bcm_sf2_cfp.c 31.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Broadcom Starfighter 2 DSA switch CFP support
 *
 * Copyright (C) 2016, Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/in.h>
16 17
#include <linux/netdevice.h>
#include <net/dsa.h>
18 19 20 21 22
#include <linux/bitmap.h>

#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"

23 24
struct cfp_udf_slice_layout {
	u8 slices[UDFS_PER_SLICE];
25
	u32 mask_value;
26 27
	u32 base_offset;
};
28

29 30
struct cfp_udf_layout {
	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
31 32
};

33 34
static const u8 zero_slice[UDFS_PER_SLICE] = { };

35 36
/* UDF slices layout for a TCPv4/UDPv4 specification */
static const struct cfp_udf_layout udf_tcpip4_layout = {
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	.udfs = {
		[1] = {
			.slices = {
				/* End of L2, byte offset 12, src IP[0:15] */
				CFG_UDF_EOL2 | 6,
				/* End of L2, byte offset 14, src IP[16:31] */
				CFG_UDF_EOL2 | 7,
				/* End of L2, byte offset 16, dst IP[0:15] */
				CFG_UDF_EOL2 | 8,
				/* End of L2, byte offset 18, dst IP[16:31] */
				CFG_UDF_EOL2 | 9,
				/* End of L3, byte offset 0, src port */
				CFG_UDF_EOL3 | 0,
				/* End of L3, byte offset 2, dst port */
				CFG_UDF_EOL3 | 1,
				0, 0, 0
			},
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
		},
57 58 59
	},
};

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* UDF slices layout for a TCPv6/UDPv6 specification */
static const struct cfp_udf_layout udf_tcpip6_layout = {
	.udfs = {
		[0] = {
			.slices = {
				/* End of L2, byte offset 8, src IP[0:15] */
				CFG_UDF_EOL2 | 4,
				/* End of L2, byte offset 10, src IP[16:31] */
				CFG_UDF_EOL2 | 5,
				/* End of L2, byte offset 12, src IP[32:47] */
				CFG_UDF_EOL2 | 6,
				/* End of L2, byte offset 14, src IP[48:63] */
				CFG_UDF_EOL2 | 7,
				/* End of L2, byte offset 16, src IP[64:79] */
				CFG_UDF_EOL2 | 8,
				/* End of L2, byte offset 18, src IP[80:95] */
				CFG_UDF_EOL2 | 9,
				/* End of L2, byte offset 20, src IP[96:111] */
				CFG_UDF_EOL2 | 10,
				/* End of L2, byte offset 22, src IP[112:127] */
				CFG_UDF_EOL2 | 11,
				/* End of L3, byte offset 0, src port */
				CFG_UDF_EOL3 | 0,
			},
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
		},
		[3] = {
			.slices = {
				/* End of L2, byte offset 24, dst IP[0:15] */
				CFG_UDF_EOL2 | 12,
				/* End of L2, byte offset 26, dst IP[16:31] */
				CFG_UDF_EOL2 | 13,
				/* End of L2, byte offset 28, dst IP[32:47] */
				CFG_UDF_EOL2 | 14,
				/* End of L2, byte offset 30, dst IP[48:63] */
				CFG_UDF_EOL2 | 15,
				/* End of L2, byte offset 32, dst IP[64:79] */
				CFG_UDF_EOL2 | 16,
				/* End of L2, byte offset 34, dst IP[80:95] */
				CFG_UDF_EOL2 | 17,
				/* End of L2, byte offset 36, dst IP[96:111] */
				CFG_UDF_EOL2 | 18,
				/* End of L2, byte offset 38, dst IP[112:127] */
				CFG_UDF_EOL2 | 19,
				/* End of L3, byte offset 2, dst port */
				CFG_UDF_EOL3 | 1,
			},
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
		},
	},
};

114 115 116 117
static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
{
	unsigned int i, count = 0;

118
	for (i = 0; i < UDFS_PER_SLICE; i++) {
119 120 121 122 123 124 125
		if (layout[i] != 0)
			count++;
	}

	return count;
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline u32 udf_upper_bits(unsigned int num_udf)
{
	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
}

static inline u32 udf_lower_bits(unsigned int num_udf)
{
	return (u8)GENMASK(num_udf - 1, 0);
}

static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
					     unsigned int start)
{
	const struct cfp_udf_slice_layout *slice_layout;
	unsigned int slice_idx;

	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
		slice_layout = &l->udfs[slice_idx];
		if (memcmp(slice_layout->slices, zero_slice,
			   sizeof(zero_slice)))
			break;
	}

	return slice_idx;
}

152
static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
153 154
				const struct cfp_udf_layout *layout,
				unsigned int slice_num)
155
{
156
	u32 offset = layout->udfs[slice_num].base_offset;
157 158
	unsigned int i;

159 160 161
	for (i = 0; i < UDFS_PER_SLICE; i++)
		core_writel(priv, layout->udfs[slice_num].slices[i],
			    offset + i * 4);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
}

static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_CFP_ACC);
	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
	reg |= OP_STR_DONE | op;
	core_writel(priv, reg, CORE_CFP_ACC);

	do {
		reg = core_readl(priv, CORE_CFP_ACC);
		if (!(reg & OP_STR_DONE))
			break;

		cpu_relax();
	} while (timeout--);

	if (!timeout)
		return -ETIMEDOUT;

	return 0;
}

static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
					     unsigned int addr)
{
	u32 reg;

193
	WARN_ON(addr >= priv->num_cfp_rules);
194 195 196 197 198 199 200 201 202 203

	reg = core_readl(priv, CORE_CFP_ACC);
	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
	reg |= addr << XCESS_ADDR_SHIFT;
	core_writel(priv, reg, CORE_CFP_ACC);
}

static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
{
	/* Entry #0 is reserved */
204
	return priv->num_cfp_rules - 1;
205 206
}

207 208 209
static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
				   unsigned int rule_index,
				   unsigned int port_num,
210 211
				   unsigned int queue_num,
				   bool fwd_map_change)
212 213
{
	int ret;
214
	u32 reg;
215

216 217 218
	/* Replace ARL derived destination with DST_MAP derived, define
	 * which port and queue this should be forwarded to.
	 */
219 220 221 222 223 224
	if (fwd_map_change)
		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
		      BIT(port_num + DST_MAP_IB_SHIFT) |
		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
	else
		reg = 0;
225

226
	core_writel(priv, reg, CORE_ACT_POL_DATA0);
227

228
	/* Set classification ID that needs to be put in Broadcom tag */
229
	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
230

231
	core_writel(priv, 0, CORE_ACT_POL_DATA2);
232

233 234 235 236 237 238
	/* Configure policer RAM now */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
	if (ret) {
		pr_err("Policer entry at %d failed\n", rule_index);
		return ret;
	}
239

240 241 242 243 244 245 246 247 248 249 250 251 252
	/* Disable the policer */
	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);

	/* Now the rate meter */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
	if (ret) {
		pr_err("Meter entry at %d failed\n", rule_index);
		return ret;
	}

	return 0;
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
				   struct ethtool_tcpip4_spec *v4_spec,
				   unsigned int slice_num,
				   bool mask)
{
	u32 reg, offset;

	/* C-Tag		[31:24]
	 * UDF_n_A8		[23:8]
	 * UDF_n_A7		[7:0]
	 */
	reg = 0;
	if (mask)
		offset = CORE_CFP_MASK_PORT(4);
	else
		offset = CORE_CFP_DATA_PORT(4);
	core_writel(priv, reg, offset);

	/* UDF_n_A7		[31:24]
	 * UDF_n_A6		[23:8]
	 * UDF_n_A5		[7:0]
	 */
	reg = be16_to_cpu(v4_spec->pdst) >> 8;
	if (mask)
		offset = CORE_CFP_MASK_PORT(3);
	else
		offset = CORE_CFP_DATA_PORT(3);
	core_writel(priv, reg, offset);

	/* UDF_n_A5		[31:24]
	 * UDF_n_A4		[23:8]
	 * UDF_n_A3		[7:0]
	 */
	reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
	      (u32)be16_to_cpu(v4_spec->psrc) << 8 |
	      (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
	if (mask)
		offset = CORE_CFP_MASK_PORT(2);
	else
		offset = CORE_CFP_DATA_PORT(2);
	core_writel(priv, reg, offset);

	/* UDF_n_A3		[31:24]
	 * UDF_n_A2		[23:8]
	 * UDF_n_A1		[7:0]
	 */
	reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
	      (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
	      (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
	if (mask)
		offset = CORE_CFP_MASK_PORT(1);
	else
		offset = CORE_CFP_DATA_PORT(1);
	core_writel(priv, reg, offset);

	/* UDF_n_A1		[31:24]
	 * UDF_n_A0		[23:8]
	 * Reserved		[7:4]
	 * Slice ID		[3:2]
	 * Slice valid		[1:0]
	 */
	reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
	      (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
	      SLICE_NUM(slice_num) | SLICE_VALID;
	if (mask)
		offset = CORE_CFP_MASK_PORT(0);
	else
		offset = CORE_CFP_DATA_PORT(0);
	core_writel(priv, reg, offset);
}

324 325 326 327 328
static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
				     unsigned int port_num,
				     unsigned int queue_num,
				     struct ethtool_rx_flow_spec *fs)
{
329
	struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
330 331 332 333 334 335
	const struct cfp_udf_layout *layout;
	unsigned int slice_num, rule_index;
	u8 ip_proto, ip_frag;
	u8 num_udf;
	u32 reg;
	int ret;
336 337 338 339 340

	switch (fs->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
		ip_proto = IPPROTO_TCP;
		v4_spec = &fs->h_u.tcp_ip4_spec;
341
		v4_m_spec = &fs->m_u.tcp_ip4_spec;
342 343 344 345
		break;
	case UDP_V4_FLOW:
		ip_proto = IPPROTO_UDP;
		v4_spec = &fs->h_u.udp_ip4_spec;
346
		v4_m_spec = &fs->m_u.udp_ip4_spec;
347 348 349 350 351
		break;
	default:
		return -EINVAL;
	}

352 353 354 355 356
	ip_frag = be32_to_cpu(fs->m_ext.data[0]);

	/* Locate the first rule available */
	if (fs->location == RX_CLS_LOC_ANY)
		rule_index = find_first_zero_bit(priv->cfp.used,
357
						 priv->num_cfp_rules);
358 359 360
	else
		rule_index = fs->location;

361 362 363
	if (rule_index > bcm_sf2_cfp_rule_size(priv))
		return -ENOSPC;

364
	layout = &udf_tcpip4_layout;
365 366 367 368 369 370
	/* We only use one UDF slice for now */
	slice_num = bcm_sf2_get_slice_number(layout, 0);
	if (slice_num == UDF_NUM_SLICES)
		return -EINVAL;

	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
371 372

	/* Apply the UDF layout for this filter */
373
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
374 375 376 377

	/* Apply to all packets received through this port */
	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));

378 379 380
	/* Source port map match */
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));

381 382 383 384 385 386 387 388 389 390 391 392 393 394
	/* S-Tag status		[31:30]
	 * C-Tag status		[29:28]
	 * L2 framing		[27:26]
	 * L3 framing		[25:24]
	 * IP ToS		[23:16]
	 * IP proto		[15:08]
	 * IP Fragm		[7]
	 * Non 1st frag		[6]
	 * IP Authen		[5]
	 * TTL range		[4:3]
	 * PPPoE session	[2]
	 * Reserved		[1]
	 * UDF_Valid[8]		[0]
	 */
395
	core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
396 397
		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
		    udf_upper_bits(num_udf),
398 399
		    CORE_CFP_DATA_PORT(6));

400 401 402 403
	/* Mask with the specific layout for IPv4 packets */
	core_writel(priv, layout->udfs[slice_num].mask_value |
		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));

404 405 406 407
	/* UDF_Valid[7:0]	[31:24]
	 * S-Tag		[23:8]
	 * C-Tag		[7:0]
	 */
408
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
409 410

	/* Mask all but valid UDFs */
411
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
412

413 414 415
	/* Program the match and the mask */
	bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
	bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
416 417 418 419 420 421 422 423 424 425

	/* Insert into TCAM now */
	bcm_sf2_cfp_rule_addr_set(priv, rule_index);

	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret) {
		pr_err("TCAM entry at addr %d failed\n", rule_index);
		return ret;
	}

426
	/* Insert into Action and policer RAMs now */
427 428
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
				      queue_num, true);
429
	if (ret)
430 431 432 433 434 435 436 437 438
		return ret;

	/* Turn on CFP for this rule now */
	reg = core_readl(priv, CORE_CFP_CTL_REG);
	reg |= BIT(port);
	core_writel(priv, reg, CORE_CFP_CTL_REG);

	/* Flag the rule as being used and return it */
	set_bit(rule_index, priv->cfp.used);
439
	set_bit(rule_index, priv->cfp.unique);
440 441 442 443 444
	fs->location = rule_index;

	return 0;
}

445 446
static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
				   const __be32 *ip6_addr, const __be16 port,
447 448
				   unsigned int slice_num,
				   bool mask)
449
{
450
	u32 reg, tmp, val, offset;
451 452 453 454 455 456 457

	/* C-Tag		[31:24]
	 * UDF_n_B8		[23:8]	(port)
	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
	 */
	reg = be32_to_cpu(ip6_addr[3]);
	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
458 459 460 461 462
	if (mask)
		offset = CORE_CFP_MASK_PORT(4);
	else
		offset = CORE_CFP_DATA_PORT(4);
	core_writel(priv, val, offset);
463 464 465 466 467 468 469 470

	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
	 * UDF_n_B6		[23:8] (addr[31:16])
	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
	 */
	tmp = be32_to_cpu(ip6_addr[2]);
	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
	      ((tmp >> 8) & 0xff);
471 472 473 474 475
	if (mask)
		offset = CORE_CFP_MASK_PORT(3);
	else
		offset = CORE_CFP_DATA_PORT(3);
	core_writel(priv, val, offset);
476 477 478 479 480 481 482 483

	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
	 * UDF_n_B4		[23:8] (addr[63:48])
	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
	 */
	reg = be32_to_cpu(ip6_addr[1]);
	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
	      ((reg >> 8) & 0xff);
484 485 486 487 488
	if (mask)
		offset = CORE_CFP_MASK_PORT(2);
	else
		offset = CORE_CFP_DATA_PORT(2);
	core_writel(priv, val, offset);
489 490 491 492 493 494 495 496

	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
	 * UDF_n_B2		[23:8] (addr[95:80])
	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
	 */
	tmp = be32_to_cpu(ip6_addr[0]);
	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
	      ((tmp >> 8) & 0xff);
497 498 499 500 501
	if (mask)
		offset = CORE_CFP_MASK_PORT(1);
	else
		offset = CORE_CFP_DATA_PORT(1);
	core_writel(priv, val, offset);
502 503 504 505 506 507 508 509 510

	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
	 * UDF_n_B0		[23:8] (addr[127:112])
	 * Reserved		[7:4]
	 * Slice ID		[3:2]
	 * Slice valid		[1:0]
	 */
	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
	       SLICE_NUM(slice_num) | SLICE_VALID;
511 512 513 514 515
	if (mask)
		offset = CORE_CFP_MASK_PORT(0);
	else
		offset = CORE_CFP_DATA_PORT(0);
	core_writel(priv, reg, offset);
516 517 518 519 520 521 522
}

static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
				     unsigned int port_num,
				     unsigned int queue_num,
				     struct ethtool_rx_flow_spec *fs)
{
523
	struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
524 525 526 527 528 529 530 531 532 533 534
	unsigned int slice_num, rule_index[2];
	const struct cfp_udf_layout *layout;
	u8 ip_proto, ip_frag;
	int ret = 0;
	u8 num_udf;
	u32 reg;

	switch (fs->flow_type & ~FLOW_EXT) {
	case TCP_V6_FLOW:
		ip_proto = IPPROTO_TCP;
		v6_spec = &fs->h_u.tcp_ip6_spec;
535
		v6_m_spec = &fs->m_u.tcp_ip6_spec;
536 537 538 539
		break;
	case UDP_V6_FLOW:
		ip_proto = IPPROTO_UDP;
		v6_spec = &fs->h_u.udp_ip6_spec;
540
		v6_m_spec = &fs->m_u.udp_ip6_spec;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
		break;
	default:
		return -EINVAL;
	}

	ip_frag = be32_to_cpu(fs->m_ext.data[0]);

	layout = &udf_tcpip6_layout;
	slice_num = bcm_sf2_get_slice_number(layout, 0);
	if (slice_num == UDF_NUM_SLICES)
		return -EINVAL;

	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);

	/* Negotiate two indexes, one for the second half which we are chained
	 * from, which is what we will return to user-space, and a second one
	 * which is used to store its first half. That first half does not
	 * allow any choice of placement, so it just needs to find the next
	 * available bit. We return the second half as fs->location because
	 * that helps with the rule lookup later on since the second half is
	 * chained from its first half, we can easily identify IPv6 CFP rules
	 * by looking whether they carry a CHAIN_ID.
	 *
	 * We also want the second half to have a lower rule_index than its
	 * first half because the HW search is by incrementing addresses.
	 */
	if (fs->location == RX_CLS_LOC_ANY)
568 569
		rule_index[1] = find_first_zero_bit(priv->cfp.used,
						    priv->num_cfp_rules);
570
	else
571 572 573
		rule_index[1] = fs->location;
	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
		return -ENOSPC;
574 575 576 577

	/* Flag it as used (cleared on error path) such that we can immediately
	 * obtain a second one to chain from.
	 */
578
	set_bit(rule_index[1], priv->cfp.used);
579

580 581 582
	rule_index[0] = find_first_zero_bit(priv->cfp.used,
					    priv->num_cfp_rules);
	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
		ret = -ENOSPC;
		goto out_err;
	}

	/* Apply the UDF layout for this filter */
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);

	/* Apply to all packets received through this port */
	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));

	/* Source port map match */
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));

	/* S-Tag status		[31:30]
	 * C-Tag status		[29:28]
	 * L2 framing		[27:26]
	 * L3 framing		[25:24]
	 * IP ToS		[23:16]
	 * IP proto		[15:08]
	 * IP Fragm		[7]
	 * Non 1st frag		[6]
	 * IP Authen		[5]
	 * TTL range		[4:3]
	 * PPPoE session	[2]
	 * Reserved		[1]
	 * UDF_Valid[8]		[0]
	 */
	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));

	/* Mask with the specific layout for IPv6 packets including
	 * UDF_Valid[8]
	 */
	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));

	/* UDF_Valid[7:0]	[31:24]
	 * S-Tag		[23:8]
	 * C-Tag		[7:0]
	 */
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));

	/* Mask all but valid UDFs */
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));

	/* Slice the IPv6 source address and port */
630 631 632
	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
				slice_num, false);
	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
633
				SLICE_NUM_MASK, true);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

	/* Insert into TCAM now because we need to insert a second rule */
	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);

	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret) {
		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
		goto out_err;
	}

	/* Insert into Action and policer RAMs now */
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
				      queue_num, false);
	if (ret)
		goto out_err;

	/* Now deal with the second slice to chain this rule */
	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
	if (slice_num == UDF_NUM_SLICES) {
		ret = -EINVAL;
		goto out_err;
	}

	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);

	/* Apply the UDF layout for this filter */
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);

	/* Chained rule, source port match is coming from the rule we are
	 * chained from.
	 */
	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));

	/*
	 * CHAIN ID		[31:24] chain to previous slice
	 * Reserved		[23:20]
	 * UDF_Valid[11:8]	[19:16]
	 * UDF_Valid[7:0]	[15:8]
	 * UDF_n_D11		[7:0]
	 */
	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
		udf_lower_bits(num_udf) << 8;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));

	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
		udf_lower_bits(num_udf) << 8;
	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));

	/* Don't care */
	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));

	/* Mask all */
	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));

690 691 692 693
	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
			       false);
	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
			       SLICE_NUM_MASK, true);
694 695 696 697 698 699 700 701 702 703 704 705 706

	/* Insert into TCAM now */
	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);

	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret) {
		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
		goto out_err;
	}

	/* Insert into Action and policer RAMs now, set chain ID to
	 * the one we are chained to
	 */
707
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
708 709 710 711 712 713 714 715 716 717 718 719
				      queue_num, true);
	if (ret)
		goto out_err;

	/* Turn on CFP for this rule now */
	reg = core_readl(priv, CORE_CFP_CTL_REG);
	reg |= BIT(port);
	core_writel(priv, reg, CORE_CFP_CTL_REG);

	/* Flag the second half rule as being used now, return it as the
	 * location, and flag it as unique while dumping rules
	 */
720
	set_bit(rule_index[0], priv->cfp.used);
721 722 723 724 725 726
	set_bit(rule_index[1], priv->cfp.unique);
	fs->location = rule_index[1];

	return ret;

out_err:
727
	clear_bit(rule_index[1], priv->cfp.used);
728 729 730
	return ret;
}

731 732 733 734 735
static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
				struct ethtool_rx_flow_spec *fs)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	unsigned int queue_num, port_num;
736
	int ret = -EINVAL;
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

	/* Check for unsupported extensions */
	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
	     fs->m_ext.data[1]))
		return -EINVAL;

	if (fs->location != RX_CLS_LOC_ANY &&
	    test_bit(fs->location, priv->cfp.used))
		return -EBUSY;

	if (fs->location != RX_CLS_LOC_ANY &&
	    fs->location > bcm_sf2_cfp_rule_size(priv))
		return -EINVAL;

	/* We do not support discarding packets, check that the
	 * destination port is enabled and that we are within the
	 * number of ports supported by the switch
	 */
	port_num = fs->ring_cookie / SF2_NUM_EGRESS_QUEUES;

	if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
758
	    !dsa_is_user_port(ds, port_num) ||
759 760 761 762 763 764 765 766 767 768
	    port_num >= priv->hw_params.num_ports)
		return -EINVAL;
	/*
	 * We have a small oddity where Port 6 just does not have a
	 * valid bit here (so we substract by one).
	 */
	queue_num = fs->ring_cookie % SF2_NUM_EGRESS_QUEUES;
	if (port_num >= 7)
		port_num -= 1;

769 770 771 772 773 774 775 776 777 778 779 780 781 782
	switch (fs->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
	case UDP_V4_FLOW:
		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
						queue_num, fs);
		break;
	case TCP_V6_FLOW:
	case UDP_V6_FLOW:
		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
						queue_num, fs);
		break;
	default:
		break;
	}
783

784
	return ret;
785 786
}

787 788
static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
				    u32 loc, u32 *next_loc)
789 790 791 792 793 794 795 796 797 798 799
{
	int ret;
	u32 reg;

	/* Indicate which rule we want to read */
	bcm_sf2_cfp_rule_addr_set(priv, loc);

	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
	if (ret)
		return ret;

800 801 802 803 804 805 806 807
	/* Check if this is possibly an IPv6 rule that would
	 * indicate we need to delete its companion rule
	 * as well
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
	if (next_loc)
		*next_loc = (reg >> 24) & CHAIN_ID_MASK;

808 809 810 811 812 813 814 815 816 817 818
	/* Clear its valid bits */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
	reg &= ~SLICE_VALID;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));

	/* Write back this entry into the TCAM now */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret)
		return ret;

	clear_bit(loc, priv->cfp.used);
819
	clear_bit(loc, priv->cfp.unique);
820 821 822 823

	return 0;
}

824 825 826 827 828 829
static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
				u32 loc)
{
	u32 next_loc = 0;
	int ret;

830 831 832 833 834 835 836
	/* Refuse deleting unused rules, and those that are not unique since
	 * that could leave IPv6 rules with one of the chained rule in the
	 * table.
	 */
	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
		return -EINVAL;

837 838 839 840 841 842 843 844 845 846 847
	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
	if (ret)
		return ret;

	/* If this was an IPv6 rule, delete is companion rule too */
	if (next_loc)
		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);

	return ret;
}

848 849 850 851 852 853 854 855 856 857 858 859 860
static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
{
	unsigned int i;

	for (i = 0; i < sizeof(flow->m_u); i++)
		flow->m_u.hdata[i] ^= 0xff;

	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
	flow->m_ext.data[0] ^= cpu_to_be32(~0);
	flow->m_ext.data[1] ^= cpu_to_be32(~0);
}

861 862 863
static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
				    struct ethtool_tcpip4_spec *v4_spec,
				    bool mask)
864
{
865
	u32 reg, offset, ipv4;
866
	u16 src_dst_port;
867

868 869 870 871
	if (mask)
		offset = CORE_CFP_MASK_PORT(3);
	else
		offset = CORE_CFP_DATA_PORT(3);
872

873
	reg = core_readl(priv, offset);
874 875 876
	/* src port [15:8] */
	src_dst_port = reg << 8;

877 878 879 880 881 882
	if (mask)
		offset = CORE_CFP_MASK_PORT(2);
	else
		offset = CORE_CFP_DATA_PORT(2);

	reg = core_readl(priv, offset);
883 884 885 886 887 888 889 890
	/* src port [7:0] */
	src_dst_port |= (reg >> 24);

	v4_spec->pdst = cpu_to_be16(src_dst_port);
	v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));

	/* IPv4 dst [15:8] */
	ipv4 = (reg & 0xff) << 8;
891 892 893 894 895 896 897

	if (mask)
		offset = CORE_CFP_MASK_PORT(1);
	else
		offset = CORE_CFP_DATA_PORT(1);

	reg = core_readl(priv, offset);
898 899 900 901 902 903 904 905 906
	/* IPv4 dst [31:16] */
	ipv4 |= ((reg >> 8) & 0xffff) << 16;
	/* IPv4 dst [7:0] */
	ipv4 |= (reg >> 24) & 0xff;
	v4_spec->ip4dst = cpu_to_be32(ipv4);

	/* IPv4 src [15:8] */
	ipv4 = (reg & 0xff) << 8;

907 908 909 910 911 912 913 914 915 916 917
	if (mask)
		offset = CORE_CFP_MASK_PORT(0);
	else
		offset = CORE_CFP_DATA_PORT(0);
	reg = core_readl(priv, offset);

	/* Once the TCAM is programmed, the mask reflects the slice number
	 * being matched, don't bother checking it when reading back the
	 * mask spec
	 */
	if (!mask && !(reg & SLICE_VALID))
918 919 920 921 922 923 924 925 926 927 928
		return -EINVAL;

	/* IPv4 src [7:0] */
	ipv4 |= (reg >> 24) & 0xff;
	/* IPv4 src [31:16] */
	ipv4 |= ((reg >> 8) & 0xffff) << 16;
	v4_spec->ip4src = cpu_to_be32(ipv4);

	return 0;
}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
				     struct ethtool_rx_flow_spec *fs)
{
	struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
	u32 reg;
	int ret;

	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));

	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
	case IPPROTO_TCP:
		fs->flow_type = TCP_V4_FLOW;
		v4_spec = &fs->h_u.tcp_ip4_spec;
		v4_m_spec = &fs->m_u.tcp_ip4_spec;
		break;
	case IPPROTO_UDP:
		fs->flow_type = UDP_V4_FLOW;
		v4_spec = &fs->h_u.udp_ip4_spec;
		v4_m_spec = &fs->m_u.udp_ip4_spec;
		break;
	default:
		return -EINVAL;
	}

	fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
	v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;

	ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
	if (ret)
		return ret;

	return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
}

963 964
static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
				     __be32 *ip6_addr, __be16 *port,
965
				     bool mask)
966
{
967
	u32 reg, tmp, offset;
968 969 970 971 972

	/* C-Tag		[31:24]
	 * UDF_n_B8		[23:8] (port)
	 * UDF_n_B7 (upper)	[7:0] (addr[15:8])
	 */
973 974 975 976 977
	if (mask)
		offset = CORE_CFP_MASK_PORT(4);
	else
		offset = CORE_CFP_DATA_PORT(4);
	reg = core_readl(priv, offset);
978 979 980 981 982 983 984
	*port = cpu_to_be32(reg) >> 8;
	tmp = (u32)(reg & 0xff) << 8;

	/* UDF_n_B7 (lower)	[31:24] (addr[7:0])
	 * UDF_n_B6		[23:8] (addr[31:16])
	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
	 */
985 986 987 988 989
	if (mask)
		offset = CORE_CFP_MASK_PORT(3);
	else
		offset = CORE_CFP_DATA_PORT(3);
	reg = core_readl(priv, offset);
990 991 992 993 994 995 996 997 998
	tmp |= (reg >> 24) & 0xff;
	tmp |= (u32)((reg >> 8) << 16);
	ip6_addr[3] = cpu_to_be32(tmp);
	tmp = (u32)(reg & 0xff) << 8;

	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
	 * UDF_n_B4		[23:8] (addr[63:48])
	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
	 */
999 1000 1001 1002 1003
	if (mask)
		offset = CORE_CFP_MASK_PORT(2);
	else
		offset = CORE_CFP_DATA_PORT(2);
	reg = core_readl(priv, offset);
1004 1005 1006 1007 1008 1009 1010 1011 1012
	tmp |= (reg >> 24) & 0xff;
	tmp |= (u32)((reg >> 8) << 16);
	ip6_addr[2] = cpu_to_be32(tmp);
	tmp = (u32)(reg & 0xff) << 8;

	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
	 * UDF_n_B2		[23:8] (addr[95:80])
	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
	 */
1013 1014 1015 1016 1017
	if (mask)
		offset = CORE_CFP_MASK_PORT(1);
	else
		offset = CORE_CFP_DATA_PORT(1);
	reg = core_readl(priv, offset);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	tmp |= (reg >> 24) & 0xff;
	tmp |= (u32)((reg >> 8) << 16);
	ip6_addr[1] = cpu_to_be32(tmp);
	tmp = (u32)(reg & 0xff) << 8;

	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
	 * UDF_n_B0		[23:8] (addr[127:112])
	 * Reserved		[7:4]
	 * Slice ID		[3:2]
	 * Slice valid		[1:0]
	 */
1029 1030 1031 1032 1033
	if (mask)
		offset = CORE_CFP_MASK_PORT(0);
	else
		offset = CORE_CFP_DATA_PORT(0);
	reg = core_readl(priv, offset);
1034 1035 1036 1037
	tmp |= (reg >> 24) & 0xff;
	tmp |= (u32)((reg >> 8) << 16);
	ip6_addr[0] = cpu_to_be32(tmp);

1038
	if (!mask && !(reg & SLICE_VALID))
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		return -EINVAL;

	return 0;
}

static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
				     struct ethtool_rx_flow_spec *fs,
				     u32 next_loc)
{
	struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
	u32 reg;
	int ret;

	/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
	 * assuming tcp_ip6_spec here being an union.
	 */
	v6_spec = &fs->h_u.tcp_ip6_spec;
	v6_m_spec = &fs->m_u.tcp_ip6_spec;

	/* Read the second half first */
	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1060 1061 1062 1063 1064 1065
				       false);
	if (ret)
		return ret;

	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
				       &v6_m_spec->pdst, true);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	if (ret)
		return ret;

	/* Read last to avoid next entry clobbering the results during search
	 * operations. We would not have the port enabled for this rule, so
	 * don't bother checking it.
	 */
	(void)core_readl(priv, CORE_CFP_DATA_PORT(7));

	/* The slice number is valid, so read the rule we are chained from now
	 * which is our first half.
	 */
	bcm_sf2_cfp_rule_addr_set(priv, next_loc);
	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
	if (ret)
		return ret;

	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));

	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
	case IPPROTO_TCP:
		fs->flow_type = TCP_V6_FLOW;
		break;
	case IPPROTO_UDP:
		fs->flow_type = UDP_V6_FLOW;
		break;
	default:
		return -EINVAL;
	}

1096 1097 1098 1099 1100 1101 1102
	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
				       false);
	if (ret)
		return ret;

	return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
					&v6_m_spec->psrc, true);
1103 1104
}

1105
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1106
				struct ethtool_rxnfc *nfc)
1107
{
1108
	u32 reg, ipv4_or_chain_id;
1109 1110 1111
	unsigned int queue_num;
	int ret;

1112
	bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1113

1114 1115 1116
	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
	if (ret)
		return ret;
1117

1118
	reg = core_readl(priv, CORE_ACT_POL_DATA0);
1119

1120 1121 1122
	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
	if (ret)
		return ret;
1123 1124 1125 1126 1127 1128 1129 1130

	/* Extract the destination port */
	nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
				  DST_MAP_IB_MASK) - 1;

	/* There is no Port 6, so we compensate for that here */
	if (nfc->fs.ring_cookie >= 6)
		nfc->fs.ring_cookie++;
1131
	nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1132 1133 1134 1135 1136

	/* Extract the destination queue */
	queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
	nfc->fs.ring_cookie += queue_num;

1137
	/* Extract the L3_FRAMING or CHAIN_ID */
1138 1139
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	/* With IPv6 rules this would contain a non-zero chain ID since
	 * we reserve entry 0 and it cannot be used. So if we read 0 here
	 * this means an IPv4 rule.
	 */
	ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
	if (ipv4_or_chain_id == 0)
		ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
	else
		ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
						ipv4_or_chain_id);
1150 1151
	if (ret)
		return ret;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	/* Read last to avoid next entry clobbering the results during search
	 * operations
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
	if (!(reg & 1 << port))
		return -EINVAL;

	bcm_sf2_invert_masks(&nfc->fs);

	/* Put the TCAM size here */
	nfc->data = bcm_sf2_cfp_rule_size(priv);

	return 0;
}

/* We implement the search doing a TCAM search operation */
static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
				    int port, struct ethtool_rxnfc *nfc,
				    u32 *rule_locs)
{
	unsigned int index = 1, rules_cnt = 0;

1175
	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1176 1177 1178
		rule_locs[rules_cnt] = index;
		rules_cnt++;
	}
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	/* Put the TCAM size here */
	nfc->data = bcm_sf2_cfp_rule_size(priv);
	nfc->rule_cnt = rules_cnt;

	return 0;
}

int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	int ret = 0;

	mutex_lock(&priv->cfp.lock);

	switch (nfc->cmd) {
	case ETHTOOL_GRXCLSRLCNT:
		/* Subtract the default, unusable rule */
1198
		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1199
					      priv->num_cfp_rules) - 1;
1200 1201 1202 1203
		/* We support specifying rule locations */
		nfc->data |= RX_CLS_LOC_SPECIAL;
		break;
	case ETHTOOL_GRXCLSRULE:
1204
		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		break;
	case ETHTOOL_GRXCLSRLALL:
		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&priv->cfp.lock);

	return ret;
}

int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
		      struct ethtool_rxnfc *nfc)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	int ret = 0;

	mutex_lock(&priv->cfp.lock);

	switch (nfc->cmd) {
	case ETHTOOL_SRXCLSRLINS:
		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
		break;

	case ETHTOOL_SRXCLSRLDEL:
		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&priv->cfp.lock);

	return ret;
}

int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_CFP_ACC);
	reg |= TCAM_RESET;
	core_writel(priv, reg, CORE_CFP_ACC);

	do {
		reg = core_readl(priv, CORE_CFP_ACC);
		if (!(reg & TCAM_RESET))
			break;

		cpu_relax();
	} while (timeout--);

	if (!timeout)
		return -ETIMEDOUT;

	return 0;
}