host.c 81.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/*
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 * The full GNU General Public License is included in this distribution
 * in the file called LICENSE.GPL.
 *
 * BSD LICENSE
 *
 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in
 *     the documentation and/or other materials provided with the
 *     distribution.
 *   * Neither the name of Intel Corporation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
55
#include <linux/circ_buf.h>
56 57 58
#include <linux/device.h>
#include <scsi/sas.h>
#include "host.h"
59 60
#include "isci.h"
#include "port.h"
61
#include "probe_roms.h"
62 63 64 65
#include "remote_device.h"
#include "request.h"
#include "scu_completion_codes.h"
#include "scu_event_codes.h"
66
#include "registers.h"
67 68
#include "scu_remote_node_context.h"
#include "scu_task_context.h"
69

70 71
#define SCU_CONTEXT_RAM_INIT_STALL_TIME      200

72
#define smu_max_ports(dcc_value) \
73 74 75 76 77
	(\
		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
	)

78
#define smu_max_task_contexts(dcc_value)	\
79 80 81 82 83
	(\
		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
	)

84
#define smu_max_rncs(dcc_value) \
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	(\
		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
	)

#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100

/**
 *
 *
 * The number of milliseconds to wait while a given phy is consuming power
 * before allowing another set of phys to consume power. Ultimately, this will
 * be specified by OEM parameter.
 */
#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500

/**
 * NORMALIZE_PUT_POINTER() -
 *
 * This macro will normalize the completion queue put pointer so its value can
 * be used as an array inde
 */
#define NORMALIZE_PUT_POINTER(x) \
	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)


/**
 * NORMALIZE_EVENT_POINTER() -
 *
 * This macro will normalize the completion queue event entry so its value can
 * be used as an index.
 */
#define NORMALIZE_EVENT_POINTER(x) \
	(\
		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
	)

/**
 * NORMALIZE_GET_POINTER() -
 *
 * This macro will normalize the completion queue get pointer so its value can
 * be used as an index into an array
 */
#define NORMALIZE_GET_POINTER(x) \
	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)

/**
 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
 *
 * This macro will normalize the completion queue cycle pointer so it matches
 * the completion queue cycle bit
 */
#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))

/**
 * COMPLETION_QUEUE_CYCLE_BIT() -
 *
 * This macro will return the cycle bit of the completion queue entry
 */
#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/* Init the state machine and call the state entry function (if any) */
void sci_init_sm(struct sci_base_state_machine *sm,
		 const struct sci_base_state *state_table, u32 initial_state)
{
	sci_state_transition_t handler;

	sm->initial_state_id    = initial_state;
	sm->previous_state_id   = initial_state;
	sm->current_state_id    = initial_state;
	sm->state_table         = state_table;

	handler = sm->state_table[initial_state].enter_state;
	if (handler)
		handler(sm);
}

/* Call the state exit fn, update the current state, call the state entry fn */
void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
{
	sci_state_transition_t handler;

	handler = sm->state_table[sm->current_state_id].exit_state;
	if (handler)
		handler(sm);

	sm->previous_state_id = sm->current_state_id;
	sm->current_state_id = next_state;

	handler = sm->state_table[sm->current_state_id].enter_state;
	if (handler)
		handler(sm);
}

181
static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
182
{
183
	u32 get_value = ihost->completion_queue_get;
184 185 186
	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;

	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
187
	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
188 189 190 191 192
		return true;

	return false;
}

193
static bool sci_controller_isr(struct isci_host *ihost)
194
{
195
	if (sci_controller_completion_queue_has_entries(ihost)) {
196 197 198 199 200
		return true;
	} else {
		/*
		 * we have a spurious interrupt it could be that we have already
		 * emptied the completion queue from a previous interrupt */
201
		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
202 203 204 205 206 207

		/*
		 * There is a race in the hardware that could cause us not to be notified
		 * of an interrupt completion if we do not take this step.  We will mask
		 * then unmask the interrupts so if there is another interrupt pending
		 * the clearing of the interrupt source we get the next interrupt message. */
208 209
		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
		writel(0, &ihost->smu_registers->interrupt_mask);
210 211 212 213 214
	}

	return false;
}

215
irqreturn_t isci_msix_isr(int vec, void *data)
216
{
217 218
	struct isci_host *ihost = data;

219
	if (sci_controller_isr(ihost))
220
		tasklet_schedule(&ihost->completion_tasklet);
221

222
	return IRQ_HANDLED;
223 224
}

225
static bool sci_controller_error_isr(struct isci_host *ihost)
226 227 228 229
{
	u32 interrupt_status;

	interrupt_status =
230
		readl(&ihost->smu_registers->interrupt_status);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);

	if (interrupt_status != 0) {
		/*
		 * There is an error interrupt pending so let it through and handle
		 * in the callback */
		return true;
	}

	/*
	 * There is a race in the hardware that could cause us not to be notified
	 * of an interrupt completion if we do not take this step.  We will mask
	 * then unmask the error interrupts so if there was another interrupt
	 * pending we will be notified.
	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
246 247
	writel(0xff, &ihost->smu_registers->interrupt_mask);
	writel(0, &ihost->smu_registers->interrupt_mask);
248 249 250 251

	return false;
}

252
static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
253
{
254
	u32 index = SCU_GET_COMPLETION_INDEX(ent);
D
Dan Williams 已提交
255
	struct isci_request *ireq = ihost->reqs[index];
256 257

	/* Make sure that we really want to process this IO request */
D
Dan Williams 已提交
258
	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
259
	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
260
	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
261 262 263 264
		/* Yep this is a valid io request pass it along to the
		 * io request handler
		 */
		sci_io_request_tc_completion(ireq, ent);
265 266
}

267
static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
268 269
{
	u32 index;
270
	struct isci_request *ireq;
271
	struct isci_remote_device *idev;
272

273
	index = SCU_GET_COMPLETION_INDEX(ent);
274

275
	switch (scu_get_command_request_type(ent)) {
276 277
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
278 279
		ireq = ihost->reqs[index];
		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
280
			 __func__, ent, ireq);
281 282 283 284 285 286 287
		/* @todo For a post TC operation we need to fail the IO
		 * request
		 */
		break;
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
288 289
		idev = ihost->device_table[index];
		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
290
			 __func__, ent, idev);
291 292 293 294 295
		/* @todo For a port RNC operation we need to fail the
		 * device
		 */
		break;
	default:
296
		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
297
			 __func__, ent);
298 299 300 301
		break;
	}
}

302
static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
303 304 305 306 307
{
	u32 index;
	u32 frame_index;

	struct scu_unsolicited_frame_header *frame_header;
308
	struct isci_phy *iphy;
309
	struct isci_remote_device *idev;
310 311 312

	enum sci_status result = SCI_FAILURE;

313
	frame_index = SCU_GET_FRAME_INDEX(ent);
314

315 316
	frame_header = ihost->uf_control.buffers.array[frame_index].header;
	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
317

318
	if (SCU_GET_FRAME_ERROR(ent)) {
319 320 321 322
		/*
		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
		 * /       this cause a problem? We expect the phy initialization will
		 * /       fail if there is an error in the frame. */
323
		sci_controller_release_frame(ihost, frame_index);
324 325 326 327
		return;
	}

	if (frame_header->is_address_frame) {
328
		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
329
		iphy = &ihost->phys[index];
330
		result = sci_phy_frame_handler(iphy, frame_index);
331 332
	} else {

333
		index = SCU_GET_COMPLETION_INDEX(ent);
334 335 336 337 338 339

		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
			/*
			 * This is a signature fis or a frame from a direct attached SATA
			 * device that has not yet been created.  In either case forwared
			 * the frame to the PE and let it take care of the frame data. */
340
			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
341
			iphy = &ihost->phys[index];
342
			result = sci_phy_frame_handler(iphy, frame_index);
343
		} else {
344 345
			if (index < ihost->remote_node_entries)
				idev = ihost->device_table[index];
346
			else
347
				idev = NULL;
348

349
			if (idev != NULL)
350
				result = sci_remote_device_frame_handler(idev, frame_index);
351
			else
352
				sci_controller_release_frame(ihost, frame_index);
353 354 355 356 357 358 359 360 361 362
		}
	}

	if (result != SCI_SUCCESS) {
		/*
		 * / @todo Is there any reason to report some additional error message
		 * /       when we get this failure notifiction? */
	}
}

363
static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
364
{
365
	struct isci_remote_device *idev;
366
	struct isci_request *ireq;
367
	struct isci_phy *iphy;
368 369
	u32 index;

370
	index = SCU_GET_COMPLETION_INDEX(ent);
371

372
	switch (scu_get_event_type(ent)) {
373 374
	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
		/* / @todo The driver did something wrong and we need to fix the condtion. */
375
		dev_err(&ihost->pdev->dev,
376 377 378
			"%s: SCIC Controller 0x%p received SMU command error "
			"0x%x\n",
			__func__,
379
			ihost,
380
			ent);
381 382 383 384 385 386 387 388
		break;

	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
	case SCU_EVENT_TYPE_SMU_ERROR:
	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
		/*
		 * / @todo This is a hardware failure and its likely that we want to
		 * /       reset the controller. */
389
		dev_err(&ihost->pdev->dev,
390 391 392
			"%s: SCIC Controller 0x%p received fatal controller "
			"event  0x%x\n",
			__func__,
393
			ihost,
394
			ent);
395 396 397
		break;

	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
398
		ireq = ihost->reqs[index];
399
		sci_io_request_event_handler(ireq, ent);
400 401 402
		break;

	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
403
		switch (scu_get_event_specifier(ent)) {
404 405
		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
406 407
			ireq = ihost->reqs[index];
			if (ireq != NULL)
408
				sci_io_request_event_handler(ireq, ent);
409
			else
410
				dev_warn(&ihost->pdev->dev,
411 412 413 414
					 "%s: SCIC Controller 0x%p received "
					 "event 0x%x for io request object "
					 "that doesnt exist.\n",
					 __func__,
415
					 ihost,
416
					 ent);
417 418 419 420

			break;

		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
421
			idev = ihost->device_table[index];
422
			if (idev != NULL)
423
				sci_remote_device_event_handler(idev, ent);
424
			else
425
				dev_warn(&ihost->pdev->dev,
426 427 428 429
					 "%s: SCIC Controller 0x%p received "
					 "event 0x%x for remote device object "
					 "that doesnt exist.\n",
					 __func__,
430
					 ihost,
431
					 ent);
432 433 434 435 436 437 438 439 440 441 442 443 444 445

			break;
		}
		break;

	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
	/*
	 * direct the broadcast change event to the phy first and then let
	 * the phy redirect the broadcast change to the port object */
	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
	/*
	 * direct error counter event to the phy object since that is where
	 * we get the event notification.  This is a type 4 event. */
	case SCU_EVENT_TYPE_OSSP_EVENT:
446
		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
447
		iphy = &ihost->phys[index];
448
		sci_phy_event_handler(iphy, ent);
449 450 451 452 453
		break;

	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
	case SCU_EVENT_TYPE_RNC_OPS_MISC:
454 455
		if (index < ihost->remote_node_entries) {
			idev = ihost->device_table[index];
456

457
			if (idev != NULL)
458
				sci_remote_device_event_handler(idev, ent);
459
		} else
460
			dev_err(&ihost->pdev->dev,
461 462 463 464
				"%s: SCIC Controller 0x%p received event 0x%x "
				"for remote device object 0x%0x that doesnt "
				"exist.\n",
				__func__,
465
				ihost,
466
				ent,
467 468 469 470 471
				index);

		break;

	default:
472
		dev_warn(&ihost->pdev->dev,
473 474
			 "%s: SCIC Controller received unknown event code %x\n",
			 __func__,
475
			 ent);
476 477 478 479
		break;
	}
}

480
static void sci_controller_process_completions(struct isci_host *ihost)
481 482
{
	u32 completion_count = 0;
483
	u32 ent;
484 485
	u32 get_index;
	u32 get_cycle;
486
	u32 event_get;
487 488
	u32 event_cycle;

489
	dev_dbg(&ihost->pdev->dev,
490 491
		"%s: completion queue begining get:0x%08x\n",
		__func__,
492
		ihost->completion_queue_get);
493 494

	/* Get the component parts of the completion queue */
495 496
	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
497

498 499
	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
500 501 502

	while (
		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
503
		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
504 505 506
		) {
		completion_count++;

507
		ent = ihost->completion_queue[get_index];
508 509 510 511 512

		/* increment the get pointer and check for rollover to toggle the cycle bit */
		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
513

514
		dev_dbg(&ihost->pdev->dev,
515 516
			"%s: completion queue entry:0x%08x\n",
			__func__,
517
			ent);
518

519
		switch (SCU_GET_COMPLETION_TYPE(ent)) {
520
		case SCU_COMPLETION_TYPE_TASK:
521
			sci_controller_task_completion(ihost, ent);
522 523 524
			break;

		case SCU_COMPLETION_TYPE_SDMA:
525
			sci_controller_sdma_completion(ihost, ent);
526 527 528
			break;

		case SCU_COMPLETION_TYPE_UFI:
529
			sci_controller_unsolicited_frame(ihost, ent);
530 531 532
			break;

		case SCU_COMPLETION_TYPE_EVENT:
533 534 535
			sci_controller_event_completion(ihost, ent);
			break;

536 537 538 539
		case SCU_COMPLETION_TYPE_NOTIFY: {
			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
540

541
			sci_controller_event_completion(ihost, ent);
542
			break;
543
		}
544
		default:
545
			dev_warn(&ihost->pdev->dev,
546 547 548
				 "%s: SCIC Controller received unknown "
				 "completion type %x\n",
				 __func__,
549
				 ent);
550 551 552 553 554 555
			break;
		}
	}

	/* Update the get register if we completed one or more entries */
	if (completion_count > 0) {
556
		ihost->completion_queue_get =
557 558 559
			SMU_CQGR_GEN_BIT(ENABLE) |
			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
			event_cycle |
560
			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
561 562 563
			get_cycle |
			SMU_CQGR_GEN_VAL(POINTER, get_index);

564 565
		writel(ihost->completion_queue_get,
		       &ihost->smu_registers->completion_queue_get);
566 567 568

	}

569
	dev_dbg(&ihost->pdev->dev,
570 571
		"%s: completion queue ending get:0x%08x\n",
		__func__,
572
		ihost->completion_queue_get);
573 574 575

}

576
static void sci_controller_error_handler(struct isci_host *ihost)
577 578 579 580
{
	u32 interrupt_status;

	interrupt_status =
581
		readl(&ihost->smu_registers->interrupt_status);
582 583

	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
584
	    sci_controller_completion_queue_has_entries(ihost)) {
585

586
		sci_controller_process_completions(ihost);
587
		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
588
	} else {
589
		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
590 591
			interrupt_status);

592
		sci_change_state(&ihost->sm, SCIC_FAILED);
593 594 595 596 597 598 599

		return;
	}

	/* If we dont process any completions I am not sure that we want to do this.
	 * We are in the middle of a hardware fault and should probably be reset.
	 */
600
	writel(0, &ihost->smu_registers->interrupt_mask);
601 602
}

603
irqreturn_t isci_intx_isr(int vec, void *data)
604 605
{
	irqreturn_t ret = IRQ_NONE;
606
	struct isci_host *ihost = data;
607

608
	if (sci_controller_isr(ihost)) {
609
		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
610 611
		tasklet_schedule(&ihost->completion_tasklet);
		ret = IRQ_HANDLED;
612
	} else if (sci_controller_error_isr(ihost)) {
613
		spin_lock(&ihost->scic_lock);
614
		sci_controller_error_handler(ihost);
615 616
		spin_unlock(&ihost->scic_lock);
		ret = IRQ_HANDLED;
617
	}
D
Dan Williams 已提交
618

619 620 621
	return ret;
}

D
Dan Williams 已提交
622 623 624 625
irqreturn_t isci_error_isr(int vec, void *data)
{
	struct isci_host *ihost = data;

626 627
	if (sci_controller_error_isr(ihost))
		sci_controller_error_handler(ihost);
D
Dan Williams 已提交
628 629 630

	return IRQ_HANDLED;
}
631 632 633 634 635 636 637 638 639

/**
 * isci_host_start_complete() - This function is called by the core library,
 *    through the ISCI Module, to indicate controller start status.
 * @isci_host: This parameter specifies the ISCI host object
 * @completion_status: This parameter specifies the completion status from the
 *    core library.
 *
 */
640
static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
641
{
642 643 644 645 646
	if (completion_status != SCI_SUCCESS)
		dev_info(&ihost->pdev->dev,
			"controller start timed out, continuing...\n");
	clear_bit(IHOST_START_PENDING, &ihost->flags);
	wake_up(&ihost->eventq);
647 648
}

649
int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
650
{
651 652
	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
	struct isci_host *ihost = ha->lldd_ha;
653

654
	if (test_bit(IHOST_START_PENDING, &ihost->flags))
655 656
		return 0;

657
	sas_drain_work(ha);
658 659 660 661

	return 1;
}

662
/**
663 664
 * sci_controller_get_suggested_start_timeout() - This method returns the
 *    suggested sci_controller_start() timeout amount.  The user is free to
665 666 667 668 669 670 671 672 673
 *    use any timeout value, but this method provides the suggested minimum
 *    start timeout value.  The returned value is based upon empirical
 *    information determined as a result of interoperability testing.
 * @controller: the handle to the controller object for which to return the
 *    suggested start timeout.
 *
 * This method returns the number of milliseconds for the suggested start
 * operation timeout.
 */
674
static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
675 676
{
	/* Validate the user supplied parameters. */
677
	if (!ihost)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		return 0;

	/*
	 * The suggested minimum timeout value for a controller start operation:
	 *
	 *     Signature FIS Timeout
	 *   + Phy Start Timeout
	 *   + Number of Phy Spin Up Intervals
	 *   ---------------------------------
	 *   Number of milliseconds for the controller start operation.
	 *
	 * NOTE: The number of phy spin up intervals will be equivalent
	 *       to the number of phys divided by the number phys allowed
	 *       per interval - 1 (once OEM parameters are supported).
	 *       Currently we assume only 1 phy per interval. */

	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
}

699
static void sci_controller_enable_interrupts(struct isci_host *ihost)
700
{
701 702
	BUG_ON(ihost->smu_registers == NULL);
	writel(0, &ihost->smu_registers->interrupt_mask);
703 704
}

705
void sci_controller_disable_interrupts(struct isci_host *ihost)
706
{
707 708
	BUG_ON(ihost->smu_registers == NULL);
	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
709 710
}

711
static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
712 713 714 715
{
	u32 port_task_scheduler_value;

	port_task_scheduler_value =
716
		readl(&ihost->scu_registers->peg0.ptsg.control);
717 718 719 720
	port_task_scheduler_value |=
		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
	writel(port_task_scheduler_value,
721
	       &ihost->scu_registers->peg0.ptsg.control);
722 723
}

724
static void sci_controller_assign_task_entries(struct isci_host *ihost)
725 726 727 728 729 730 731 732 733
{
	u32 task_assignment;

	/*
	 * Assign all the TCs to function 0
	 * TODO: Do we actually need to read this register to write it back?
	 */

	task_assignment =
734
		readl(&ihost->smu_registers->task_context_assignment[0]);
735 736

	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
737
		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
738 739 740
		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));

	writel(task_assignment,
741
		&ihost->smu_registers->task_context_assignment[0]);
742 743 744

}

745
static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
746 747 748 749 750 751
{
	u32 index;
	u32 completion_queue_control_value;
	u32 completion_queue_get_value;
	u32 completion_queue_put_value;

752
	ihost->completion_queue_get = 0;
753

754 755 756
	completion_queue_control_value =
		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
757 758

	writel(completion_queue_control_value,
759
	       &ihost->smu_registers->completion_queue_control);
760 761 762 763 764 765 766 767 768 769 770


	/* Set the completion queue get pointer and enable the queue */
	completion_queue_get_value = (
		(SMU_CQGR_GEN_VAL(POINTER, 0))
		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
		| (SMU_CQGR_GEN_BIT(ENABLE))
		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
		);

	writel(completion_queue_get_value,
771
	       &ihost->smu_registers->completion_queue_get);
772 773 774 775 776 777 778 779

	/* Set the completion queue put pointer */
	completion_queue_put_value = (
		(SMU_CQPR_GEN_VAL(POINTER, 0))
		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
		);

	writel(completion_queue_put_value,
780
	       &ihost->smu_registers->completion_queue_put);
781 782

	/* Initialize the cycle bit of the completion queue entries */
783
	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
784 785 786 787
		/*
		 * If get.cycle_bit != completion_queue.cycle_bit
		 * its not a valid completion queue entry
		 * so at system start all entries are invalid */
788
		ihost->completion_queue[index] = 0x80000000;
789 790 791
	}
}

792
static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
793 794 795 796 797 798 799
{
	u32 frame_queue_control_value;
	u32 frame_queue_get_value;
	u32 frame_queue_put_value;

	/* Write the queue size */
	frame_queue_control_value =
800
		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
801 802

	writel(frame_queue_control_value,
803
	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
804 805 806 807 808 809 810 811

	/* Setup the get pointer for the unsolicited frame queue */
	frame_queue_get_value = (
		SCU_UFQGP_GEN_VAL(POINTER, 0)
		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
		);

	writel(frame_queue_get_value,
812
	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
813 814 815
	/* Setup the put pointer for the unsolicited frame queue */
	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
	writel(frame_queue_put_value,
816
	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
817 818
}

819
static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
820
{
821
	if (ihost->sm.current_state_id == SCIC_STARTING) {
822 823 824 825
		/*
		 * We move into the ready state, because some of the phys/ports
		 * may be up and operational.
		 */
826
		sci_change_state(&ihost->sm, SCIC_READY);
827 828 829 830 831

		isci_host_start_complete(ihost, status);
	}
}

832
static bool is_phy_starting(struct isci_phy *iphy)
A
Adam Gruchala 已提交
833
{
834
	enum sci_phy_states state;
A
Adam Gruchala 已提交
835

836
	state = iphy->sm.current_state_id;
A
Adam Gruchala 已提交
837
	switch (state) {
E
Edmund Nadolski 已提交
838 839 840 841 842 843 844 845 846 847
	case SCI_PHY_STARTING:
	case SCI_PHY_SUB_INITIAL:
	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
	case SCI_PHY_SUB_AWAIT_IAF_UF:
	case SCI_PHY_SUB_AWAIT_SAS_POWER:
	case SCI_PHY_SUB_AWAIT_SATA_POWER:
	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
	case SCI_PHY_SUB_FINAL:
A
Adam Gruchala 已提交
848 849 850 851 852 853
		return true;
	default:
		return false;
	}
}

854
/**
855
 * sci_controller_start_next_phy - start phy
856 857 858 859
 * @scic: controller
 *
 * If all the phys have been started, then attempt to transition the
 * controller to the READY state and inform the user
860
 * (sci_cb_controller_start_complete()).
861
 */
862
static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
863
{
864
	struct sci_oem_params *oem = &ihost->oem_parameters;
865
	struct isci_phy *iphy;
866 867 868 869
	enum sci_status status;

	status = SCI_SUCCESS;

870
	if (ihost->phy_startup_timer_pending)
871 872
		return status;

873
	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
874 875 876 877 878
		bool is_controller_start_complete = true;
		u32 state;
		u8 index;

		for (index = 0; index < SCI_MAX_PHYS; index++) {
879 880
			iphy = &ihost->phys[index];
			state = iphy->sm.current_state_id;
881

882
			if (!phy_get_non_dummy_port(iphy))
883 884 885 886 887 888 889 890
				continue;

			/* The controller start operation is complete iff:
			 * - all links have been given an opportunity to start
			 * - have no indication of a connected device
			 * - have an indication of a connected device and it has
			 *   finished the link training process.
			 */
891 892
			if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
			    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
893 894
			    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
			    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) {
895 896 897 898 899 900 901 902 903
				is_controller_start_complete = false;
				break;
			}
		}

		/*
		 * The controller has successfully finished the start process.
		 * Inform the SCI Core user and transition to the READY state. */
		if (is_controller_start_complete == true) {
904
			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
905 906
			sci_del_timer(&ihost->phy_timer);
			ihost->phy_startup_timer_pending = false;
907 908
		}
	} else {
909
		iphy = &ihost->phys[ihost->next_phy_to_start];
910 911

		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
912
			if (phy_get_non_dummy_port(iphy) == NULL) {
913
				ihost->next_phy_to_start++;
914 915 916 917 918 919 920 921 922 923

				/* Caution recursion ahead be forwarned
				 *
				 * The PHY was never added to a PORT in MPC mode
				 * so start the next phy in sequence This phy
				 * will never go link up and will not draw power
				 * the OEM parameters either configured the phy
				 * incorrectly for the PORT or it was never
				 * assigned to a PORT
				 */
924
				return sci_controller_start_next_phy(ihost);
925 926 927
			}
		}

928
		status = sci_phy_start(iphy);
929 930

		if (status == SCI_SUCCESS) {
931
			sci_mod_timer(&ihost->phy_timer,
932
				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
933
			ihost->phy_startup_timer_pending = true;
934
		} else {
935
			dev_warn(&ihost->pdev->dev,
936 937 938 939
				 "%s: Controller stop operation failed "
				 "to stop phy %d because of status "
				 "%d.\n",
				 __func__,
940
				 ihost->phys[ihost->next_phy_to_start].phy_index,
941 942 943
				 status);
		}

944
		ihost->next_phy_to_start++;
945 946 947 948 949
	}

	return status;
}

950
static void phy_startup_timeout(unsigned long data)
951
{
952
	struct sci_timer *tmr = (struct sci_timer *)data;
953
	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
954
	unsigned long flags;
955 956
	enum sci_status status;

957 958 959 960 961
	spin_lock_irqsave(&ihost->scic_lock, flags);

	if (tmr->cancel)
		goto done;

962
	ihost->phy_startup_timer_pending = false;
963 964

	do {
965
		status = sci_controller_start_next_phy(ihost);
966 967 968 969
	} while (status != SCI_SUCCESS);

done:
	spin_unlock_irqrestore(&ihost->scic_lock, flags);
970 971
}

972 973 974 975 976
static u16 isci_tci_active(struct isci_host *ihost)
{
	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
}

977
static enum sci_status sci_controller_start(struct isci_host *ihost,
978 979 980 981 982
					     u32 timeout)
{
	enum sci_status result;
	u16 index;

983
	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
984 985
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
986 987 988 989
		return SCI_FAILURE_INVALID_STATE;
	}

	/* Build the TCi free pool */
990 991 992
	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
	ihost->tci_head = 0;
	ihost->tci_tail = 0;
993
	for (index = 0; index < ihost->task_context_entries; index++)
994
		isci_tci_free(ihost, index);
995 996

	/* Build the RNi free pool */
997 998
	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
					 ihost->remote_node_entries);
999 1000 1001 1002 1003

	/*
	 * Before anything else lets make sure we will not be
	 * interrupted by the hardware.
	 */
1004
	sci_controller_disable_interrupts(ihost);
1005 1006

	/* Enable the port task scheduler */
1007
	sci_controller_enable_port_task_scheduler(ihost);
1008

1009
	/* Assign all the task entries to ihost physical function */
1010
	sci_controller_assign_task_entries(ihost);
1011 1012

	/* Now initialize the completion queue */
1013
	sci_controller_initialize_completion_queue(ihost);
1014 1015

	/* Initialize the unsolicited frame queue for use */
1016
	sci_controller_initialize_unsolicited_frame_queue(ihost);
1017 1018

	/* Start all of the ports on this controller */
1019
	for (index = 0; index < ihost->logical_port_entries; index++) {
1020
		struct isci_port *iport = &ihost->ports[index];
1021

1022
		result = sci_port_start(iport);
1023 1024 1025 1026
		if (result)
			return result;
	}

1027
	sci_controller_start_next_phy(ihost);
1028

1029
	sci_mod_timer(&ihost->timer, timeout);
1030

1031
	sci_change_state(&ihost->sm, SCIC_STARTING);
1032 1033 1034 1035

	return SCI_SUCCESS;
}

1036 1037
void isci_host_scan_start(struct Scsi_Host *shost)
{
1038
	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1039
	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1040

1041
	set_bit(IHOST_START_PENDING, &ihost->flags);
1042 1043

	spin_lock_irq(&ihost->scic_lock);
1044 1045
	sci_controller_start(ihost, tmo);
	sci_controller_enable_interrupts(ihost);
1046
	spin_unlock_irq(&ihost->scic_lock);
1047 1048
}

D
Dan Williams 已提交
1049
static void isci_host_stop_complete(struct isci_host *ihost)
1050
{
1051
	sci_controller_disable_interrupts(ihost);
1052 1053
	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
	wake_up(&ihost->eventq);
1054 1055
}

1056
static void sci_controller_completion_handler(struct isci_host *ihost)
1057 1058
{
	/* Empty out the completion queue */
1059 1060
	if (sci_controller_completion_queue_has_entries(ihost))
		sci_controller_process_completions(ihost);
1061 1062

	/* Clear the interrupt and enable all interrupts again */
1063
	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1064
	/* Could we write the value of SMU_ISR_COMPLETION? */
1065 1066
	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
	writel(0, &ihost->smu_registers->interrupt_mask);
1067 1068
}

1069 1070 1071 1072 1073 1074 1075 1076
/**
 * isci_host_completion_routine() - This function is the delayed service
 *    routine that calls the sci core library's completion handler. It's
 *    scheduled as a tasklet from the interrupt service routine when interrupts
 *    in use, or set as the timeout function in polled mode.
 * @data: This parameter specifies the ISCI host object
 *
 */
1077
void isci_host_completion_routine(unsigned long data)
1078
{
1079
	struct isci_host *ihost = (struct isci_host *)data;
1080 1081 1082 1083
	struct list_head    completed_request_list;
	struct list_head    errored_request_list;
	struct list_head    *current_position;
	struct list_head    *next_position;
1084 1085
	struct isci_request *request;
	struct isci_request *next_request;
1086
	struct sas_task     *task;
1087
	u16 active;
1088 1089

	INIT_LIST_HEAD(&completed_request_list);
1090
	INIT_LIST_HEAD(&errored_request_list);
1091

1092
	spin_lock_irq(&ihost->scic_lock);
1093

1094
	sci_controller_completion_handler(ihost);
1095

1096
	/* Take the lists of completed I/Os from the host. */
1097

1098
	list_splice_init(&ihost->requests_to_complete,
1099 1100
			 &completed_request_list);

1101
	/* Take the list of errored I/Os from the host. */
1102
	list_splice_init(&ihost->requests_to_errorback,
1103
			 &errored_request_list);
1104

1105
	spin_unlock_irq(&ihost->scic_lock);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	/* Process any completions in the lists. */
	list_for_each_safe(current_position, next_position,
			   &completed_request_list) {

		request = list_entry(current_position, struct isci_request,
				     completed_node);
		task = isci_request_access_task(request);

		/* Normal notification (task_done) */
1116
		dev_dbg(&ihost->pdev->dev,
1117 1118 1119 1120 1121
			"%s: Normal - request/task = %p/%p\n",
			__func__,
			request,
			task);

1122 1123 1124 1125 1126
		/* Return the task to libsas */
		if (task != NULL) {

			task->lldd_task = NULL;
			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1127

1128 1129 1130 1131 1132 1133
				/* If the task is already in the abort path,
				* the task_done callback cannot be called.
				*/
				task->task_done(task);
			}
		}
1134

1135 1136 1137
		spin_lock_irq(&ihost->scic_lock);
		isci_free_tag(ihost, request->io_tag);
		spin_unlock_irq(&ihost->scic_lock);
1138
	}
1139
	list_for_each_entry_safe(request, next_request, &errored_request_list,
1140 1141 1142 1143 1144
				 completed_node) {

		task = isci_request_access_task(request);

		/* Use sas_task_abort */
1145
		dev_warn(&ihost->pdev->dev,
1146 1147 1148 1149 1150
			 "%s: Error - request/task = %p/%p\n",
			 __func__,
			 request,
			 task);

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		if (task != NULL) {

			/* Put the task into the abort path if it's not there
			 * already.
			 */
			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
				sas_task_abort(task);

		} else {
			/* This is a case where the request has completed with a
			 * status such that it needed further target servicing,
			 * but the sas_task reference has already been removed
			 * from the request.  Since it was errored, it was not
			 * being aborted, so there is nothing to do except free
			 * it.
			 */

1168
			spin_lock_irq(&ihost->scic_lock);
1169 1170 1171 1172
			/* Remove the request from the remote device's list
			* of pending requests.
			*/
			list_del_init(&request->dev_node);
1173 1174
			isci_free_tag(ihost, request->io_tag);
			spin_unlock_irq(&ihost->scic_lock);
1175
		}
1176 1177
	}

1178 1179 1180 1181 1182 1183 1184
	/* the coalesence timeout doubles at each encoding step, so
	 * update it based on the ilog2 value of the outstanding requests
	 */
	active = isci_tci_active(ihost);
	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
	       &ihost->smu_registers->interrupt_coalesce_control);
1185 1186
}

1187
/**
1188
 * sci_controller_stop() - This method will stop an individual controller
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
 *    object.This method will invoke the associated user callback upon
 *    completion.  The completion callback is called when the following
 *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
 *    controller has been quiesced. This method will ensure that all IO
 *    requests are quiesced, phys are stopped, and all additional operation by
 *    the hardware is halted.
 * @controller: the handle to the controller object to stop.
 * @timeout: This parameter specifies the number of milliseconds in which the
 *    stop operation should complete.
 *
 * The controller must be in the STARTED or STOPPED state. Indicate if the
 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
 * controller is not either in the STARTED or STOPPED states.
 */
1205
static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1206
{
1207
	if (ihost->sm.current_state_id != SCIC_READY) {
1208 1209
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
1210 1211
		return SCI_FAILURE_INVALID_STATE;
	}
1212

1213 1214
	sci_mod_timer(&ihost->timer, timeout);
	sci_change_state(&ihost->sm, SCIC_STOPPING);
1215 1216 1217 1218
	return SCI_SUCCESS;
}

/**
1219
 * sci_controller_reset() - This method will reset the supplied core
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
 *    controller regardless of the state of said controller.  This operation is
 *    considered destructive.  In other words, all current operations are wiped
 *    out.  No IO completions for outstanding devices occur.  Outstanding IO
 *    requests are not aborted or completed at the actual remote device.
 * @controller: the handle to the controller object to reset.
 *
 * Indicate if the controller reset method succeeded or failed in some way.
 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
 * the controller reset operation is unable to complete.
 */
1230
static enum sci_status sci_controller_reset(struct isci_host *ihost)
1231
{
1232
	switch (ihost->sm.current_state_id) {
E
Edmund Nadolski 已提交
1233 1234
	case SCIC_RESET:
	case SCIC_READY:
D
Dan Williams 已提交
1235
	case SCIC_STOPPING:
E
Edmund Nadolski 已提交
1236
	case SCIC_FAILED:
1237 1238 1239 1240
		/*
		 * The reset operation is not a graceful cleanup, just
		 * perform the state transition.
		 */
1241
		sci_change_state(&ihost->sm, SCIC_RESETTING);
1242 1243
		return SCI_SUCCESS;
	default:
1244 1245
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
1246 1247 1248 1249
		return SCI_FAILURE_INVALID_STATE;
	}
}

D
Dan Williams 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
{
	u32 index;
	enum sci_status status;
	enum sci_status phy_status;

	status = SCI_SUCCESS;

	for (index = 0; index < SCI_MAX_PHYS; index++) {
		phy_status = sci_phy_stop(&ihost->phys[index]);

		if (phy_status != SCI_SUCCESS &&
		    phy_status != SCI_FAILURE_INVALID_STATE) {
			status = SCI_FAILURE;

			dev_warn(&ihost->pdev->dev,
				 "%s: Controller stop operation failed to stop "
				 "phy %d because of status %d.\n",
				 __func__,
				 ihost->phys[index].phy_index, phy_status);
		}
	}

	return status;
}


/**
 * isci_host_deinit - shutdown frame reception and dma
 * @ihost: host to take down
 *
 * This is called in either the driver shutdown or the suspend path.  In
 * the shutdown case libsas went through port teardown and normal device
 * removal (i.e. physical links stayed up to service scsi_device removal
 * commands).  In the suspend case we disable the hardware without
 * notifying libsas of the link down events since we want libsas to
 * remember the domain across the suspend/resume cycle
 */
1288 1289 1290 1291
void isci_host_deinit(struct isci_host *ihost)
{
	int i;

1292 1293 1294 1295
	/* disable output data selects */
	for (i = 0; i < isci_gpio_count(ihost); i++)
		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);

1296
	set_bit(IHOST_STOP_PENDING, &ihost->flags);
D
Dan Williams 已提交
1297 1298

	spin_lock_irq(&ihost->scic_lock);
1299
	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
D
Dan Williams 已提交
1300 1301
	spin_unlock_irq(&ihost->scic_lock);

1302
	wait_for_stop(ihost);
1303

D
Dan Williams 已提交
1304 1305 1306 1307 1308 1309 1310
	/* phy stop is after controller stop to allow port and device to
	 * go idle before shutting down the phys, but the expectation is
	 * that i/o has been shut off well before we reach this
	 * function.
	 */
	sci_controller_stop_phys(ihost);

1311 1312 1313 1314 1315
	/* disable sgpio: where the above wait should give time for the
	 * enclosure to sample the gpios going inactive
	 */
	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);

1316
	sci_controller_reset(ihost);
1317 1318

	/* Cancel any/all outstanding port timers */
1319
	for (i = 0; i < ihost->logical_port_entries; i++) {
1320 1321
		struct isci_port *iport = &ihost->ports[i];
		del_timer_sync(&iport->timer.timer);
1322 1323
	}

1324 1325
	/* Cancel any/all outstanding phy timers */
	for (i = 0; i < SCI_MAX_PHYS; i++) {
1326 1327
		struct isci_phy *iphy = &ihost->phys[i];
		del_timer_sync(&iphy->sata_timer.timer);
1328 1329
	}

1330
	del_timer_sync(&ihost->port_agent.timer.timer);
1331

1332
	del_timer_sync(&ihost->power_control.timer.timer);
1333

1334
	del_timer_sync(&ihost->timer.timer);
1335

1336
	del_timer_sync(&ihost->phy_timer.timer);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
}

static void __iomem *scu_base(struct isci_host *isci_host)
{
	struct pci_dev *pdev = isci_host->pdev;
	int id = isci_host->id;

	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
}

static void __iomem *smu_base(struct isci_host *isci_host)
{
	struct pci_dev *pdev = isci_host->pdev;
	int id = isci_host->id;

	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
}

1355
static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1356
{
1357
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1358

1359
	sci_change_state(&ihost->sm, SCIC_RESET);
1360 1361
}

1362
static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1363
{
1364
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1365

1366
	sci_del_timer(&ihost->timer);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
}

#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
#define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
#define INTERRUPT_COALESCE_NUMBER_MAX                        256
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28

/**
1377
 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
 *    configure the interrupt coalescence.
 * @controller: This parameter represents the handle to the controller object
 *    for which its interrupt coalesce register is overridden.
 * @coalesce_number: Used to control the number of entries in the Completion
 *    Queue before an interrupt is generated. If the number of entries exceed
 *    this number, an interrupt will be generated. The valid range of the input
 *    is [0, 256]. A setting of 0 results in coalescing being disabled.
 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
 *    input is [0, 2700000] . A setting of 0 is allowed and results in no
 *    interrupt coalescing timeout.
 *
 * Indicate if the user successfully set the interrupt coalesce parameters.
 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
 */
1393
static enum sci_status
1394 1395 1396
sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
					 u32 coalesce_number,
					 u32 coalesce_timeout)
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
{
	u8 timeout_encode = 0;
	u32 min = 0;
	u32 max = 0;

	/* Check if the input parameters fall in the range. */
	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
		return SCI_FAILURE_INVALID_PARAMETER_VALUE;

	/*
	 *  Defined encoding for interrupt coalescing timeout:
	 *              Value   Min      Max     Units
	 *              -----   ---      ---     -----
	 *              0       -        -       Disabled
	 *              1       13.3     20.0    ns
	 *              2       26.7     40.0
	 *              3       53.3     80.0
	 *              4       106.7    160.0
	 *              5       213.3    320.0
	 *              6       426.7    640.0
	 *              7       853.3    1280.0
	 *              8       1.7      2.6     us
	 *              9       3.4      5.1
	 *              10      6.8      10.2
	 *              11      13.7     20.5
	 *              12      27.3     41.0
	 *              13      54.6     81.9
	 *              14      109.2    163.8
	 *              15      218.5    327.7
	 *              16      436.9    655.4
	 *              17      873.8    1310.7
	 *              18      1.7      2.6     ms
	 *              19      3.5      5.2
	 *              20      7.0      10.5
	 *              21      14.0     21.0
	 *              22      28.0     41.9
	 *              23      55.9     83.9
	 *              24      111.8    167.8
	 *              25      223.7    335.5
	 *              26      447.4    671.1
	 *              27      894.8    1342.2
	 *              28      1.8      2.7     s
	 *              Others Undefined */

	/*
	 * Use the table above to decide the encode of interrupt coalescing timeout
	 * value for register writing. */
	if (coalesce_timeout == 0)
		timeout_encode = 0;
	else{
		/* make the timeout value in unit of (10 ns). */
		coalesce_timeout = coalesce_timeout * 100;
		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;

		/* get the encode of timeout for register writing. */
		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
		      timeout_encode++) {
			if (min <= coalesce_timeout &&  max > coalesce_timeout)
				break;
			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
					break;
				else{
					timeout_encode++;
					break;
				}
			} else {
				max = max * 2;
				min = min * 2;
			}
		}

		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
			/* the value is out of range. */
			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
	}

	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1479
	       &ihost->smu_registers->interrupt_coalesce_control);
1480 1481


1482 1483
	ihost->interrupt_coalesce_number = (u16)coalesce_number;
	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1484 1485 1486 1487 1488

	return SCI_SUCCESS;
}


1489
static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1490
{
1491
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1492 1493 1494 1495 1496 1497 1498 1499 1500
	u32 val;

	/* enable clock gating for power control of the scu unit */
	val = readl(&ihost->smu_registers->clock_gating_control);
	val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
		 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
		 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
	val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
	writel(val, &ihost->smu_registers->clock_gating_control);
1501 1502

	/* set the default interrupt coalescence number and timeout value. */
1503
	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1504 1505
}

1506
static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1507
{
1508
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1509 1510

	/* disable interrupt coalescence. */
1511
	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1512 1513
}

1514
static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1515 1516 1517 1518 1519
{
	u32 index;
	enum sci_status port_status;
	enum sci_status status = SCI_SUCCESS;

1520
	for (index = 0; index < ihost->logical_port_entries; index++) {
1521
		struct isci_port *iport = &ihost->ports[index];
1522

1523
		port_status = sci_port_stop(iport);
1524 1525 1526 1527 1528

		if ((port_status != SCI_SUCCESS) &&
		    (port_status != SCI_FAILURE_INVALID_STATE)) {
			status = SCI_FAILURE;

1529
			dev_warn(&ihost->pdev->dev,
1530 1531 1532
				 "%s: Controller stop operation failed to "
				 "stop port %d because of status %d.\n",
				 __func__,
1533
				 iport->logical_port_index,
1534 1535 1536 1537 1538 1539 1540
				 port_status);
		}
	}

	return status;
}

1541
static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1542 1543 1544 1545 1546 1547 1548
{
	u32 index;
	enum sci_status status;
	enum sci_status device_status;

	status = SCI_SUCCESS;

1549 1550
	for (index = 0; index < ihost->remote_node_entries; index++) {
		if (ihost->device_table[index] != NULL) {
1551
			/* / @todo What timeout value do we want to provide to this request? */
1552
			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1553 1554 1555

			if ((device_status != SCI_SUCCESS) &&
			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1556
				dev_warn(&ihost->pdev->dev,
1557 1558 1559 1560
					 "%s: Controller stop operation failed "
					 "to stop device 0x%p because of "
					 "status %d.\n",
					 __func__,
1561
					 ihost->device_table[index], device_status);
1562 1563 1564 1565 1566 1567 1568
			}
		}
	}

	return status;
}

1569
static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1570
{
1571
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1572

1573
	sci_controller_stop_devices(ihost);
D
Dan Williams 已提交
1574 1575 1576 1577
	sci_controller_stop_ports(ihost);

	if (!sci_controller_has_remote_devices_stopping(ihost))
		isci_host_stop_complete(ihost);
1578 1579
}

1580
static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1581
{
1582
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1583

1584
	sci_del_timer(&ihost->timer);
1585 1586
}

1587
static void sci_controller_reset_hardware(struct isci_host *ihost)
1588 1589
{
	/* Disable interrupts so we dont take any spurious interrupts */
1590
	sci_controller_disable_interrupts(ihost);
1591 1592

	/* Reset the SCU */
1593
	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1594 1595 1596 1597 1598

	/* Delay for 1ms to before clearing the CQP and UFQPR. */
	udelay(1000);

	/* The write to the CQGR clears the CQP */
1599
	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1600 1601

	/* The write to the UFQGP clears the UFQPR */
1602
	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1603 1604
}

1605
static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1606
{
1607
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1608

1609
	sci_controller_reset_hardware(ihost);
1610
	sci_change_state(&ihost->sm, SCIC_RESET);
1611 1612
}

1613
static const struct sci_base_state sci_controller_state_table[] = {
E
Edmund Nadolski 已提交
1614
	[SCIC_INITIAL] = {
1615
		.enter_state = sci_controller_initial_state_enter,
1616
	},
E
Edmund Nadolski 已提交
1617 1618 1619 1620
	[SCIC_RESET] = {},
	[SCIC_INITIALIZING] = {},
	[SCIC_INITIALIZED] = {},
	[SCIC_STARTING] = {
1621
		.exit_state  = sci_controller_starting_state_exit,
1622
	},
E
Edmund Nadolski 已提交
1623
	[SCIC_READY] = {
1624 1625
		.enter_state = sci_controller_ready_state_enter,
		.exit_state  = sci_controller_ready_state_exit,
1626
	},
E
Edmund Nadolski 已提交
1627
	[SCIC_RESETTING] = {
1628
		.enter_state = sci_controller_resetting_state_enter,
1629
	},
E
Edmund Nadolski 已提交
1630
	[SCIC_STOPPING] = {
1631 1632
		.enter_state = sci_controller_stopping_state_enter,
		.exit_state = sci_controller_stopping_state_exit,
1633
	},
E
Edmund Nadolski 已提交
1634
	[SCIC_FAILED] = {}
1635 1636
};

1637 1638 1639
static void controller_timeout(unsigned long data)
{
	struct sci_timer *tmr = (struct sci_timer *)data;
1640 1641
	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
	struct sci_base_state_machine *sm = &ihost->sm;
1642 1643 1644 1645 1646 1647 1648
	unsigned long flags;

	spin_lock_irqsave(&ihost->scic_lock, flags);

	if (tmr->cancel)
		goto done;

E
Edmund Nadolski 已提交
1649
	if (sm->current_state_id == SCIC_STARTING)
1650
		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
E
Edmund Nadolski 已提交
1651 1652
	else if (sm->current_state_id == SCIC_STOPPING) {
		sci_change_state(sm, SCIC_FAILED);
D
Dan Williams 已提交
1653
		isci_host_stop_complete(ihost);
1654
	} else	/* / @todo Now what do we want to do in this case? */
1655
		dev_err(&ihost->pdev->dev,
1656 1657 1658
			"%s: Controller timer fired when controller was not "
			"in a state being timed.\n",
			__func__);
1659

1660 1661 1662
done:
	spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
1663

1664 1665 1666
static enum sci_status sci_controller_construct(struct isci_host *ihost,
						void __iomem *scu_base,
						void __iomem *smu_base)
1667 1668 1669
{
	u8 i;

1670
	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1671

1672 1673
	ihost->scu_registers = scu_base;
	ihost->smu_registers = smu_base;
1674

1675
	sci_port_configuration_agent_construct(&ihost->port_agent);
1676 1677 1678

	/* Construct the ports for this controller */
	for (i = 0; i < SCI_MAX_PORTS; i++)
1679 1680
		sci_port_construct(&ihost->ports[i], i, ihost);
	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1681 1682 1683 1684

	/* Construct the phys for this controller */
	for (i = 0; i < SCI_MAX_PHYS; i++) {
		/* Add all the PHYs to the dummy port */
1685 1686
		sci_phy_construct(&ihost->phys[i],
				  &ihost->ports[SCI_MAX_PORTS], i);
1687 1688
	}

1689
	ihost->invalid_phy_mask = 0;
1690

1691
	sci_init_timer(&ihost->timer, controller_timeout);
1692

1693
	return sci_controller_reset(ihost);
1694 1695
}

1696
int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
{
	int i;

	for (i = 0; i < SCI_MAX_PORTS; i++)
		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
			return -EINVAL;

	for (i = 0; i < SCI_MAX_PHYS; i++)
		if (oem->phys[i].sas_address.high == 0 &&
		    oem->phys[i].sas_address.low == 0)
			return -EINVAL;

	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
		for (i = 0; i < SCI_MAX_PHYS; i++)
			if (oem->ports[i].phy_mask != 0)
				return -EINVAL;
	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
		u8 phy_mask = 0;

		for (i = 0; i < SCI_MAX_PHYS; i++)
			phy_mask |= oem->ports[i].phy_mask;

		if (phy_mask == 0)
			return -EINVAL;
	} else
		return -EINVAL;

1724 1725
	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
	    oem->controller.max_concurr_spin_up < 1)
1726 1727
		return -EINVAL;

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	if (oem->controller.do_enable_ssc) {
		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
			return -EINVAL;

		if (version >= ISCI_ROM_VER_1_1) {
			u8 test = oem->controller.ssc_sata_tx_spread_level;

			switch (test) {
			case 0:
			case 2:
			case 3:
			case 6:
			case 7:
				break;
			default:
				return -EINVAL;
			}

			test = oem->controller.ssc_sas_tx_spread_level;
			if (oem->controller.ssc_sas_tx_type == 0) {
				switch (test) {
				case 0:
				case 2:
				case 3:
					break;
				default:
					return -EINVAL;
				}
			} else if (oem->controller.ssc_sas_tx_type == 1) {
				switch (test) {
				case 0:
				case 3:
				case 6:
					break;
				default:
					return -EINVAL;
				}
			}
		}
	}

1769 1770 1771
	return 0;
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static u8 max_spin_up(struct isci_host *ihost)
{
	if (ihost->user_parameters.max_concurr_spinup)
		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
	else
		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
}

1782
static void power_control_timeout(unsigned long data)
1783
{
1784
	struct sci_timer *tmr = (struct sci_timer *)data;
1785
	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1786
	struct isci_phy *iphy;
1787 1788
	unsigned long flags;
	u8 i;
1789

1790
	spin_lock_irqsave(&ihost->scic_lock, flags);
1791

1792 1793 1794
	if (tmr->cancel)
		goto done;

1795
	ihost->power_control.phys_granted_power = 0;
1796

1797 1798
	if (ihost->power_control.phys_waiting == 0) {
		ihost->power_control.timer_started = false;
1799
		goto done;
1800 1801
	}

1802
	for (i = 0; i < SCI_MAX_PHYS; i++) {
1803

1804
		if (ihost->power_control.phys_waiting == 0)
1805
			break;
1806

1807
		iphy = ihost->power_control.requesters[i];
1808
		if (iphy == NULL)
1809
			continue;
1810

1811
		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1812
			break;
1813

1814 1815 1816
		ihost->power_control.requesters[i] = NULL;
		ihost->power_control.phys_waiting--;
		ihost->power_control.phys_granted_power++;
1817
		sci_phy_consume_power_handler(iphy);
1818

1819
		if (iphy->protocol == SAS_PROTOCOL_SSP) {
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
			u8 j;

			for (j = 0; j < SCI_MAX_PHYS; j++) {
				struct isci_phy *requester = ihost->power_control.requesters[j];

				/*
				 * Search the power_control queue to see if there are other phys
				 * attached to the same remote device. If found, take all of
				 * them out of await_sas_power state.
				 */
				if (requester != NULL && requester != iphy) {
					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
							  iphy->frame_rcvd.iaf.sas_addr,
							  sizeof(requester->frame_rcvd.iaf.sas_addr));

					if (other == 0) {
						ihost->power_control.requesters[j] = NULL;
						ihost->power_control.phys_waiting--;
						sci_phy_consume_power_handler(requester);
					}
				}
			}
		}
1843
	}
1844 1845 1846 1847 1848 1849

	/*
	 * It doesn't matter if the power list is empty, we need to start the
	 * timer in case another phy becomes ready.
	 */
	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1850
	ihost->power_control.timer_started = true;
1851 1852 1853

done:
	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1854 1855
}

1856 1857
void sci_controller_power_control_queue_insert(struct isci_host *ihost,
					       struct isci_phy *iphy)
1858
{
1859
	BUG_ON(iphy == NULL);
1860

1861
	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1862
		ihost->power_control.phys_granted_power++;
1863
		sci_phy_consume_power_handler(iphy);
1864 1865 1866 1867 1868

		/*
		 * stop and start the power_control timer. When the timer fires, the
		 * no_of_phys_granted_power will be set to 0
		 */
1869 1870
		if (ihost->power_control.timer_started)
			sci_del_timer(&ihost->power_control.timer);
1871

1872
		sci_mod_timer(&ihost->power_control.timer,
1873
				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1874
		ihost->power_control.timer_started = true;
1875

1876
	} else {
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		/*
		 * There are phys, attached to the same sas address as this phy, are
		 * already in READY state, this phy don't need wait.
		 */
		u8 i;
		struct isci_phy *current_phy;

		for (i = 0; i < SCI_MAX_PHYS; i++) {
			u8 other;
			current_phy = &ihost->phys[i];

			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
				       iphy->frame_rcvd.iaf.sas_addr,
				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));

			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1893
			    current_phy->protocol == SAS_PROTOCOL_SSP &&
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
			    other == 0) {
				sci_phy_consume_power_handler(iphy);
				break;
			}
		}

		if (i == SCI_MAX_PHYS) {
			/* Add the phy in the waiting list */
			ihost->power_control.requesters[iphy->phy_index] = iphy;
			ihost->power_control.phys_waiting++;
		}
1905 1906 1907
	}
}

1908 1909
void sci_controller_power_control_queue_remove(struct isci_host *ihost,
					       struct isci_phy *iphy)
1910
{
1911
	BUG_ON(iphy == NULL);
1912

1913
	if (ihost->power_control.requesters[iphy->phy_index])
1914
		ihost->power_control.phys_waiting--;
1915

1916
	ihost->power_control.requesters[iphy->phy_index] = NULL;
1917 1918
}

1919 1920
static int is_long_cable(int phy, unsigned char selection_byte)
{
1921
	return !!(selection_byte & (1 << phy));
1922 1923 1924 1925
}

static int is_medium_cable(int phy, unsigned char selection_byte)
{
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	return !!(selection_byte & (1 << (phy + 4)));
}

static enum cable_selections decode_selection_byte(
	int phy,
	unsigned char selection_byte)
{
	return ((selection_byte & (1 << phy)) ? 1 : 0)
		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
}

static unsigned char *to_cable_select(struct isci_host *ihost)
{
	if (is_cable_select_overridden())
		return ((unsigned char *)&cable_selection_override)
			+ ihost->id;
	else
		return &ihost->oem_parameters.controller.cable_selection_mask;
}

enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
{
	return decode_selection_byte(phy, *to_cable_select(ihost));
}

char *lookup_cable_names(enum cable_selections selection)
{
	static char *cable_names[] = {
		[short_cable]     = "short",
		[long_cable]      = "long",
		[medium_cable]    = "medium",
		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
	};
	return (selection <= undefined_cable) ? cable_names[selection]
					      : cable_names[undefined_cable];
1961 1962
}

1963 1964
#define AFE_REGISTER_WRITE_DELAY 10

1965
static void sci_controller_afe_initialization(struct isci_host *ihost)
1966
{
1967
	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1968
	const struct sci_oem_params *oem = &ihost->oem_parameters;
1969
	struct pci_dev *pdev = ihost->pdev;
1970 1971
	u32 afe_status;
	u32 phy_id;
1972
	unsigned char cable_selection_mask = *to_cable_select(ihost);
1973 1974

	/* Clear DFX Status registers */
1975
	writel(0x0081000f, &afe->afe_dfx_master_control0);
1976 1977
	udelay(AFE_REGISTER_WRITE_DELAY);

1978
	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1979
		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1980 1981
		 * Timer, PM Stagger Timer
		 */
1982
		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1983 1984 1985 1986
		udelay(AFE_REGISTER_WRITE_DELAY);
	}

	/* Configure bias currents to normal */
1987
	if (is_a2(pdev))
1988
		writel(0x00005A00, &afe->afe_bias_control);
1989
	else if (is_b0(pdev) || is_c0(pdev))
1990
		writel(0x00005F00, &afe->afe_bias_control);
1991 1992
	else if (is_c1(pdev))
		writel(0x00005500, &afe->afe_bias_control);
1993 1994 1995 1996

	udelay(AFE_REGISTER_WRITE_DELAY);

	/* Enable PLL */
1997
	if (is_a2(pdev))
1998
		writel(0x80040908, &afe->afe_pll_control0);
1999 2000 2001 2002 2003 2004 2005 2006 2007
	else if (is_b0(pdev) || is_c0(pdev))
		writel(0x80040A08, &afe->afe_pll_control0);
	else if (is_c1(pdev)) {
		writel(0x80000B08, &afe->afe_pll_control0);
		udelay(AFE_REGISTER_WRITE_DELAY);
		writel(0x00000B08, &afe->afe_pll_control0);
		udelay(AFE_REGISTER_WRITE_DELAY);
		writel(0x80000B08, &afe->afe_pll_control0);
	}
2008 2009 2010 2011 2012

	udelay(AFE_REGISTER_WRITE_DELAY);

	/* Wait for the PLL to lock */
	do {
2013
		afe_status = readl(&afe->afe_common_block_status);
2014 2015 2016
		udelay(AFE_REGISTER_WRITE_DELAY);
	} while ((afe_status & 0x00001000) == 0);

2017
	if (is_a2(pdev)) {
2018 2019 2020 2021
		/* Shorten SAS SNW lock time (RxLock timer value from 76
		 * us to 50 us)
		 */
		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
2022 2023 2024 2025
		udelay(AFE_REGISTER_WRITE_DELAY);
	}

	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2026
		struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id];
2027
		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		int cable_length_long =
			is_long_cable(phy_id, cable_selection_mask);
		int cable_length_medium =
			is_medium_cable(phy_id, cable_selection_mask);

		if (is_a2(pdev)) {
			/* All defaults, except the Receive Word
			 * Alignament/Comma Detect Enable....(0xe800)
			 */
			writel(0x00004512, &xcvr->afe_xcvr_control0);
			udelay(AFE_REGISTER_WRITE_DELAY);
2039

2040 2041 2042 2043
			writel(0x0050100F, &xcvr->afe_xcvr_control1);
			udelay(AFE_REGISTER_WRITE_DELAY);
		} else if (is_b0(pdev)) {
			/* Configure transmitter SSC parameters */
2044
			writel(0x00030000, &xcvr->afe_tx_ssc_control);
2045
			udelay(AFE_REGISTER_WRITE_DELAY);
2046
		} else if (is_c0(pdev)) {
2047 2048
			/* Configure transmitter SSC parameters */
			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2049 2050
			udelay(AFE_REGISTER_WRITE_DELAY);

2051 2052 2053
			/* All defaults, except the Receive Word
			 * Alignament/Comma Detect Enable....(0xe800)
			 */
2054
			writel(0x00014500, &xcvr->afe_xcvr_control0);
2055
			udelay(AFE_REGISTER_WRITE_DELAY);
2056 2057 2058 2059 2060
		} else if (is_c1(pdev)) {
			/* Configure transmitter SSC parameters */
			writel(0x00010202, &xcvr->afe_tx_ssc_control);
			udelay(AFE_REGISTER_WRITE_DELAY);

2061 2062 2063
			/* All defaults, except the Receive Word
			 * Alignament/Comma Detect Enable....(0xe800)
			 */
2064
			writel(0x0001C500, &xcvr->afe_xcvr_control0);
2065 2066 2067
			udelay(AFE_REGISTER_WRITE_DELAY);
		}

2068 2069
		/* Power up TX and RX out from power down (PWRDNTX and
		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2070
		 */
2071
		if (is_a2(pdev))
2072
			writel(0x000003F0, &xcvr->afe_channel_control);
2073
		else if (is_b0(pdev)) {
2074
			writel(0x000003D7, &xcvr->afe_channel_control);
2075
			udelay(AFE_REGISTER_WRITE_DELAY);
2076

2077
			writel(0x000003D4, &xcvr->afe_channel_control);
2078
		} else if (is_c0(pdev)) {
2079
			writel(0x000001E7, &xcvr->afe_channel_control);
2080
			udelay(AFE_REGISTER_WRITE_DELAY);
2081

2082
			writel(0x000001E4, &xcvr->afe_channel_control);
2083 2084 2085 2086 2087 2088 2089
		} else if (is_c1(pdev)) {
			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
			       &xcvr->afe_channel_control);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
			       &xcvr->afe_channel_control);
2090 2091 2092
		}
		udelay(AFE_REGISTER_WRITE_DELAY);

2093
		if (is_a2(pdev)) {
2094
			/* Enable TX equalization (0xe824) */
2095
			writel(0x00040000, &xcvr->afe_tx_control);
2096 2097 2098
			udelay(AFE_REGISTER_WRITE_DELAY);
		}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
		if (is_a2(pdev) || is_b0(pdev))
			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
			 * Enabled) ....(0xe800)
			 */
			writel(0x00004100, &xcvr->afe_xcvr_control0);
		else if (is_c0(pdev))
			writel(0x00014100, &xcvr->afe_xcvr_control0);
		else if (is_c1(pdev))
			writel(0x0001C100, &xcvr->afe_xcvr_control0);
2109 2110 2111
		udelay(AFE_REGISTER_WRITE_DELAY);

		/* Leave DFE/FFE on */
2112
		if (is_a2(pdev))
2113
			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2114
		else if (is_b0(pdev)) {
2115
			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2116
			udelay(AFE_REGISTER_WRITE_DELAY);
2117
			/* Enable TX equalization (0xe824) */
2118
			writel(0x00040000, &xcvr->afe_tx_control);
2119 2120
		} else if (is_c0(pdev)) {
			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2121 2122
			udelay(AFE_REGISTER_WRITE_DELAY);

2123
			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2124
			udelay(AFE_REGISTER_WRITE_DELAY);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

			/* Enable TX equalization (0xe824) */
			writel(0x00040000, &xcvr->afe_tx_control);
		} else if (is_c1(pdev)) {
			writel(cable_length_long ? 0x01500C0C :
			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
			       &xcvr->afe_xcvr_control1);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(cable_length_long ? 0x33091C1F :
			       cable_length_medium ? 0x3315181F : 0x2B17161F,
			       &xcvr->afe_rx_ssc_control0);
			udelay(AFE_REGISTER_WRITE_DELAY);
2141

2142
			/* Enable TX equalization (0xe824) */
2143
			writel(0x00040000, &xcvr->afe_tx_control);
2144
		}
2145

2146 2147
		udelay(AFE_REGISTER_WRITE_DELAY);

2148
		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2149 2150
		udelay(AFE_REGISTER_WRITE_DELAY);

2151
		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2152 2153
		udelay(AFE_REGISTER_WRITE_DELAY);

2154
		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2155 2156
		udelay(AFE_REGISTER_WRITE_DELAY);

2157
		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2158 2159 2160 2161
		udelay(AFE_REGISTER_WRITE_DELAY);
	}

	/* Transfer control to the PEs */
2162
	writel(0x00010f00, &afe->afe_dfx_master_control0);
2163 2164 2165
	udelay(AFE_REGISTER_WRITE_DELAY);
}

2166
static void sci_controller_initialize_power_control(struct isci_host *ihost)
2167
{
2168
	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2169

2170 2171
	memset(ihost->power_control.requesters, 0,
	       sizeof(ihost->power_control.requesters));
2172

2173 2174
	ihost->power_control.phys_waiting = 0;
	ihost->power_control.phys_granted_power = 0;
2175 2176
}

2177
static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2178
{
2179
	struct sci_base_state_machine *sm = &ihost->sm;
2180 2181
	enum sci_status result = SCI_FAILURE;
	unsigned long i, state, val;
2182

2183
	if (ihost->sm.current_state_id != SCIC_RESET) {
2184 2185
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
2186 2187 2188
		return SCI_FAILURE_INVALID_STATE;
	}

E
Edmund Nadolski 已提交
2189
	sci_change_state(sm, SCIC_INITIALIZING);
2190

2191
	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2192

2193 2194
	ihost->next_phy_to_start = 0;
	ihost->phy_startup_timer_pending = false;
2195

2196
	sci_controller_initialize_power_control(ihost);
2197 2198 2199 2200 2201 2202

	/*
	 * There is nothing to do here for B0 since we do not have to
	 * program the AFE registers.
	 * / @todo The AFE settings are supposed to be correct for the B0 but
	 * /       presently they seem to be wrong. */
2203
	sci_controller_afe_initialization(ihost);
2204 2205


2206
	/* Take the hardware out of reset */
2207
	writel(0, &ihost->smu_registers->soft_reset_control);
2208

2209 2210 2211 2212 2213
	/*
	 * / @todo Provide meaningfull error code for hardware failure
	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
	for (i = 100; i >= 1; i--) {
		u32 status;
2214

2215 2216
		/* Loop until the hardware reports success */
		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2217
		status = readl(&ihost->smu_registers->control_status);
2218

2219 2220 2221 2222 2223
		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
			break;
	}
	if (i == 0)
		goto out;
2224

2225 2226 2227
	/*
	 * Determine what are the actaul device capacities that the
	 * hardware will support */
2228
	val = readl(&ihost->smu_registers->device_context_capacity);
2229

2230
	/* Record the smaller of the two capacity values */
2231 2232 2233
	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2234

2235 2236 2237 2238
	/*
	 * Make all PEs that are unassigned match up with the
	 * logical ports
	 */
2239
	for (i = 0; i < ihost->logical_port_entries; i++) {
2240
		struct scu_port_task_scheduler_group_registers __iomem
2241
			*ptsg = &ihost->scu_registers->peg0.ptsg;
2242

2243
		writel(i, &ptsg->protocol_engine[i]);
2244 2245 2246
	}

	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2247
	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2248
	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2249
	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2250

2251
	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2252
	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2253
	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2254 2255 2256 2257 2258

	/*
	 * Initialize the PHYs before the PORTs because the PHY registers
	 * are accessed during the port initialization.
	 */
2259
	for (i = 0; i < SCI_MAX_PHYS; i++) {
2260 2261 2262
		result = sci_phy_initialize(&ihost->phys[i],
					    &ihost->scu_registers->peg0.pe[i].tl,
					    &ihost->scu_registers->peg0.pe[i].ll);
2263 2264
		if (result != SCI_SUCCESS)
			goto out;
2265 2266
	}

2267
	for (i = 0; i < ihost->logical_port_entries; i++) {
2268
		struct isci_port *iport = &ihost->ports[i];
2269

2270 2271 2272
		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2273 2274
	}

2275
	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2276

2277
 out:
2278 2279
	/* Advance the controller state machine */
	if (result == SCI_SUCCESS)
E
Edmund Nadolski 已提交
2280
		state = SCIC_INITIALIZED;
2281
	else
E
Edmund Nadolski 已提交
2282 2283
		state = SCIC_FAILED;
	sci_change_state(sm, state);
2284 2285 2286 2287

	return result;
}

2288
static int sci_controller_dma_alloc(struct isci_host *ihost)
2289
{
2290
	struct device *dev = &ihost->pdev->dev;
2291
	size_t size;
2292 2293 2294 2295 2296
	int i;

	/* detect re-initialization */
	if (ihost->completion_queue)
		return 0;
2297

2298
	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2299 2300
	ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
						      GFP_KERNEL);
2301
	if (!ihost->completion_queue)
2302 2303
		return -ENOMEM;

2304
	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2305
	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2306
							       GFP_KERNEL);
2307

2308
	if (!ihost->remote_node_context_table)
2309 2310
		return -ENOMEM;

2311
	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2312 2313
	ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
							GFP_KERNEL);
2314
	if (!ihost->task_context_table)
2315 2316
		return -ENOMEM;

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	size = SCI_UFI_TOTAL_SIZE;
	ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
	if (!ihost->ufi_buf)
		return -ENOMEM;

	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
		struct isci_request *ireq;
		dma_addr_t dma;

		ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
		if (!ireq)
			return -ENOMEM;

		ireq->tc = &ihost->task_context_table[i];
		ireq->owning_controller = ihost;
		spin_lock_init(&ireq->state_lock);
		ireq->request_daddr = dma;
		ireq->isci_host = ihost;
		ihost->reqs[i] = ireq;
	}

	return 0;
}

static int sci_controller_mem_init(struct isci_host *ihost)
{
	int err = sci_controller_dma_alloc(ihost);
2344

2345 2346
	if (err)
		return err;
2347

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
	writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);

	writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
	writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);

	writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
	writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);

	sci_unsolicited_frame_control_construct(ihost);

2359 2360 2361 2362
	/*
	 * Inform the silicon as to the location of the UF headers and
	 * address table.
	 */
2363 2364 2365 2366
	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
		&ihost->scu_registers->sdma.uf_header_base_address_lower);
	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2367

2368 2369 2370 2371
	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
		&ihost->scu_registers->sdma.uf_address_table_lower);
	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
		&ihost->scu_registers->sdma.uf_address_table_upper);
2372 2373 2374 2375

	return 0;
}

2376 2377 2378 2379 2380 2381 2382 2383
/**
 * isci_host_init - (re-)initialize hardware and internal (private) state
 * @ihost: host to init
 *
 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
 * one-time initialization objects like locks and waitqueues, are
 * not touched (they are initialized in isci_host_alloc)
 */
2384
int isci_host_init(struct isci_host *ihost)
2385
{
2386
	int i, err;
2387 2388
	enum sci_status status;

2389
	status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2390
	if (status != SCI_SUCCESS) {
2391
		dev_err(&ihost->pdev->dev,
2392
			"%s: sci_controller_construct failed - status = %x\n",
2393 2394
			__func__,
			status);
2395
		return -ENODEV;
2396 2397
	}

2398
	spin_lock_irq(&ihost->scic_lock);
2399
	status = sci_controller_initialize(ihost);
2400
	spin_unlock_irq(&ihost->scic_lock);
2401
	if (status != SCI_SUCCESS) {
2402
		dev_warn(&ihost->pdev->dev,
2403
			 "%s: sci_controller_initialize failed -"
2404 2405
			 " status = 0x%x\n",
			 __func__, status);
2406
		return -ENODEV;
2407 2408
	}

2409
	err = sci_controller_mem_init(ihost);
2410
	if (err)
2411
		return err;
2412

2413 2414 2415 2416 2417 2418
	/* enable sgpio */
	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
	for (i = 0; i < isci_gpio_count(ihost); i++)
		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);

2419
	return 0;
2420
}
2421

2422 2423
void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
			    struct isci_phy *iphy)
2424
{
2425
	switch (ihost->sm.current_state_id) {
E
Edmund Nadolski 已提交
2426
	case SCIC_STARTING:
2427 2428 2429
		sci_del_timer(&ihost->phy_timer);
		ihost->phy_startup_timer_pending = false;
		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2430 2431
						  iport, iphy);
		sci_controller_start_next_phy(ihost);
2432
		break;
E
Edmund Nadolski 已提交
2433
	case SCIC_READY:
2434
		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2435
						  iport, iphy);
2436 2437
		break;
	default:
2438
		dev_dbg(&ihost->pdev->dev,
2439
			"%s: SCIC Controller linkup event from phy %d in "
2440
			"unexpected state %d\n", __func__, iphy->phy_index,
2441
			ihost->sm.current_state_id);
2442 2443 2444
	}
}

2445 2446
void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
			      struct isci_phy *iphy)
2447
{
2448
	switch (ihost->sm.current_state_id) {
E
Edmund Nadolski 已提交
2449 2450
	case SCIC_STARTING:
	case SCIC_READY:
2451
		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2452
						   iport, iphy);
2453 2454
		break;
	default:
2455
		dev_dbg(&ihost->pdev->dev,
2456 2457 2458
			"%s: SCIC Controller linkdown event from phy %d in "
			"unexpected state %d\n",
			__func__,
2459
			iphy->phy_index,
2460
			ihost->sm.current_state_id);
2461 2462 2463
	}
}

D
Dan Williams 已提交
2464
bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2465 2466 2467
{
	u32 index;

2468 2469 2470
	for (index = 0; index < ihost->remote_node_entries; index++) {
		if ((ihost->device_table[index] != NULL) &&
		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2471 2472 2473 2474 2475 2476
			return true;
	}

	return false;
}

2477 2478
void sci_controller_remote_device_stopped(struct isci_host *ihost,
					  struct isci_remote_device *idev)
2479
{
2480 2481
	if (ihost->sm.current_state_id != SCIC_STOPPING) {
		dev_dbg(&ihost->pdev->dev,
2482 2483
			"SCIC Controller 0x%p remote device stopped event "
			"from device 0x%p in unexpected state %d\n",
2484 2485
			ihost, idev,
			ihost->sm.current_state_id);
2486 2487 2488
		return;
	}

2489
	if (!sci_controller_has_remote_devices_stopping(ihost))
D
Dan Williams 已提交
2490
		isci_host_stop_complete(ihost);
2491 2492
}

2493
void sci_controller_post_request(struct isci_host *ihost, u32 request)
2494
{
2495 2496
	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
		__func__, ihost->id, request);
2497

2498
	writel(request, &ihost->smu_registers->post_context_port);
2499 2500
}

2501
struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2502 2503 2504 2505
{
	u16 task_index;
	u16 task_sequence;

D
Dan Williams 已提交
2506
	task_index = ISCI_TAG_TCI(io_tag);
2507

2508 2509
	if (task_index < ihost->task_context_entries) {
		struct isci_request *ireq = ihost->reqs[task_index];
D
Dan Williams 已提交
2510 2511

		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
D
Dan Williams 已提交
2512
			task_sequence = ISCI_TAG_SEQ(io_tag);
2513

2514
			if (task_sequence == ihost->io_request_sequence[task_index])
2515
				return ireq;
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
		}
	}

	return NULL;
}

/**
 * This method allocates remote node index and the reserves the remote node
 *    context space for use. This method can fail if there are no more remote
 *    node index available.
 * @scic: This is the controller object which contains the set of
 *    free remote node ids
 * @sci_dev: This is the device object which is requesting the a remote node
 *    id
 * @node_id: This is the remote node id that is assinged to the device if one
 *    is available
 *
 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
 * node index available.
 */
2536 2537 2538
enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
							    struct isci_remote_device *idev,
							    u16 *node_id)
2539 2540
{
	u16 node_index;
2541
	u32 remote_node_count = sci_remote_device_node_count(idev);
2542

2543
	node_index = sci_remote_node_table_allocate_remote_node(
2544
		&ihost->available_remote_nodes, remote_node_count
2545 2546 2547
		);

	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2548
		ihost->device_table[node_index] = idev;
2549 2550 2551 2552 2553 2554 2555 2556 2557

		*node_id = node_index;

		return SCI_SUCCESS;
	}

	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}

2558 2559 2560
void sci_controller_free_remote_node_context(struct isci_host *ihost,
					     struct isci_remote_device *idev,
					     u16 node_id)
2561
{
2562
	u32 remote_node_count = sci_remote_device_node_count(idev);
2563

2564 2565
	if (ihost->device_table[node_id] == idev) {
		ihost->device_table[node_id] = NULL;
2566

2567
		sci_remote_node_table_release_remote_node_index(
2568
			&ihost->available_remote_nodes, remote_node_count, node_id
2569 2570 2571 2572
			);
	}
}

2573 2574 2575
void sci_controller_copy_sata_response(void *response_buffer,
				       void *frame_header,
				       void *frame_buffer)
2576
{
2577
	/* XXX type safety? */
2578 2579 2580 2581 2582 2583 2584
	memcpy(response_buffer, frame_header, sizeof(u32));

	memcpy(response_buffer + sizeof(u32),
	       frame_buffer,
	       sizeof(struct dev_to_host_fis) - sizeof(u32));
}

2585
void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2586
{
2587
	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2588 2589
		writel(ihost->uf_control.get,
			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2590 2591
}

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
void isci_tci_free(struct isci_host *ihost, u16 tci)
{
	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);

	ihost->tci_pool[tail] = tci;
	ihost->tci_tail = tail + 1;
}

static u16 isci_tci_alloc(struct isci_host *ihost)
{
	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
	u16 tci = ihost->tci_pool[head];

	ihost->tci_head = head + 1;
	return tci;
}

static u16 isci_tci_space(struct isci_host *ihost)
{
	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
}

u16 isci_alloc_tag(struct isci_host *ihost)
{
	if (isci_tci_space(ihost)) {
		u16 tci = isci_tci_alloc(ihost);
2618
		u8 seq = ihost->io_request_sequence[tci];
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634

		return ISCI_TAG(seq, tci);
	}

	return SCI_CONTROLLER_INVALID_IO_TAG;
}

enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
{
	u16 tci = ISCI_TAG_TCI(io_tag);
	u16 seq = ISCI_TAG_SEQ(io_tag);

	/* prevent tail from passing head */
	if (isci_tci_active(ihost) == 0)
		return SCI_FAILURE_INVALID_IO_TAG;

2635 2636
	if (seq == ihost->io_request_sequence[tci]) {
		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2637 2638 2639 2640 2641 2642 2643 2644

		isci_tci_free(ihost, tci);

		return SCI_SUCCESS;
	}
	return SCI_FAILURE_INVALID_IO_TAG;
}

2645 2646 2647
enum sci_status sci_controller_start_io(struct isci_host *ihost,
					struct isci_remote_device *idev,
					struct isci_request *ireq)
2648 2649 2650
{
	enum sci_status status;

2651
	if (ihost->sm.current_state_id != SCIC_READY) {
2652 2653
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
2654 2655 2656
		return SCI_FAILURE_INVALID_STATE;
	}

2657
	status = sci_remote_device_start_io(ihost, idev, ireq);
2658 2659 2660
	if (status != SCI_SUCCESS)
		return status;

2661
	set_bit(IREQ_ACTIVE, &ireq->flags);
D
Dan Williams 已提交
2662
	sci_controller_post_request(ihost, ireq->post_context);
2663 2664 2665
	return SCI_SUCCESS;
}

2666 2667 2668
enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
						 struct isci_remote_device *idev,
						 struct isci_request *ireq)
2669
{
2670 2671 2672 2673
	/* terminate an ongoing (i.e. started) core IO request.  This does not
	 * abort the IO request at the target, but rather removes the IO
	 * request from the host controller.
	 */
2674 2675
	enum sci_status status;

2676
	if (ihost->sm.current_state_id != SCIC_READY) {
2677 2678
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
2679 2680 2681
		return SCI_FAILURE_INVALID_STATE;
	}

2682
	status = sci_io_request_terminate(ireq);
2683 2684 2685 2686 2687 2688 2689
	if (status != SCI_SUCCESS)
		return status;

	/*
	 * Utilize the original post context command and or in the POST_TC_ABORT
	 * request sub-type.
	 */
2690 2691
	sci_controller_post_request(ihost,
				    ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2692 2693 2694 2695
	return SCI_SUCCESS;
}

/**
2696
 * sci_controller_complete_io() - This method will perform core specific
2697 2698 2699
 *    completion operations for an IO request.  After this method is invoked,
 *    the user should consider the IO request as invalid until it is properly
 *    reused (i.e. re-constructed).
2700
 * @ihost: The handle to the controller object for which to complete the
2701
 *    IO request.
2702
 * @idev: The handle to the remote device object for which to complete
2703
 *    the IO request.
2704
 * @ireq: the handle to the io request object to complete.
2705
 */
2706 2707 2708
enum sci_status sci_controller_complete_io(struct isci_host *ihost,
					   struct isci_remote_device *idev,
					   struct isci_request *ireq)
2709 2710 2711 2712
{
	enum sci_status status;
	u16 index;

2713
	switch (ihost->sm.current_state_id) {
E
Edmund Nadolski 已提交
2714
	case SCIC_STOPPING:
2715 2716
		/* XXX: Implement this function */
		return SCI_FAILURE;
E
Edmund Nadolski 已提交
2717
	case SCIC_READY:
2718
		status = sci_remote_device_complete_io(ihost, idev, ireq);
2719 2720 2721
		if (status != SCI_SUCCESS)
			return status;

2722 2723
		index = ISCI_TAG_TCI(ireq->io_tag);
		clear_bit(IREQ_ACTIVE, &ireq->flags);
2724 2725
		return SCI_SUCCESS;
	default:
2726 2727
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
2728 2729 2730 2731 2732
		return SCI_FAILURE_INVALID_STATE;
	}

}

2733
enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2734
{
2735
	struct isci_host *ihost = ireq->owning_controller;
2736

2737
	if (ihost->sm.current_state_id != SCIC_READY) {
2738 2739
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
2740 2741 2742
		return SCI_FAILURE_INVALID_STATE;
	}

2743
	set_bit(IREQ_ACTIVE, &ireq->flags);
D
Dan Williams 已提交
2744
	sci_controller_post_request(ihost, ireq->post_context);
2745 2746 2747 2748
	return SCI_SUCCESS;
}

/**
2749
 * sci_controller_start_task() - This method is called by the SCIC user to
2750 2751 2752 2753 2754 2755 2756
 *    send/start a framework task management request.
 * @controller: the handle to the controller object for which to start the task
 *    management request.
 * @remote_device: the handle to the remote device object for which to start
 *    the task management request.
 * @task_request: the handle to the task request object to start.
 */
2757 2758 2759
enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
					       struct isci_remote_device *idev,
					       struct isci_request *ireq)
2760 2761 2762
{
	enum sci_status status;

2763 2764
	if (ihost->sm.current_state_id != SCIC_READY) {
		dev_warn(&ihost->pdev->dev,
2765 2766 2767 2768 2769 2770
			 "%s: SCIC Controller starting task from invalid "
			 "state\n",
			 __func__);
		return SCI_TASK_FAILURE_INVALID_STATE;
	}

2771
	status = sci_remote_device_start_task(ihost, idev, ireq);
2772 2773
	switch (status) {
	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
D
Dan Williams 已提交
2774
		set_bit(IREQ_ACTIVE, &ireq->flags);
2775 2776 2777 2778 2779 2780 2781 2782

		/*
		 * We will let framework know this task request started successfully,
		 * although core is still woring on starting the request (to post tc when
		 * RNC is resumed.)
		 */
		return SCI_SUCCESS;
	case SCI_SUCCESS:
D
Dan Williams 已提交
2783
		set_bit(IREQ_ACTIVE, &ireq->flags);
D
Dan Williams 已提交
2784
		sci_controller_post_request(ihost, ireq->post_context);
2785 2786 2787 2788 2789 2790 2791
		break;
	default:
		break;
	}

	return status;
}
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
{
	int d;

	/* no support for TX_GP_CFG */
	if (reg_index == 0)
		return -EINVAL;

	for (d = 0; d < isci_gpio_count(ihost); d++) {
		u32 val = 0x444; /* all ODx.n clear */
		int i;

		for (i = 0; i < 3; i++) {
			int bit = (i << 2) + 2;

			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
						       write_data, reg_index,
						       reg_count);
			if (bit < 0)
				break;

			/* if od is set, clear the 'invert' bit */
			val &= ~(bit << ((i << 2) + 2));
		}

		if (i < 3)
			break;
		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
	}

	/* unless reg_index is > 1, we should always be able to write at
	 * least one register
	 */
	return d > 0;
}

int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
		    u8 reg_count, u8 *write_data)
{
	struct isci_host *ihost = sas_ha->lldd_ha;
	int written;

	switch (reg_type) {
	case SAS_GPIO_REG_TX_GP:
		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
		break;
	default:
		written = -EINVAL;
	}

	return written;
}