu_unsolicited_frame_header *frame_header;
313
	struct isci_phy *iphy;
314
	struct isci_remote_device *idev;
315 316 317

	enum sci_status result = SCI_FAILURE;

318
	frame_index = SCU_GET_FRAME_INDEX(ent);
319

320 321
	frame_header = ihost->uf_control.buffers.array[frame_index].header;
	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
322

323
	if (SCU_GET_FRAME_ERROR(ent)) {
324 325 326 327
		/*
		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
		 * /       this cause a problem? We expect the phy initialization will
		 * /       fail if there is an error in the frame. */
328
		sci_controller_release_frame(ihost, frame_index);
329 330 331 332
		return;
	}

	if (frame_header->is_address_frame) {
333
		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
334
		iphy = &ihost->phys[index];
335
		result = sci_phy_frame_handler(iphy, frame_index);
336 337
	} else {

338
		index = SCU_GET_COMPLETION_INDEX(ent);
339 340 341 342 343 344

		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
			/*
			 * This is a signature fis or a frame from a direct attached SATA
			 * device that has not yet been created.  In either case forwared
			 * the frame to the PE and let it take care of the frame data. */
345
			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
346
			iphy = &ihost->phys[index];
347
			result = sci_phy_frame_handler(iphy, frame_index);
348
		} else {
349 350
			if (index < ihost->remote_node_entries)
				idev = ihost->device_table[index];
351
			else
352
				idev = NULL;
353

354
			if (idev != NULL)
355
				result = sci_remote_device_frame_handler(idev, frame_index);
356
			else
357
				sci_controller_release_frame(ihost, frame_index);
358 359 360 361 362 363 364 365 366 367
		}
	}

	if (result != SCI_SUCCESS) {
		/*
		 * / @todo Is there any reason to report some additional error message
		 * /       when we get this failure notifiction? */
	}
}

368
static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
369
{
370
	struct isci_remote_device *idev;
371
	struct isci_request *ireq;
372
	struct isci_phy *iphy;
373 374
	u32 index;

375
	index = SCU_GET_COMPLETION_INDEX(ent);
376

377
	switch (scu_get_event_type(ent)) {
378 379
	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
		/* / @todo The driver did something wrong and we need to fix the condtion. */
380
		dev_err(&ihost->pdev->dev,
381 382 383
			"%s: SCIC Controller 0x%p received SMU command error "
			"0x%x\n",
			__func__,
384
			ihost,
385
			ent);
386 387 388 389 390 391 392 393
		break;

	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
	case SCU_EVENT_TYPE_SMU_ERROR:
	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
		/*
		 * / @todo This is a hardware failure and its likely that we want to
		 * /       reset the controller. */
394
		dev_err(&ihost->pdev->dev,
395 396 397
			"%s: SCIC Controller 0x%p received fatal controller "
			"event  0x%x\n",
			__func__,
398
			ihost,
399
			ent);
400 401 402
		break;

	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
403
		ireq = ihost->reqs[index];
404
		sci_io_request_event_handler(ireq, ent);
405 406 407
		break;

	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
408
		switch (scu_get_event_specifier(ent)) {
409 410
		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
411 412
			ireq = ihost->reqs[index];
			if (ireq != NULL)
413
				sci_io_request_event_handler(ireq, ent);
414
			else
415
				dev_warn(&ihost->pdev->dev,
416 417 418 419
					 "%s: SCIC Controller 0x%p received "
					 "event 0x%x for io request object "
					 "that doesnt exist.\n",
					 __func__,
420
					 ihost,
421
					 ent);
422 423 424 425

			break;

		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
426
			idev = ihost->device_table[index];
427
			if (idev != NULL)
428
				sci_remote_device_event_handler(idev, ent);
429
			else
430
				dev_warn(&ihost->pdev->dev,
431 432 433 434
					 "%s: SCIC Controller 0x%p received "
					 "event 0x%x for remote device object "
					 "that doesnt exist.\n",
					 __func__,
435
					 ihost,
436
					 ent);
437 438 439 440 441 442 443 444 445 446 447 448 449 450

			break;
		}
		break;

	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
	/*
	 * direct the broadcast change event to the phy first and then let
	 * the phy redirect the broadcast change to the port object */
	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
	/*
	 * direct error counter event to the phy object since that is where
	 * we get the event notification.  This is a type 4 event. */
	case SCU_EVENT_TYPE_OSSP_EVENT:
451
		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
452
		iphy = &ihost->phys[index];
453
		sci_phy_event_handler(iphy, ent);
454 455 456 457 458
		break;

	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
	case SCU_EVENT_TYPE_RNC_OPS_MISC:
459 460
		if (index < ihost->remote_node_entries) {
			idev = ihost->device_table[index];
461

462
			if (idev != NULL)
463
				sci_remote_device_event_handler(idev, ent);
464
		} else
465
			dev_err(&ihost->pdev->dev,
466 467 468 469
				"%s: SCIC Controller 0x%p received event 0x%x "
				"for remote device object 0x%0x that doesnt "
				"exist.\n",
				__func__,
470
				ihost,
471
				ent,
472 473 474 475 476
				index);

		break;

	default:
477
		dev_warn(&ihost->pdev->dev,
478 479
			 "%s: SCIC Controller received unknown event code %x\n",
			 __func__,
480
			 ent);
481 482 483 484
		break;
	}
}

485
static void sci_controller_process_completions(struct isci_host *ihost)
486 487
{
	u32 completion_count = 0;
488
	u32 ent;
489 490
	u32 get_index;
	u32 get_cycle;
491
	u32 event_get;
492 493
	u32 event_cycle;

494
	dev_dbg(&ihost->pdev->dev,
495 496
		"%s: completion queue begining get:0x%08x\n",
		__func__,
497
		ihost->completion_queue_get);
498 499

	/* Get the component parts of the completion queue */
500 501
	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
502

503 504
	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
505 506 507

	while (
		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
508
		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
509 510 511
		) {
		completion_count++;

512
		ent = ihost->completion_queue[get_index];
513 514 515 516 517

		/* increment the get pointer and check for rollover to toggle the cycle bit */
		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
518

519
		dev_dbg(&ihost->pdev->dev,
520 521
			"%s: completion queue entry:0x%08x\n",
			__func__,
522
			ent);
523

524
		switch (SCU_GET_COMPLETION_TYPE(ent)) {
525
		case SCU_COMPLETION_TYPE_TASK:
526
			sci_controller_task_completion(ihost, ent);
527 528 529
			break;

		case SCU_COMPLETION_TYPE_SDMA:
530
			sci_controller_sdma_completion(ihost, ent);
531 532 533
			break;

		case SCU_COMPLETION_TYPE_UFI:
534
			sci_controller_unsolicited_frame(ihost, ent);
535 536 537
			break;

		case SCU_COMPLETION_TYPE_EVENT:
538 539 540
			sci_controller_event_completion(ihost, ent);
			break;

541 542 543 544
		case SCU_COMPLETION_TYPE_NOTIFY: {
			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
545

546
			sci_controller_event_completion(ihost, ent);
547
			break;
548
		}
549
		default:
550
			dev_warn(&ihost->pdev->dev,
551 552 553
				 "%s: SCIC Controller received unknown "
				 "completion type %x\n",
				 __func__,
554
				 ent);
555 556 557 558 559 560
			break;
		}
	}

	/* Update the get register if we completed one or more entries */
	if (completion_count > 0) {
561
		ihost->completion_queue_get =
562 563 564
			SMU_CQGR_GEN_BIT(ENABLE) |
			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
			event_cycle |
565
			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
566 567 568
			get_cycle |
			SMU_CQGR_GEN_VAL(POINTER, get_index);

569 570
		writel(ihost->completion_queue_get,
		       &ihost->smu_registers->completion_queue_get);
571 572 573

	}

574
	dev_dbg(&ihost->pdev->dev,
575 576
		"%s: completion queue ending get:0x%08x\n",
		__func__,
577
		ihost->completion_queue_get);
578 579 580

}

581
static void sci_controller_error_handler(struct isci_host *ihost)
582 583 584 585
{
	u32 interrupt_status;

	interrupt_status =
586
		readl(&ihost->smu_registers->interrupt_status);
587 588

	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
589
	    sci_controller_completion_queue_has_entries(ihost)) {
590

591
		sci_controller_process_completions(ihost);
592
		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
593
	} else {
594
		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
595 596
			interrupt_status);

597
		sci_change_state(&ihost->sm, SCIC_FAILED);
598 599 600 601 602 603 604

		return;
	}

	/* If we dont process any completions I am not sure that we want to do this.
	 * We are in the middle of a hardware fault and should probably be reset.
	 */
605
	writel(0, &ihost->smu_registers->interrupt_mask);
606 607
}

608
irqreturn_t isci_intx_isr(int vec, void *data)
609 610
{
	irqreturn_t ret = IRQ_NONE;
611
	struct isci_host *ihost = data;
612

613
	if (sci_controller_isr(ihost)) {
614
		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
615 616
		tasklet_schedule(&ihost->completion_tasklet);
		ret = IRQ_HANDLED;
617
	} else if (sci_controller_error_isr(ihost)) {
618
		spin_lock(&ihost->scic_lock);
619
		sci_controller_error_handler(ihost);
620 621
		spin_unlock(&ihost->scic_lock);
		ret = IRQ_HANDLED;
622
	}
D
Dan Williams 已提交
623

624 625 626
	return ret;
}

D
Dan Williams 已提交
627 628 629 630
irqreturn_t isci_error_isr(int vec, void *data)
{
	struct isci_host *ihost = data;

631 632
	if (sci_controller_error_isr(ihost))
		sci_controller_error_handler(ihost);
D
Dan Williams 已提交
633 634 635

	return IRQ_HANDLED;
}
636 637 638 639 640 641 642 643 644

/**
 * isci_host_start_complete() - This function is called by the core library,
 *    through the ISCI Module, to indicate controller start status.
 * @isci_host: This parameter specifies the ISCI host object
 * @completion_status: This parameter specifies the completion status from the
 *    core library.
 *
 */
645
static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
646
{
647 648 649 650 651
	if (completion_status != SCI_SUCCESS)
		dev_info(&ihost->pdev->dev,
			"controller start timed out, continuing...\n");
	clear_bit(IHOST_START_PENDING, &ihost->flags);
	wake_up(&ihost->eventq);
652 653
}

654
int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
655
{
656 657
	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
	struct isci_host *ihost = ha->lldd_ha;
658

659
	if (test_bit(IHOST_START_PENDING, &ihost->flags))
660 661
		return 0;

662
	sas_drain_work(ha);
663 664 665 666

	return 1;
}

667
/**
668 669
 * sci_controller_get_suggested_start_timeout() - This method returns the
 *    suggested sci_controller_start() timeout amount.  The user is free to
670 671 672 673 674 675 676 677 678
 *    use any timeout value, but this method provides the suggested minimum
 *    start timeout value.  The returned value is based upon empirical
 *    information determined as a result of interoperability testing.
 * @controller: the handle to the controller object for which to return the
 *    suggested start timeout.
 *
 * This method returns the number of milliseconds for the suggested start
 * operation timeout.
 */
679
static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
680 681
{
	/* Validate the user supplied parameters. */
682
	if (!ihost)
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
		return 0;

	/*
	 * The suggested minimum timeout value for a controller start operation:
	 *
	 *     Signature FIS Timeout
	 *   + Phy Start Timeout
	 *   + Number of Phy Spin Up Intervals
	 *   ---------------------------------
	 *   Number of milliseconds for the controller start operation.
	 *
	 * NOTE: The number of phy spin up intervals will be equivalent
	 *       to the number of phys divided by the number phys allowed
	 *       per interval - 1 (once OEM parameters are supported).
	 *       Currently we assume only 1 phy per interval. */

	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
}

704
static void sci_controller_enable_interrupts(struct isci_host *ihost)
705
{
D
Dan Williams 已提交
706
	set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
707
	writel(0, &ihost->smu_registers->interrupt_mask);
708 709
}

710
void sci_controller_disable_interrupts(struct isci_host *ihost)
711
{
D
Dan Williams 已提交
712
	clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
713
	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
D
Dan Williams 已提交
714
	readl(&ihost->smu_registers->interrupt_mask); /* flush */
715 716
}

717
static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
718 719 720 721
{
	u32 port_task_scheduler_value;

	port_task_scheduler_value =
722
		readl(&ihost->scu_registers->peg0.ptsg.control);
723 724 725 726
	port_task_scheduler_value |=
		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
	writel(port_task_scheduler_value,
727
	       &ihost->scu_registers->peg0.ptsg.control);
728 729
}

730
static void sci_controller_assign_task_entries(struct isci_host *ihost)
731 732 733 734 735 736 737 738 739
{
	u32 task_assignment;

	/*
	 * Assign all the TCs to function 0
	 * TODO: Do we actually need to read this register to write it back?
	 */

	task_assignment =
740
		readl(&ihost->smu_registers->task_context_assignment[0]);
741 742

	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
743
		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
744 745 746
		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));

	writel(task_assignment,
747
		&ihost->smu_registers->task_context_assignment[0]);
748 749 750

}

751
static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
752 753 754 755 756 757
{
	u32 index;
	u32 completion_queue_control_value;
	u32 completion_queue_get_value;
	u32 completion_queue_put_value;

758
	ihost->completion_queue_get = 0;
759

760 761 762
	completion_queue_control_value =
		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
763 764

	writel(completion_queue_control_value,
765
	       &ihost->smu_registers->completion_queue_control);
766 767 768 769 770 771 772 773 774 775 776


	/* Set the completion queue get pointer and enable the queue */
	completion_queue_get_value = (
		(SMU_CQGR_GEN_VAL(POINTER, 0))
		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
		| (SMU_CQGR_GEN_BIT(ENABLE))
		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
		);

	writel(completion_queue_get_value,
777
	       &ihost->smu_registers->completion_queue_get);
778 779 780 781 782 783 784 785

	/* Set the completion queue put pointer */
	completion_queue_put_value = (
		(SMU_CQPR_GEN_VAL(POINTER, 0))
		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
		);

	writel(completion_queue_put_value,
786
	       &ihost->smu_registers->completion_queue_put);
787 788

	/* Initialize the cycle bit of the completion queue entries */
789
	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
790 791 792 793
		/*
		 * If get.cycle_bit != completion_queue.cycle_bit
		 * its not a valid completion queue entry
		 * so at system start all entries are invalid */
794
		ihost->completion_queue[index] = 0x80000000;
795 796 797
	}
}

798
static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
799 800 801 802 803 804 805
{
	u32 frame_queue_control_value;
	u32 frame_queue_get_value;
	u32 frame_queue_put_value;

	/* Write the queue size */
	frame_queue_control_value =
806
		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
807 808

	writel(frame_queue_control_value,
809
	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
810 811 812 813 814 815 816 817

	/* Setup the get pointer for the unsolicited frame queue */
	frame_queue_get_value = (
		SCU_UFQGP_GEN_VAL(POINTER, 0)
		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
		);

	writel(frame_queue_get_value,
818
	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
819 820 821
	/* Setup the put pointer for the unsolicited frame queue */
	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
	writel(frame_queue_put_value,
822
	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
823 824
}

825
void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
826
{
827
	if (ihost->sm.current_state_id == SCIC_STARTING) {
828 829 830 831
		/*
		 * We move into the ready state, because some of the phys/ports
		 * may be up and operational.
		 */
832
		sci_change_state(&ihost->sm, SCIC_READY);
833 834 835 836 837

		isci_host_start_complete(ihost, status);
	}
}

838
static bool is_phy_starting(struct isci_phy *iphy)
A
Adam Gruchala 已提交
839
{
840
	enum sci_phy_states state;
A
Adam Gruchala 已提交
841

842
	state = iphy->sm.current_state_id;
A
Adam Gruchala 已提交
843
	switch (state) {
E
Edmund Nadolski 已提交
844 845 846 847 848 849 850 851
	case SCI_PHY_STARTING:
	case SCI_PHY_SUB_INITIAL:
	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
	case SCI_PHY_SUB_AWAIT_IAF_UF:
	case SCI_PHY_SUB_AWAIT_SAS_POWER:
	case SCI_PHY_SUB_AWAIT_SATA_POWER:
	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
852
	case SCI_PHY_SUB_AWAIT_OSSP_EN:
E
Edmund Nadolski 已提交
853 854
	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
	case SCI_PHY_SUB_FINAL:
A
Adam Gruchala 已提交
855 856 857 858 859 860
		return true;
	default:
		return false;
	}
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
bool is_controller_start_complete(struct isci_host *ihost)
{
	int i;

	for (i = 0; i < SCI_MAX_PHYS; i++) {
		struct isci_phy *iphy = &ihost->phys[i];
		u32 state = iphy->sm.current_state_id;

		/* in apc mode we need to check every phy, in
		 * mpc mode we only need to check phys that have
		 * been configured into a port
		 */
		if (is_port_config_apc(ihost))
			/* pass */;
		else if (!phy_get_non_dummy_port(iphy))
			continue;

		/* The controller start operation is complete iff:
		 * - all links have been given an opportunity to start
		 * - have no indication of a connected device
		 * - have an indication of a connected device and it has
		 *   finished the link training process.
		 */
		if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
		    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
		    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
		    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
			return false;
	}

	return true;
}

894
/**
895
 * sci_controller_start_next_phy - start phy
896 897 898 899
 * @scic: controller
 *
 * If all the phys have been started, then attempt to transition the
 * controller to the READY state and inform the user
900
 * (sci_cb_controller_start_complete()).
901
 */
902
static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
903
{
904
	struct sci_oem_params *oem = &ihost->oem_parameters;
905
	struct isci_phy *iphy;
906 907 908 909
	enum sci_status status;

	status = SCI_SUCCESS;

910
	if (ihost->phy_startup_timer_pending)
911 912
		return status;

913
	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
914
		if (is_controller_start_complete(ihost)) {
915
			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
916 917
			sci_del_timer(&ihost->phy_timer);
			ihost->phy_startup_timer_pending = false;
918 919
		}
	} else {
920
		iphy = &ihost->phys[ihost->next_phy_to_start];
921 922

		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
923
			if (phy_get_non_dummy_port(iphy) == NULL) {
924
				ihost->next_phy_to_start++;
925 926 927 928 929 930 931 932 933 934

				/* Caution recursion ahead be forwarned
				 *
				 * The PHY was never added to a PORT in MPC mode
				 * so start the next phy in sequence This phy
				 * will never go link up and will not draw power
				 * the OEM parameters either configured the phy
				 * incorrectly for the PORT or it was never
				 * assigned to a PORT
				 */
935
				return sci_controller_start_next_phy(ihost);
936 937 938
			}
		}

939
		status = sci_phy_start(iphy);
940 941

		if (status == SCI_SUCCESS) {
942
			sci_mod_timer(&ihost->phy_timer,
943
				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
944
			ihost->phy_startup_timer_pending = true;
945
		} else {
946
			dev_warn(&ihost->pdev->dev,
947 948 949 950
				 "%s: Controller stop operation failed "
				 "to stop phy %d because of status "
				 "%d.\n",
				 __func__,
951
				 ihost->phys[ihost->next_phy_to_start].phy_index,
952 953 954
				 status);
		}

955
		ihost->next_phy_to_start++;
956 957 958 959 960
	}

	return status;
}

961
static void phy_startup_timeout(unsigned long data)
962
{
963
	struct sci_timer *tmr = (struct sci_timer *)data;
964
	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
965
	unsigned long flags;
966 967
	enum sci_status status;

968 969 970 971 972
	spin_lock_irqsave(&ihost->scic_lock, flags);

	if (tmr->cancel)
		goto done;

973
	ihost->phy_startup_timer_pending = false;
974 975

	do {
976
		status = sci_controller_start_next_phy(ihost);
977 978 979 980
	} while (status != SCI_SUCCESS);

done:
	spin_unlock_irqrestore(&ihost->scic_lock, flags);
981 982
}

983 984 985 986 987
static u16 isci_tci_active(struct isci_host *ihost)
{
	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
}

988
static enum sci_status sci_controller_start(struct isci_host *ihost,
989 990 991 992 993
					     u32 timeout)
{
	enum sci_status result;
	u16 index;

994
	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
995 996
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
997 998 999 1000
		return SCI_FAILURE_INVALID_STATE;
	}

	/* Build the TCi free pool */
1001 1002 1003
	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
	ihost->tci_head = 0;
	ihost->tci_tail = 0;
1004
	for (index = 0; index < ihost->task_context_entries; index++)
1005
		isci_tci_free(ihost, index);
1006 1007

	/* Build the RNi free pool */
1008 1009
	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
					 ihost->remote_node_entries);
1010 1011 1012 1013 1014

	/*
	 * Before anything else lets make sure we will not be
	 * interrupted by the hardware.
	 */
1015
	sci_controller_disable_interrupts(ihost);
1016 1017

	/* Enable the port task scheduler */
1018
	sci_controller_enable_port_task_scheduler(ihost);
1019

1020
	/* Assign all the task entries to ihost physical function */
1021
	sci_controller_assign_task_entries(ihost);
1022 1023

	/* Now initialize the completion queue */
1024
	sci_controller_initialize_completion_queue(ihost);
1025 1026

	/* Initialize the unsolicited frame queue for use */
1027
	sci_controller_initialize_unsolicited_frame_queue(ihost);
1028 1029

	/* Start all of the ports on this controller */
1030
	for (index = 0; index < ihost->logical_port_entries; index++) {
1031
		struct isci_port *iport = &ihost->ports[index];
1032

1033
		result = sci_port_start(iport);
1034 1035 1036 1037
		if (result)
			return result;
	}

1038
	sci_controller_start_next_phy(ihost);
1039

1040
	sci_mod_timer(&ihost->timer, timeout);
1041

1042
	sci_change_state(&ihost->sm, SCIC_STARTING);
1043 1044 1045 1046

	return SCI_SUCCESS;
}

1047 1048
void isci_host_scan_start(struct Scsi_Host *shost)
{
1049
	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1050
	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1051

1052
	set_bit(IHOST_START_PENDING, &ihost->flags);
1053 1054

	spin_lock_irq(&ihost->scic_lock);
1055 1056
	sci_controller_start(ihost, tmo);
	sci_controller_enable_interrupts(ihost);
1057
	spin_unlock_irq(&ihost->scic_lock);
1058 1059
}

D
Dan Williams 已提交
1060
static void isci_host_stop_complete(struct isci_host *ihost)
1061
{
1062
	sci_controller_disable_interrupts(ihost);
1063 1064
	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
	wake_up(&ihost->eventq);
1065 1066
}

1067
static void sci_controller_completion_handler(struct isci_host *ihost)
1068 1069
{
	/* Empty out the completion queue */
1070 1071
	if (sci_controller_completion_queue_has_entries(ihost))
		sci_controller_process_completions(ihost);
1072 1073

	/* Clear the interrupt and enable all interrupts again */
1074
	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1075
	/* Could we write the value of SMU_ISR_COMPLETION? */
1076 1077
	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
	writel(0, &ihost->smu_registers->interrupt_mask);
1078 1079
}

1080 1081 1082 1083 1084 1085 1086 1087
/**
 * isci_host_completion_routine() - This function is the delayed service
 *    routine that calls the sci core library's completion handler. It's
 *    scheduled as a tasklet from the interrupt service routine when interrupts
 *    in use, or set as the timeout function in polled mode.
 * @data: This parameter specifies the ISCI host object
 *
 */
1088
void isci_host_completion_routine(unsigned long data)
1089
{
1090
	struct isci_host *ihost = (struct isci_host *)data;
1091 1092 1093 1094
	struct list_head    completed_request_list;
	struct list_head    errored_request_list;
	struct list_head    *current_position;
	struct list_head    *next_position;
1095 1096
	struct isci_request *request;
	struct isci_request *next_request;
1097
	struct sas_task     *task;
1098
	u16 active;
1099 1100

	INIT_LIST_HEAD(&completed_request_list);
1101
	INIT_LIST_HEAD(&errored_request_list);
1102

1103
	spin_lock_irq(&ihost->scic_lock);
1104

1105
	sci_controller_completion_handler(ihost);
1106

1107
	/* Take the lists of completed I/Os from the host. */
1108

1109
	list_splice_init(&ihost->requests_to_complete,
1110 1111
			 &completed_request_list);

1112
	/* Take the list of errored I/Os from the host. */
1113
	list_splice_init(&ihost->requests_to_errorback,
1114
			 &errored_request_list);
1115

1116
	spin_unlock_irq(&ihost->scic_lock);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	/* Process any completions in the lists. */
	list_for_each_safe(current_position, next_position,
			   &completed_request_list) {

		request = list_entry(current_position, struct isci_request,
				     completed_node);
		task = isci_request_access_task(request);

		/* Normal notification (task_done) */
1127
		dev_dbg(&ihost->pdev->dev,
1128 1129 1130 1131 1132
			"%s: Normal - request/task = %p/%p\n",
			__func__,
			request,
			task);

1133 1134 1135 1136 1137
		/* Return the task to libsas */
		if (task != NULL) {

			task->lldd_task = NULL;
			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1138

1139 1140 1141 1142 1143 1144
				/* If the task is already in the abort path,
				* the task_done callback cannot be called.
				*/
				task->task_done(task);
			}
		}
1145

1146 1147 1148
		spin_lock_irq(&ihost->scic_lock);
		isci_free_tag(ihost, request->io_tag);
		spin_unlock_irq(&ihost->scic_lock);
1149
	}
1150
	list_for_each_entry_safe(request, next_request, &errored_request_list,
1151 1152 1153 1154 1155
				 completed_node) {

		task = isci_request_access_task(request);

		/* Use sas_task_abort */
1156
		dev_warn(&ihost->pdev->dev,
1157 1158 1159 1160 1161
			 "%s: Error - request/task = %p/%p\n",
			 __func__,
			 request,
			 task);

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		if (task != NULL) {

			/* Put the task into the abort path if it's not there
			 * already.
			 */
			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
				sas_task_abort(task);

		} else {
			/* This is a case where the request has completed with a
			 * status such that it needed further target servicing,
			 * but the sas_task reference has already been removed
			 * from the request.  Since it was errored, it was not
			 * being aborted, so there is nothing to do except free
			 * it.
			 */

1179
			spin_lock_irq(&ihost->scic_lock);
1180 1181 1182 1183
			/* Remove the request from the remote device's list
			* of pending requests.
			*/
			list_del_init(&request->dev_node);
1184 1185
			isci_free_tag(ihost, request->io_tag);
			spin_unlock_irq(&ihost->scic_lock);
1186
		}
1187 1188
	}

1189 1190 1191 1192 1193 1194 1195
	/* the coalesence timeout doubles at each encoding step, so
	 * update it based on the ilog2 value of the outstanding requests
	 */
	active = isci_tci_active(ihost);
	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
	       &ihost->smu_registers->interrupt_coalesce_control);
1196 1197
}

1198
/**
1199
 * sci_controller_stop() - This method will stop an individual controller
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
 *    object.This method will invoke the associated user callback upon
 *    completion.  The completion callback is called when the following
 *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
 *    controller has been quiesced. This method will ensure that all IO
 *    requests are quiesced, phys are stopped, and all additional operation by
 *    the hardware is halted.
 * @controller: the handle to the controller object to stop.
 * @timeout: This parameter specifies the number of milliseconds in which the
 *    stop operation should complete.
 *
 * The controller must be in the STARTED or STOPPED state. Indicate if the
 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
 * controller is not either in the STARTED or STOPPED states.
 */
1216
static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1217
{
1218
	if (ihost->sm.current_state_id != SCIC_READY) {
1219 1220
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
1221 1222
		return SCI_FAILURE_INVALID_STATE;
	}
1223

1224 1225
	sci_mod_timer(&ihost->timer, timeout);
	sci_change_state(&ihost->sm, SCIC_STOPPING);
1226 1227 1228 1229
	return SCI_SUCCESS;
}

/**
1230
 * sci_controller_reset() - This method will reset the supplied core
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
 *    controller regardless of the state of said controller.  This operation is
 *    considered destructive.  In other words, all current operations are wiped
 *    out.  No IO completions for outstanding devices occur.  Outstanding IO
 *    requests are not aborted or completed at the actual remote device.
 * @controller: the handle to the controller object to reset.
 *
 * Indicate if the controller reset method succeeded or failed in some way.
 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
 * the controller reset operation is unable to complete.
 */
1241
static enum sci_status sci_controller_reset(struct isci_host *ihost)
1242
{
1243
	switch (ihost->sm.current_state_id) {
E
Edmund Nadolski 已提交
1244 1245
	case SCIC_RESET:
	case SCIC_READY:
D
Dan Williams 已提交
1246
	case SCIC_STOPPING:
E
Edmund Nadolski 已提交
1247
	case SCIC_FAILED:
1248 1249 1250 1251
		/*
		 * The reset operation is not a graceful cleanup, just
		 * perform the state transition.
		 */
1252
		sci_change_state(&ihost->sm, SCIC_RESETTING);
1253 1254
		return SCI_SUCCESS;
	default:
1255 1256
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
1257 1258 1259 1260
		return SCI_FAILURE_INVALID_STATE;
	}
}

D
Dan Williams 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
{
	u32 index;
	enum sci_status status;
	enum sci_status phy_status;

	status = SCI_SUCCESS;

	for (index = 0; index < SCI_MAX_PHYS; index++) {
		phy_status = sci_phy_stop(&ihost->phys[index]);

		if (phy_status != SCI_SUCCESS &&
		    phy_status != SCI_FAILURE_INVALID_STATE) {
			status = SCI_FAILURE;

			dev_warn(&ihost->pdev->dev,
				 "%s: Controller stop operation failed to stop "
				 "phy %d because of status %d.\n",
				 __func__,
				 ihost->phys[index].phy_index, phy_status);
		}
	}

	return status;
}


/**
 * isci_host_deinit - shutdown frame reception and dma
 * @ihost: host to take down
 *
 * This is called in either the driver shutdown or the suspend path.  In
 * the shutdown case libsas went through port teardown and normal device
 * removal (i.e. physical links stayed up to service scsi_device removal
 * commands).  In the suspend case we disable the hardware without
 * notifying libsas of the link down events since we want libsas to
 * remember the domain across the suspend/resume cycle
 */
1299 1300 1301 1302
void isci_host_deinit(struct isci_host *ihost)
{
	int i;

1303 1304 1305 1306
	/* disable output data selects */
	for (i = 0; i < isci_gpio_count(ihost); i++)
		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);

1307
	set_bit(IHOST_STOP_PENDING, &ihost->flags);
D
Dan Williams 已提交
1308 1309

	spin_lock_irq(&ihost->scic_lock);
1310
	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
D
Dan Williams 已提交
1311 1312
	spin_unlock_irq(&ihost->scic_lock);

1313
	wait_for_stop(ihost);
1314

D
Dan Williams 已提交
1315 1316 1317 1318 1319 1320 1321
	/* phy stop is after controller stop to allow port and device to
	 * go idle before shutting down the phys, but the expectation is
	 * that i/o has been shut off well before we reach this
	 * function.
	 */
	sci_controller_stop_phys(ihost);

1322 1323 1324 1325 1326
	/* disable sgpio: where the above wait should give time for the
	 * enclosure to sample the gpios going inactive
	 */
	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);

D
Dan Williams 已提交
1327
	spin_lock_irq(&ihost->scic_lock);
1328
	sci_controller_reset(ihost);
D
Dan Williams 已提交
1329
	spin_unlock_irq(&ihost->scic_lock);
1330 1331

	/* Cancel any/all outstanding port timers */
1332
	for (i = 0; i < ihost->logical_port_entries; i++) {
1333 1334
		struct isci_port *iport = &ihost->ports[i];
		del_timer_sync(&iport->timer.timer);
1335 1336
	}

1337 1338
	/* Cancel any/all outstanding phy timers */
	for (i = 0; i < SCI_MAX_PHYS; i++) {
1339 1340
		struct isci_phy *iphy = &ihost->phys[i];
		del_timer_sync(&iphy->sata_timer.timer);
1341 1342
	}

1343
	del_timer_sync(&ihost->port_agent.timer.timer);
1344

1345
	del_timer_sync(&ihost->power_control.timer.timer);
1346

1347
	del_timer_sync(&ihost->timer.timer);
1348

1349
	del_timer_sync(&ihost->phy_timer.timer);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
}

static void __iomem *scu_base(struct isci_host *isci_host)
{
	struct pci_dev *pdev = isci_host->pdev;
	int id = isci_host->id;

	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
}

static void __iomem *smu_base(struct isci_host *isci_host)
{
	struct pci_dev *pdev = isci_host->pdev;
	int id = isci_host->id;

	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
}

1368
static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1369
{
1370
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1371

1372
	sci_change_state(&ihost->sm, SCIC_RESET);
1373 1374
}

1375
static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1376
{
1377
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1378

1379
	sci_del_timer(&ihost->timer);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
}

#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
#define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
#define INTERRUPT_COALESCE_NUMBER_MAX                        256
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28

/**
1390
 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
 *    configure the interrupt coalescence.
 * @controller: This parameter represents the handle to the controller object
 *    for which its interrupt coalesce register is overridden.
 * @coalesce_number: Used to control the number of entries in the Completion
 *    Queue before an interrupt is generated. If the number of entries exceed
 *    this number, an interrupt will be generated. The valid range of the input
 *    is [0, 256]. A setting of 0 results in coalescing being disabled.
 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
 *    input is [0, 2700000] . A setting of 0 is allowed and results in no
 *    interrupt coalescing timeout.
 *
 * Indicate if the user successfully set the interrupt coalesce parameters.
 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
 */
1406
static enum sci_status
1407 1408 1409
sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
					 u32 coalesce_number,
					 u32 coalesce_timeout)
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
{
	u8 timeout_encode = 0;
	u32 min = 0;
	u32 max = 0;

	/* Check if the input parameters fall in the range. */
	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
		return SCI_FAILURE_INVALID_PARAMETER_VALUE;

	/*
	 *  Defined encoding for interrupt coalescing timeout:
	 *              Value   Min      Max     Units
	 *              -----   ---      ---     -----
	 *              0       -        -       Disabled
	 *              1       13.3     20.0    ns
	 *              2       26.7     40.0
	 *              3       53.3     80.0
	 *              4       106.7    160.0
	 *              5       213.3    320.0
	 *              6       426.7    640.0
	 *              7       853.3    1280.0
	 *              8       1.7      2.6     us
	 *              9       3.4      5.1
	 *              10      6.8      10.2
	 *              11      13.7     20.5
	 *              12      27.3     41.0
	 *              13      54.6     81.9
	 *              14      109.2    163.8
	 *              15      218.5    327.7
	 *              16      436.9    655.4
	 *              17      873.8    1310.7
	 *              18      1.7      2.6     ms
	 *              19      3.5      5.2
	 *              20      7.0      10.5
	 *              21      14.0     21.0
	 *              22      28.0     41.9
	 *              23      55.9     83.9
	 *              24      111.8    167.8
	 *              25      223.7    335.5
	 *              26      447.4    671.1
	 *              27      894.8    1342.2
	 *              28      1.8      2.7     s
	 *              Others Undefined */

	/*
	 * Use the table above to decide the encode of interrupt coalescing timeout
	 * value for register writing. */
	if (coalesce_timeout == 0)
		timeout_encode = 0;
	else{
		/* make the timeout value in unit of (10 ns). */
		coalesce_timeout = coalesce_timeout * 100;
		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;

		/* get the encode of timeout for register writing. */
		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
		      timeout_encode++) {
			if (min <= coalesce_timeout &&  max > coalesce_timeout)
				break;
			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
					break;
				else{
					timeout_encode++;
					break;
				}
			} else {
				max = max * 2;
				min = min * 2;
			}
		}

		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
			/* the value is out of range. */
			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
	}

	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1492
	       &ihost->smu_registers->interrupt_coalesce_control);
1493 1494


1495 1496
	ihost->interrupt_coalesce_number = (u16)coalesce_number;
	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1497 1498 1499 1500 1501

	return SCI_SUCCESS;
}


1502
static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1503
{
1504
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1505 1506 1507 1508 1509 1510 1511 1512 1513
	u32 val;

	/* enable clock gating for power control of the scu unit */
	val = readl(&ihost->smu_registers->clock_gating_control);
	val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
		 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
		 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
	val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
	writel(val, &ihost->smu_registers->clock_gating_control);
1514 1515

	/* set the default interrupt coalescence number and timeout value. */
1516
	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1517 1518
}

1519
static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1520
{
1521
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1522 1523

	/* disable interrupt coalescence. */
1524
	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1525 1526
}

1527
static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1528 1529 1530 1531 1532
{
	u32 index;
	enum sci_status port_status;
	enum sci_status status = SCI_SUCCESS;

1533
	for (index = 0; index < ihost->logical_port_entries; index++) {
1534
		struct isci_port *iport = &ihost->ports[index];
1535

1536
		port_status = sci_port_stop(iport);
1537 1538 1539 1540 1541

		if ((port_status != SCI_SUCCESS) &&
		    (port_status != SCI_FAILURE_INVALID_STATE)) {
			status = SCI_FAILURE;

1542
			dev_warn(&ihost->pdev->dev,
1543 1544 1545
				 "%s: Controller stop operation failed to "
				 "stop port %d because of status %d.\n",
				 __func__,
1546
				 iport->logical_port_index,
1547 1548 1549 1550 1551 1552 1553
				 port_status);
		}
	}

	return status;
}

1554
static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1555 1556 1557 1558 1559 1560 1561
{
	u32 index;
	enum sci_status status;
	enum sci_status device_status;

	status = SCI_SUCCESS;

1562 1563
	for (index = 0; index < ihost->remote_node_entries; index++) {
		if (ihost->device_table[index] != NULL) {
1564
			/* / @todo What timeout value do we want to provide to this request? */
1565
			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1566 1567 1568

			if ((device_status != SCI_SUCCESS) &&
			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1569
				dev_warn(&ihost->pdev->dev,
1570 1571 1572 1573
					 "%s: Controller stop operation failed "
					 "to stop device 0x%p because of "
					 "status %d.\n",
					 __func__,
1574
					 ihost->device_table[index], device_status);
1575 1576 1577 1578 1579 1580 1581
			}
		}
	}

	return status;
}

1582
static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1583
{
1584
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1585

1586
	sci_controller_stop_devices(ihost);
D
Dan Williams 已提交
1587 1588 1589 1590
	sci_controller_stop_ports(ihost);

	if (!sci_controller_has_remote_devices_stopping(ihost))
		isci_host_stop_complete(ihost);
1591 1592
}

1593
static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1594
{
1595
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1596

1597
	sci_del_timer(&ihost->timer);
1598 1599
}

1600
static void sci_controller_reset_hardware(struct isci_host *ihost)
1601 1602
{
	/* Disable interrupts so we dont take any spurious interrupts */
1603
	sci_controller_disable_interrupts(ihost);
1604 1605

	/* Reset the SCU */
1606
	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1607 1608 1609 1610 1611

	/* Delay for 1ms to before clearing the CQP and UFQPR. */
	udelay(1000);

	/* The write to the CQGR clears the CQP */
1612
	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1613 1614

	/* The write to the UFQGP clears the UFQPR */
1615
	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
D
Dan Williams 已提交
1616 1617 1618

	/* clear all interrupts */
	writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1619 1620
}

1621
static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1622
{
1623
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1624

1625
	sci_controller_reset_hardware(ihost);
1626
	sci_change_state(&ihost->sm, SCIC_RESET);
1627 1628
}

1629
static const struct sci_base_state sci_controller_state_table[] = {
E
Edmund Nadolski 已提交
1630
	[SCIC_INITIAL] = {
1631
		.enter_state = sci_controller_initial_state_enter,
1632
	},
E
Edmund Nadolski 已提交
1633 1634 1635 1636
	[SCIC_RESET] = {},
	[SCIC_INITIALIZING] = {},
	[SCIC_INITIALIZED] = {},
	[SCIC_STARTING] = {
1637
		.exit_state  = sci_controller_starting_state_exit,
1638
	},
E
Edmund Nadolski 已提交
1639
	[SCIC_READY] = {
1640 1641
		.enter_state = sci_controller_ready_state_enter,
		.exit_state  = sci_controller_ready_state_exit,
1642
	},
E
Edmund Nadolski 已提交
1643
	[SCIC_RESETTING] = {
1644
		.enter_state = sci_controller_resetting_state_enter,
1645
	},
E
Edmund Nadolski 已提交
1646
	[SCIC_STOPPING] = {
1647 1648
		.enter_state = sci_controller_stopping_state_enter,
		.exit_state = sci_controller_stopping_state_exit,
1649
	},
E
Edmund Nadolski 已提交
1650
	[SCIC_FAILED] = {}
1651 1652
};

1653 1654 1655
static void controller_timeout(unsigned long data)
{
	struct sci_timer *tmr = (struct sci_timer *)data;
1656 1657
	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
	struct sci_base_state_machine *sm = &ihost->sm;
1658 1659 1660 1661 1662 1663 1664
	unsigned long flags;

	spin_lock_irqsave(&ihost->scic_lock, flags);

	if (tmr->cancel)
		goto done;

E
Edmund Nadolski 已提交
1665
	if (sm->current_state_id == SCIC_STARTING)
1666
		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
E
Edmund Nadolski 已提交
1667 1668
	else if (sm->current_state_id == SCIC_STOPPING) {
		sci_change_state(sm, SCIC_FAILED);
D
Dan Williams 已提交
1669
		isci_host_stop_complete(ihost);
1670
	} else	/* / @todo Now what do we want to do in this case? */
1671
		dev_err(&ihost->pdev->dev,
1672 1673 1674
			"%s: Controller timer fired when controller was not "
			"in a state being timed.\n",
			__func__);
1675

1676 1677 1678
done:
	spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
1679

1680 1681 1682
static enum sci_status sci_controller_construct(struct isci_host *ihost,
						void __iomem *scu_base,
						void __iomem *smu_base)
1683 1684 1685
{
	u8 i;

1686
	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1687

1688 1689
	ihost->scu_registers = scu_base;
	ihost->smu_registers = smu_base;
1690

1691
	sci_port_configuration_agent_construct(&ihost->port_agent);
1692 1693 1694

	/* Construct the ports for this controller */
	for (i = 0; i < SCI_MAX_PORTS; i++)
1695 1696
		sci_port_construct(&ihost->ports[i], i, ihost);
	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1697 1698 1699 1700

	/* Construct the phys for this controller */
	for (i = 0; i < SCI_MAX_PHYS; i++) {
		/* Add all the PHYs to the dummy port */
1701 1702
		sci_phy_construct(&ihost->phys[i],
				  &ihost->ports[SCI_MAX_PORTS], i);
1703 1704
	}

1705
	ihost->invalid_phy_mask = 0;
1706

1707
	sci_init_timer(&ihost->timer, controller_timeout);
1708

1709
	return sci_controller_reset(ihost);
1710 1711
}

1712
int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
{
	int i;

	for (i = 0; i < SCI_MAX_PORTS; i++)
		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
			return -EINVAL;

	for (i = 0; i < SCI_MAX_PHYS; i++)
		if (oem->phys[i].sas_address.high == 0 &&
		    oem->phys[i].sas_address.low == 0)
			return -EINVAL;

	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
		for (i = 0; i < SCI_MAX_PHYS; i++)
			if (oem->ports[i].phy_mask != 0)
				return -EINVAL;
	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
		u8 phy_mask = 0;

		for (i = 0; i < SCI_MAX_PHYS; i++)
			phy_mask |= oem->ports[i].phy_mask;

		if (phy_mask == 0)
			return -EINVAL;
	} else
		return -EINVAL;

1740 1741
	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
	    oem->controller.max_concurr_spin_up < 1)
1742 1743
		return -EINVAL;

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	if (oem->controller.do_enable_ssc) {
		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
			return -EINVAL;

		if (version >= ISCI_ROM_VER_1_1) {
			u8 test = oem->controller.ssc_sata_tx_spread_level;

			switch (test) {
			case 0:
			case 2:
			case 3:
			case 6:
			case 7:
				break;
			default:
				return -EINVAL;
			}

			test = oem->controller.ssc_sas_tx_spread_level;
			if (oem->controller.ssc_sas_tx_type == 0) {
				switch (test) {
				case 0:
				case 2:
				case 3:
					break;
				default:
					return -EINVAL;
				}
			} else if (oem->controller.ssc_sas_tx_type == 1) {
				switch (test) {
				case 0:
				case 3:
				case 6:
					break;
				default:
					return -EINVAL;
				}
			}
		}
	}

1785 1786 1787
	return 0;
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
static u8 max_spin_up(struct isci_host *ihost)
{
	if (ihost->user_parameters.max_concurr_spinup)
		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
	else
		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
}

1798
static void power_control_timeout(unsigned long data)
1799
{
1800
	struct sci_timer *tmr = (struct sci_timer *)data;
1801
	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1802
	struct isci_phy *iphy;
1803 1804
	unsigned long flags;
	u8 i;
1805

1806
	spin_lock_irqsave(&ihost->scic_lock, flags);
1807

1808 1809 1810
	if (tmr->cancel)
		goto done;

1811
	ihost->power_control.phys_granted_power = 0;
1812

1813 1814
	if (ihost->power_control.phys_waiting == 0) {
		ihost->power_control.timer_started = false;
1815
		goto done;
1816 1817
	}

1818
	for (i = 0; i < SCI_MAX_PHYS; i++) {
1819

1820
		if (ihost->power_control.phys_waiting == 0)
1821
			break;
1822

1823
		iphy = ihost->power_control.requesters[i];
1824
		if (iphy == NULL)
1825
			continue;
1826

1827
		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1828
			break;
1829

1830 1831 1832
		ihost->power_control.requesters[i] = NULL;
		ihost->power_control.phys_waiting--;
		ihost->power_control.phys_granted_power++;
1833
		sci_phy_consume_power_handler(iphy);
1834

1835
		if (iphy->protocol == SAS_PROTOCOL_SSP) {
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
			u8 j;

			for (j = 0; j < SCI_MAX_PHYS; j++) {
				struct isci_phy *requester = ihost->power_control.requesters[j];

				/*
				 * Search the power_control queue to see if there are other phys
				 * attached to the same remote device. If found, take all of
				 * them out of await_sas_power state.
				 */
				if (requester != NULL && requester != iphy) {
					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
							  iphy->frame_rcvd.iaf.sas_addr,
							  sizeof(requester->frame_rcvd.iaf.sas_addr));

					if (other == 0) {
						ihost->power_control.requesters[j] = NULL;
						ihost->power_control.phys_waiting--;
						sci_phy_consume_power_handler(requester);
					}
				}
			}
		}
1859
	}
1860 1861 1862 1863 1864 1865

	/*
	 * It doesn't matter if the power list is empty, we need to start the
	 * timer in case another phy becomes ready.
	 */
	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1866
	ihost->power_control.timer_started = true;
1867 1868 1869

done:
	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1870 1871
}

1872 1873
void sci_controller_power_control_queue_insert(struct isci_host *ihost,
					       struct isci_phy *iphy)
1874
{
1875
	BUG_ON(iphy == NULL);
1876

1877
	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1878
		ihost->power_control.phys_granted_power++;
1879
		sci_phy_consume_power_handler(iphy);
1880 1881 1882 1883 1884

		/*
		 * stop and start the power_control timer. When the timer fires, the
		 * no_of_phys_granted_power will be set to 0
		 */
1885 1886
		if (ihost->power_control.timer_started)
			sci_del_timer(&ihost->power_control.timer);
1887

1888
		sci_mod_timer(&ihost->power_control.timer,
1889
				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1890
		ihost->power_control.timer_started = true;
1891

1892
	} else {
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		/*
		 * There are phys, attached to the same sas address as this phy, are
		 * already in READY state, this phy don't need wait.
		 */
		u8 i;
		struct isci_phy *current_phy;

		for (i = 0; i < SCI_MAX_PHYS; i++) {
			u8 other;
			current_phy = &ihost->phys[i];

			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
				       iphy->frame_rcvd.iaf.sas_addr,
				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));

			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1909
			    current_phy->protocol == SAS_PROTOCOL_SSP &&
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
			    other == 0) {
				sci_phy_consume_power_handler(iphy);
				break;
			}
		}

		if (i == SCI_MAX_PHYS) {
			/* Add the phy in the waiting list */
			ihost->power_control.requesters[iphy->phy_index] = iphy;
			ihost->power_control.phys_waiting++;
		}
1921 1922 1923
	}
}

1924 1925
void sci_controller_power_control_queue_remove(struct isci_host *ihost,
					       struct isci_phy *iphy)
1926
{
1927
	BUG_ON(iphy == NULL);
1928

1929
	if (ihost->power_control.requesters[iphy->phy_index])
1930
		ihost->power_control.phys_waiting--;
1931

1932
	ihost->power_control.requesters[iphy->phy_index] = NULL;
1933 1934
}

1935 1936
static int is_long_cable(int phy, unsigned char selection_byte)
{
1937
	return !!(selection_byte & (1 << phy));
1938 1939 1940 1941
}

static int is_medium_cable(int phy, unsigned char selection_byte)
{
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	return !!(selection_byte & (1 << (phy + 4)));
}

static enum cable_selections decode_selection_byte(
	int phy,
	unsigned char selection_byte)
{
	return ((selection_byte & (1 << phy)) ? 1 : 0)
		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
}

static unsigned char *to_cable_select(struct isci_host *ihost)
{
	if (is_cable_select_overridden())
		return ((unsigned char *)&cable_selection_override)
			+ ihost->id;
	else
		return &ihost->oem_parameters.controller.cable_selection_mask;
}

enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
{
	return decode_selection_byte(phy, *to_cable_select(ihost));
}

char *lookup_cable_names(enum cable_selections selection)
{
	static char *cable_names[] = {
		[short_cable]     = "short",
		[long_cable]      = "long",
		[medium_cable]    = "medium",
		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
	};
	return (selection <= undefined_cable) ? cable_names[selection]
					      : cable_names[undefined_cable];
1977 1978
}

1979 1980
#define AFE_REGISTER_WRITE_DELAY 10

1981
static void sci_controller_afe_initialization(struct isci_host *ihost)
1982
{
1983
	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1984
	const struct sci_oem_params *oem = &ihost->oem_parameters;
1985
	struct pci_dev *pdev = ihost->pdev;
1986 1987
	u32 afe_status;
	u32 phy_id;
1988
	unsigned char cable_selection_mask = *to_cable_select(ihost);
1989 1990

	/* Clear DFX Status registers */
1991
	writel(0x0081000f, &afe->afe_dfx_master_control0);
1992 1993
	udelay(AFE_REGISTER_WRITE_DELAY);

1994
	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1995
		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1996 1997
		 * Timer, PM Stagger Timer
		 */
1998
		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1999 2000 2001 2002
		udelay(AFE_REGISTER_WRITE_DELAY);
	}

	/* Configure bias currents to normal */
2003
	if (is_a2(pdev))
2004
		writel(0x00005A00, &afe->afe_bias_control);
2005
	else if (is_b0(pdev) || is_c0(pdev))
2006
		writel(0x00005F00, &afe->afe_bias_control);
2007 2008
	else if (is_c1(pdev))
		writel(0x00005500, &afe->afe_bias_control);
2009 2010 2011 2012

	udelay(AFE_REGISTER_WRITE_DELAY);

	/* Enable PLL */
2013
	if (is_a2(pdev))
2014
		writel(0x80040908, &afe->afe_pll_control0);
2015 2016 2017 2018 2019 2020 2021 2022 2023
	else if (is_b0(pdev) || is_c0(pdev))
		writel(0x80040A08, &afe->afe_pll_control0);
	else if (is_c1(pdev)) {
		writel(0x80000B08, &afe->afe_pll_control0);
		udelay(AFE_REGISTER_WRITE_DELAY);
		writel(0x00000B08, &afe->afe_pll_control0);
		udelay(AFE_REGISTER_WRITE_DELAY);
		writel(0x80000B08, &afe->afe_pll_control0);
	}
2024 2025 2026 2027 2028

	udelay(AFE_REGISTER_WRITE_DELAY);

	/* Wait for the PLL to lock */
	do {
2029
		afe_status = readl(&afe->afe_common_block_status);
2030 2031 2032
		udelay(AFE_REGISTER_WRITE_DELAY);
	} while ((afe_status & 0x00001000) == 0);

2033
	if (is_a2(pdev)) {
2034 2035 2036 2037
		/* Shorten SAS SNW lock time (RxLock timer value from 76
		 * us to 50 us)
		 */
		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
2038 2039 2040 2041
		udelay(AFE_REGISTER_WRITE_DELAY);
	}

	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2042
		struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id];
2043
		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
		int cable_length_long =
			is_long_cable(phy_id, cable_selection_mask);
		int cable_length_medium =
			is_medium_cable(phy_id, cable_selection_mask);

		if (is_a2(pdev)) {
			/* All defaults, except the Receive Word
			 * Alignament/Comma Detect Enable....(0xe800)
			 */
			writel(0x00004512, &xcvr->afe_xcvr_control0);
			udelay(AFE_REGISTER_WRITE_DELAY);
2055

2056 2057 2058 2059
			writel(0x0050100F, &xcvr->afe_xcvr_control1);
			udelay(AFE_REGISTER_WRITE_DELAY);
		} else if (is_b0(pdev)) {
			/* Configure transmitter SSC parameters */
2060
			writel(0x00030000, &xcvr->afe_tx_ssc_control);
2061
			udelay(AFE_REGISTER_WRITE_DELAY);
2062
		} else if (is_c0(pdev)) {
2063 2064
			/* Configure transmitter SSC parameters */
			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2065 2066
			udelay(AFE_REGISTER_WRITE_DELAY);

2067 2068 2069
			/* All defaults, except the Receive Word
			 * Alignament/Comma Detect Enable....(0xe800)
			 */
2070
			writel(0x00014500, &xcvr->afe_xcvr_control0);
2071
			udelay(AFE_REGISTER_WRITE_DELAY);
2072 2073 2074 2075 2076
		} else if (is_c1(pdev)) {
			/* Configure transmitter SSC parameters */
			writel(0x00010202, &xcvr->afe_tx_ssc_control);
			udelay(AFE_REGISTER_WRITE_DELAY);

2077 2078 2079
			/* All defaults, except the Receive Word
			 * Alignament/Comma Detect Enable....(0xe800)
			 */
2080
			writel(0x0001C500, &xcvr->afe_xcvr_control0);
2081 2082 2083
			udelay(AFE_REGISTER_WRITE_DELAY);
		}

2084 2085
		/* Power up TX and RX out from power down (PWRDNTX and
		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2086
		 */
2087
		if (is_a2(pdev))
2088
			writel(0x000003F0, &xcvr->afe_channel_control);
2089
		else if (is_b0(pdev)) {
2090
			writel(0x000003D7, &xcvr->afe_channel_control);
2091
			udelay(AFE_REGISTER_WRITE_DELAY);
2092

2093
			writel(0x000003D4, &xcvr->afe_channel_control);
2094
		} else if (is_c0(pdev)) {
2095
			writel(0x000001E7, &xcvr->afe_channel_control);
2096
			udelay(AFE_REGISTER_WRITE_DELAY);
2097

2098
			writel(0x000001E4, &xcvr->afe_channel_control);
2099 2100 2101 2102 2103 2104 2105
		} else if (is_c1(pdev)) {
			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
			       &xcvr->afe_channel_control);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
			       &xcvr->afe_channel_control);
2106 2107 2108
		}
		udelay(AFE_REGISTER_WRITE_DELAY);

2109
		if (is_a2(pdev)) {
2110
			/* Enable TX equalization (0xe824) */
2111
			writel(0x00040000, &xcvr->afe_tx_control);
2112 2113 2114
			udelay(AFE_REGISTER_WRITE_DELAY);
		}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
		if (is_a2(pdev) || is_b0(pdev))
			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
			 * Enabled) ....(0xe800)
			 */
			writel(0x00004100, &xcvr->afe_xcvr_control0);
		else if (is_c0(pdev))
			writel(0x00014100, &xcvr->afe_xcvr_control0);
		else if (is_c1(pdev))
			writel(0x0001C100, &xcvr->afe_xcvr_control0);
2125 2126 2127
		udelay(AFE_REGISTER_WRITE_DELAY);

		/* Leave DFE/FFE on */
2128
		if (is_a2(pdev))
2129
			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2130
		else if (is_b0(pdev)) {
2131
			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2132
			udelay(AFE_REGISTER_WRITE_DELAY);
2133
			/* Enable TX equalization (0xe824) */
2134
			writel(0x00040000, &xcvr->afe_tx_control);
2135 2136
		} else if (is_c0(pdev)) {
			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2137 2138
			udelay(AFE_REGISTER_WRITE_DELAY);

2139
			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2140
			udelay(AFE_REGISTER_WRITE_DELAY);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

			/* Enable TX equalization (0xe824) */
			writel(0x00040000, &xcvr->afe_tx_control);
		} else if (is_c1(pdev)) {
			writel(cable_length_long ? 0x01500C0C :
			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
			       &xcvr->afe_xcvr_control1);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(cable_length_long ? 0x33091C1F :
			       cable_length_medium ? 0x3315181F : 0x2B17161F,
			       &xcvr->afe_rx_ssc_control0);
			udelay(AFE_REGISTER_WRITE_DELAY);
2157

2158
			/* Enable TX equalization (0xe824) */
2159
			writel(0x00040000, &xcvr->afe_tx_control);
2160
		}
2161

2162 2163
		udelay(AFE_REGISTER_WRITE_DELAY);

2164
		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2165 2166
		udelay(AFE_REGISTER_WRITE_DELAY);

2167
		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2168 2169
		udelay(AFE_REGISTER_WRITE_DELAY);

2170
		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2171 2172
		udelay(AFE_REGISTER_WRITE_DELAY);

2173
		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2174 2175 2176 2177
		udelay(AFE_REGISTER_WRITE_DELAY);
	}

	/* Transfer control to the PEs */
2178
	writel(0x00010f00, &afe->afe_dfx_master_control0);
2179 2180 2181
	udelay(AFE_REGISTER_WRITE_DELAY);
}

2182
static void sci_controller_initialize_power_control(struct isci_host *ihost)
2183
{
2184
	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2185

2186 2187
	memset(ihost->power_control.requesters, 0,
	       sizeof(ihost->power_control.requesters));
2188

2189 2190
	ihost->power_control.phys_waiting = 0;
	ihost->power_control.phys_granted_power = 0;
2191 2192
}

2193
static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2194
{
2195
	struct sci_base_state_machine *sm = &ihost->sm;
2196 2197
	enum sci_status result = SCI_FAILURE;
	unsigned long i, state, val;
2198

2199
	if (ihost->sm.current_state_id != SCIC_RESET) {
2200 2201
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
2202 2203 2204
		return SCI_FAILURE_INVALID_STATE;
	}

E
Edmund Nadolski 已提交
2205
	sci_change_state(sm, SCIC_INITIALIZING);
2206

2207
	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2208

2209 2210
	ihost->next_phy_to_start = 0;
	ihost->phy_startup_timer_pending = false;
2211

2212
	sci_controller_initialize_power_control(ihost);
2213 2214 2215 2216 2217 2218

	/*
	 * There is nothing to do here for B0 since we do not have to
	 * program the AFE registers.
	 * / @todo The AFE settings are supposed to be correct for the B0 but
	 * /       presently they seem to be wrong. */
2219
	sci_controller_afe_initialization(ihost);
2220 2221


2222
	/* Take the hardware out of reset */
2223
	writel(0, &ihost->smu_registers->soft_reset_control);
2224

2225 2226 2227 2228 2229
	/*
	 * / @todo Provide meaningfull error code for hardware failure
	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
	for (i = 100; i >= 1; i--) {
		u32 status;
2230

2231 2232
		/* Loop until the hardware reports success */
		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2233
		status = readl(&ihost->smu_registers->control_status);
2234

2235 2236 2237 2238 2239
		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
			break;
	}
	if (i == 0)
		goto out;
2240

2241 2242 2243
	/*
	 * Determine what are the actaul device capacities that the
	 * hardware will support */
2244
	val = readl(&ihost->smu_registers->device_context_capacity);
2245

2246
	/* Record the smaller of the two capacity values */
2247 2248 2249
	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2250

2251 2252 2253 2254
	/*
	 * Make all PEs that are unassigned match up with the
	 * logical ports
	 */
2255
	for (i = 0; i < ihost->logical_port_entries; i++) {
2256
		struct scu_port_task_scheduler_group_registers __iomem
2257
			*ptsg = &ihost->scu_registers->peg0.ptsg;
2258

2259
		writel(i, &ptsg->protocol_engine[i]);
2260 2261 2262
	}

	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2263
	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2264
	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2265
	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2266

2267
	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2268
	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2269
	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2270 2271 2272 2273 2274

	/*
	 * Initialize the PHYs before the PORTs because the PHY registers
	 * are accessed during the port initialization.
	 */
2275
	for (i = 0; i < SCI_MAX_PHYS; i++) {
2276 2277 2278
		result = sci_phy_initialize(&ihost->phys[i],
					    &ihost->scu_registers->peg0.pe[i].tl,
					    &ihost->scu_registers->peg0.pe[i].ll);
2279 2280
		if (result != SCI_SUCCESS)
			goto out;
2281 2282
	}

2283
	for (i = 0; i < ihost->logical_port_entries; i++) {
2284
		struct isci_port *iport = &ihost->ports[i];
2285

2286 2287 2288
		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2289 2290
	}

2291
	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2292

2293
 out:
2294 2295
	/* Advance the controller state machine */
	if (result == SCI_SUCCESS)
E
Edmund Nadolski 已提交
2296
		state = SCIC_INITIALIZED;
2297
	else
E
Edmund Nadolski 已提交
2298 2299
		state = SCIC_FAILED;
	sci_change_state(sm, state);
2300 2301 2302 2303

	return result;
}

2304
static int sci_controller_dma_alloc(struct isci_host *ihost)
2305
{
2306
	struct device *dev = &ihost->pdev->dev;
2307
	size_t size;
2308 2309 2310 2311 2312
	int i;

	/* detect re-initialization */
	if (ihost->completion_queue)
		return 0;
2313

2314
	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2315 2316
	ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
						      GFP_KERNEL);
2317
	if (!ihost->completion_queue)
2318 2319
		return -ENOMEM;

2320
	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2321
	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2322
							       GFP_KERNEL);
2323

2324
	if (!ihost->remote_node_context_table)
2325 2326
		return -ENOMEM;

2327
	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2328 2329
	ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
							GFP_KERNEL);
2330
	if (!ihost->task_context_table)
2331 2332
		return -ENOMEM;

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	size = SCI_UFI_TOTAL_SIZE;
	ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
	if (!ihost->ufi_buf)
		return -ENOMEM;

	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
		struct isci_request *ireq;
		dma_addr_t dma;

		ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
		if (!ireq)
			return -ENOMEM;

		ireq->tc = &ihost->task_context_table[i];
		ireq->owning_controller = ihost;
		spin_lock_init(&ireq->state_lock);
		ireq->request_daddr = dma;
		ireq->isci_host = ihost;
		ihost->reqs[i] = ireq;
	}

	return 0;
}

static int sci_controller_mem_init(struct isci_host *ihost)
{
	int err = sci_controller_dma_alloc(ihost);
2360

2361 2362
	if (err)
		return err;
2363

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
	writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);

	writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
	writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);

	writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
	writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);

	sci_unsolicited_frame_control_construct(ihost);

2375 2376 2377 2378
	/*
	 * Inform the silicon as to the location of the UF headers and
	 * address table.
	 */
2379 2380 2381 2382
	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
		&ihost->scu_registers->sdma.uf_header_base_address_lower);
	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2383

2384 2385 2386 2387
	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
		&ihost->scu_registers->sdma.uf_address_table_lower);
	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
		&ihost->scu_registers->sdma.uf_address_table_upper);
2388 2389 2390 2391

	return 0;
}

2392 2393 2394 2395 2396 2397 2398 2399
/**
 * isci_host_init - (re-)initialize hardware and internal (private) state
 * @ihost: host to init
 *
 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
 * one-time initialization objects like locks and waitqueues, are
 * not touched (they are initialized in isci_host_alloc)
 */
2400
int isci_host_init(struct isci_host *ihost)
2401
{
2402
	int i, err;
2403 2404
	enum sci_status status;

D
Dan Williams 已提交
2405
	spin_lock_irq(&ihost->scic_lock);
2406
	status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
D
Dan Williams 已提交
2407
	spin_unlock_irq(&ihost->scic_lock);
2408
	if (status != SCI_SUCCESS) {
2409
		dev_err(&ihost->pdev->dev,
2410
			"%s: sci_controller_construct failed - status = %x\n",
2411 2412
			__func__,
			status);
2413
		return -ENODEV;
2414 2415
	}

2416
	spin_lock_irq(&ihost->scic_lock);
2417
	status = sci_controller_initialize(ihost);
2418
	spin_unlock_irq(&ihost->scic_lock);
2419
	if (status != SCI_SUCCESS) {
2420
		dev_warn(&ihost->pdev->dev,
2421
			 "%s: sci_controller_initialize failed -"
2422 2423
			 " status = 0x%x\n",
			 __func__, status);
2424
		return -ENODEV;
2425 2426
	}

2427
	err = sci_controller_mem_init(ihost);
2428
	if (err)
2429
		return err;
2430

2431 2432 2433 2434 2435 2436
	/* enable sgpio */
	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
	for (i = 0; i < isci_gpio_count(ihost); i++)
		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);

2437
	return 0;
2438
}
2439

2440 2441
void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
			    struct isci_phy *iphy)
2442
{
2443
	switch (ihost->sm.current_state_id) {
E
Edmund Nadolski 已提交
2444
	case SCIC_STARTING:
2445 2446 2447
		sci_del_timer(&ihost->phy_timer);
		ihost->phy_startup_timer_pending = false;
		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2448 2449
						  iport, iphy);
		sci_controller_start_next_phy(ihost);
2450
		break;
E
Edmund Nadolski 已提交
2451
	case SCIC_READY:
2452
		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2453
						  iport, iphy);
2454 2455
		break;
	default:
2456
		dev_dbg(&ihost->pdev->dev,
2457
			"%s: SCIC Controller linkup event from phy %d in "
2458
			"unexpected state %d\n", __func__, iphy->phy_index,
2459
			ihost->sm.current_state_id);
2460 2461 2462
	}
}

2463 2464
void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
			      struct isci_phy *iphy)
2465
{
2466
	switch (ihost->sm.current_state_id) {
E
Edmund Nadolski 已提交
2467 2468
	case SCIC_STARTING:
	case SCIC_READY:
2469
		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2470
						   iport, iphy);
2471 2472
		break;
	default:
2473
		dev_dbg(&ihost->pdev->dev,
2474 2475 2476
			"%s: SCIC Controller linkdown event from phy %d in "
			"unexpected state %d\n",
			__func__,
2477
			iphy->phy_index,
2478
			ihost->sm.current_state_id);
2479 2480 2481
	}
}

D
Dan Williams 已提交
2482
bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2483 2484 2485
{
	u32 index;

2486 2487 2488
	for (index = 0; index < ihost->remote_node_entries; index++) {
		if ((ihost->device_table[index] != NULL) &&
		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2489 2490 2491 2492 2493 2494
			return true;
	}

	return false;
}

2495 2496
void sci_controller_remote_device_stopped(struct isci_host *ihost,
					  struct isci_remote_device *idev)
2497
{
2498 2499
	if (ihost->sm.current_state_id != SCIC_STOPPING) {
		dev_dbg(&ihost->pdev->dev,
2500 2501
			"SCIC Controller 0x%p remote device stopped event "
			"from device 0x%p in unexpected state %d\n",
2502 2503
			ihost, idev,
			ihost->sm.current_state_id);
2504 2505 2506
		return;
	}

2507
	if (!sci_controller_has_remote_devices_stopping(ihost))
D
Dan Williams 已提交
2508
		isci_host_stop_complete(ihost);
2509 2510
}

2511
void sci_controller_post_request(struct isci_host *ihost, u32 request)
2512
{
2513 2514
	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
		__func__, ihost->id, request);
2515

2516
	writel(request, &ihost->smu_registers->post_context_port);
2517 2518
}

2519
struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2520 2521 2522 2523
{
	u16 task_index;
	u16 task_sequence;

D
Dan Williams 已提交
2524
	task_index = ISCI_TAG_TCI(io_tag);
2525

2526 2527
	if (task_index < ihost->task_context_entries) {
		struct isci_request *ireq = ihost->reqs[task_index];
D
Dan Williams 已提交
2528 2529

		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
D
Dan Williams 已提交
2530
			task_sequence = ISCI_TAG_SEQ(io_tag);
2531

2532
			if (task_sequence == ihost->io_request_sequence[task_index])
2533
				return ireq;
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		}
	}

	return NULL;
}

/**
 * This method allocates remote node index and the reserves the remote node
 *    context space for use. This method can fail if there are no more remote
 *    node index available.
 * @scic: This is the controller object which contains the set of
 *    free remote node ids
 * @sci_dev: This is the device object which is requesting the a remote node
 *    id
 * @node_id: This is the remote node id that is assinged to the device if one
 *    is available
 *
 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
 * node index available.
 */
2554 2555 2556
enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
							    struct isci_remote_device *idev,
							    u16 *node_id)
2557 2558
{
	u16 node_index;
2559
	u32 remote_node_count = sci_remote_device_node_count(idev);
2560

2561
	node_index = sci_remote_node_table_allocate_remote_node(
2562
		&ihost->available_remote_nodes, remote_node_count
2563 2564 2565
		);

	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2566
		ihost->device_table[node_index] = idev;
2567 2568 2569 2570 2571 2572 2573 2574 2575

		*node_id = node_index;

		return SCI_SUCCESS;
	}

	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}

2576 2577 2578
void sci_controller_free_remote_node_context(struct isci_host *ihost,
					     struct isci_remote_device *idev,
					     u16 node_id)
2579
{
2580
	u32 remote_node_count = sci_remote_device_node_count(idev);
2581

2582 2583
	if (ihost->device_table[node_id] == idev) {
		ihost->device_table[node_id] = NULL;
2584

2585
		sci_remote_node_table_release_remote_node_index(
2586
			&ihost->available_remote_nodes, remote_node_count, node_id
2587 2588 2589 2590
			);
	}
}

2591 2592 2593
void sci_controller_copy_sata_response(void *response_buffer,
				       void *frame_header,
				       void *frame_buffer)
2594
{
2595
	/* XXX type safety? */
2596 2597 2598 2599 2600 2601 2602
	memcpy(response_buffer, frame_header, sizeof(u32));

	memcpy(response_buffer + sizeof(u32),
	       frame_buffer,
	       sizeof(struct dev_to_host_fis) - sizeof(u32));
}

2603
void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2604
{
2605
	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2606 2607
		writel(ihost->uf_control.get,
			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2608 2609
}

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
void isci_tci_free(struct isci_host *ihost, u16 tci)
{
	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);

	ihost->tci_pool[tail] = tci;
	ihost->tci_tail = tail + 1;
}

static u16 isci_tci_alloc(struct isci_host *ihost)
{
	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
	u16 tci = ihost->tci_pool[head];

	ihost->tci_head = head + 1;
	return tci;
}

static u16 isci_tci_space(struct isci_host *ihost)
{
	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
}

u16 isci_alloc_tag(struct isci_host *ihost)
{
	if (isci_tci_space(ihost)) {
		u16 tci = isci_tci_alloc(ihost);
2636
		u8 seq = ihost->io_request_sequence[tci];
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

		return ISCI_TAG(seq, tci);
	}

	return SCI_CONTROLLER_INVALID_IO_TAG;
}

enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
{
	u16 tci = ISCI_TAG_TCI(io_tag);
	u16 seq = ISCI_TAG_SEQ(io_tag);

	/* prevent tail from passing head */
	if (isci_tci_active(ihost) == 0)
		return SCI_FAILURE_INVALID_IO_TAG;

2653 2654
	if (seq == ihost->io_request_sequence[tci]) {
		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2655 2656 2657 2658 2659 2660 2661 2662

		isci_tci_free(ihost, tci);

		return SCI_SUCCESS;
	}
	return SCI_FAILURE_INVALID_IO_TAG;
}

2663 2664 2665
enum sci_status sci_controller_start_io(struct isci_host *ihost,
					struct isci_remote_device *idev,
					struct isci_request *ireq)
2666 2667 2668
{
	enum sci_status status;

2669
	if (ihost->sm.current_state_id != SCIC_READY) {
2670 2671
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
2672 2673 2674
		return SCI_FAILURE_INVALID_STATE;
	}

2675
	status = sci_remote_device_start_io(ihost, idev, ireq);
2676 2677 2678
	if (status != SCI_SUCCESS)
		return status;

2679
	set_bit(IREQ_ACTIVE, &ireq->flags);
D
Dan Williams 已提交
2680
	sci_controller_post_request(ihost, ireq->post_context);
2681 2682 2683
	return SCI_SUCCESS;
}

2684 2685 2686
enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
						 struct isci_remote_device *idev,
						 struct isci_request *ireq)
2687
{
2688 2689 2690 2691
	/* terminate an ongoing (i.e. started) core IO request.  This does not
	 * abort the IO request at the target, but rather removes the IO
	 * request from the host controller.
	 */
2692 2693
	enum sci_status status;

2694
	if (ihost->sm.current_state_id != SCIC_READY) {
2695 2696
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
2697 2698 2699
		return SCI_FAILURE_INVALID_STATE;
	}

2700
	status = sci_io_request_terminate(ireq);
2701 2702 2703 2704 2705 2706 2707
	if (status != SCI_SUCCESS)
		return status;

	/*
	 * Utilize the original post context command and or in the POST_TC_ABORT
	 * request sub-type.
	 */
2708 2709
	sci_controller_post_request(ihost,
				    ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2710 2711 2712 2713
	return SCI_SUCCESS;
}

/**
2714
 * sci_controller_complete_io() - This method will perform core specific
2715 2716 2717
 *    completion operations for an IO request.  After this method is invoked,
 *    the user should consider the IO request as invalid until it is properly
 *    reused (i.e. re-constructed).
2718
 * @ihost: The handle to the controller object for which to complete the
2719
 *    IO request.
2720
 * @idev: The handle to the remote device object for which to complete
2721
 *    the IO request.
2722
 * @ireq: the handle to the io request object to complete.
2723
 */
2724 2725 2726
enum sci_status sci_controller_complete_io(struct isci_host *ihost,
					   struct isci_remote_device *idev,
					   struct isci_request *ireq)
2727 2728 2729 2730
{
	enum sci_status status;
	u16 index;

2731
	switch (ihost->sm.current_state_id) {
E
Edmund Nadolski 已提交
2732
	case SCIC_STOPPING:
2733 2734
		/* XXX: Implement this function */
		return SCI_FAILURE;
E
Edmund Nadolski 已提交
2735
	case SCIC_READY:
2736
		status = sci_remote_device_complete_io(ihost, idev, ireq);
2737 2738 2739
		if (status != SCI_SUCCESS)
			return status;

2740 2741
		index = ISCI_TAG_TCI(ireq->io_tag);
		clear_bit(IREQ_ACTIVE, &ireq->flags);
2742 2743
		return SCI_SUCCESS;
	default:
2744 2745
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
2746 2747 2748 2749 2750
		return SCI_FAILURE_INVALID_STATE;
	}

}

2751
enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2752
{
2753
	struct isci_host *ihost = ireq->owning_controller;
2754

2755
	if (ihost->sm.current_state_id != SCIC_READY) {
2756 2757
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
2758 2759 2760
		return SCI_FAILURE_INVALID_STATE;
	}

2761
	set_bit(IREQ_ACTIVE, &ireq->flags);
D
Dan Williams 已提交
2762
	sci_controller_post_request(ihost, ireq->post_context);
2763 2764 2765 2766
	return SCI_SUCCESS;
}

/**
2767
 * sci_controller_start_task() - This method is called by the SCIC user to
2768 2769 2770 2771 2772 2773 2774
 *    send/start a framework task management request.
 * @controller: the handle to the controller object for which to start the task
 *    management request.
 * @remote_device: the handle to the remote device object for which to start
 *    the task management request.
 * @task_request: the handle to the task request object to start.
 */
2775 2776 2777
enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
					       struct isci_remote_device *idev,
					       struct isci_request *ireq)
2778 2779 2780
{
	enum sci_status status;

2781 2782
	if (ihost->sm.current_state_id != SCIC_READY) {
		dev_warn(&ihost->pdev->dev,
2783 2784 2785 2786 2787 2788
			 "%s: SCIC Controller starting task from invalid "
			 "state\n",
			 __func__);
		return SCI_TASK_FAILURE_INVALID_STATE;
	}

2789
	status = sci_remote_device_start_task(ihost, idev, ireq);
2790 2791
	switch (status) {
	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
D
Dan Williams 已提交
2792
		set_bit(IREQ_ACTIVE, &ireq->flags);
2793 2794 2795 2796 2797 2798 2799 2800

		/*
		 * We will let framework know this task request started successfully,
		 * although core is still woring on starting the request (to post tc when
		 * RNC is resumed.)
		 */
		return SCI_SUCCESS;
	case SCI_SUCCESS:
D
Dan Williams 已提交
2801
		set_bit(IREQ_ACTIVE, &ireq->flags);
D
Dan Williams 已提交
2802
		sci_controller_post_request(ihost, ireq->post_context);
2803 2804 2805 2806 2807 2808 2809
		break;
	default:
		break;
	}

	return status;
}
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862

static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
{
	int d;

	/* no support for TX_GP_CFG */
	if (reg_index == 0)
		return -EINVAL;

	for (d = 0; d < isci_gpio_count(ihost); d++) {
		u32 val = 0x444; /* all ODx.n clear */
		int i;

		for (i = 0; i < 3; i++) {
			int bit = (i << 2) + 2;

			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
						       write_data, reg_index,
						       reg_count);
			if (bit < 0)
				break;

			/* if od is set, clear the 'invert' bit */
			val &= ~(bit << ((i << 2) + 2));
		}

		if (i < 3)
			break;
		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
	}

	/* unless reg_index is > 1, we should always be able to write at
	 * least one register
	 */
	return d > 0;
}

int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
		    u8 reg_count, u8 *write_data)
{
	struct isci_host *ihost = sas_ha->lldd_ha;
	int written;

	switch (reg_type) {
	case SAS_GPIO_REG_TX_GP:
		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
		break;
	default:
		written = -EINVAL;
	}

	return written;
}