bcm_sf2_cfp.c 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Broadcom Starfighter 2 DSA switch CFP support
 *
 * Copyright (C) 2016, Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/in.h>
16 17
#include <linux/netdevice.h>
#include <net/dsa.h>
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#include <linux/bitmap.h>

#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"

struct cfp_udf_layout {
	u8 slices[UDF_NUM_SLICES];
	u32 mask_value;

};

/* UDF slices layout for a TCPv4/UDPv4 specification */
static const struct cfp_udf_layout udf_tcpip4_layout = {
	.slices = {
		/* End of L2, byte offset 12, src IP[0:15] */
		CFG_UDF_EOL2 | 6,
		/* End of L2, byte offset 14, src IP[16:31] */
		CFG_UDF_EOL2 | 7,
		/* End of L2, byte offset 16, dst IP[0:15] */
		CFG_UDF_EOL2 | 8,
		/* End of L2, byte offset 18, dst IP[16:31] */
		CFG_UDF_EOL2 | 9,
		/* End of L3, byte offset 0, src port */
		CFG_UDF_EOL3 | 0,
		/* End of L3, byte offset 2, dst port */
		CFG_UDF_EOL3 | 1,
		0, 0, 0
	},
	.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
};

static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
{
	unsigned int i, count = 0;

	for (i = 0; i < UDF_NUM_SLICES; i++) {
		if (layout[i] != 0)
			count++;
	}

	return count;
}

static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
				unsigned int slice_num,
				const u8 *layout)
{
	u32 offset = CORE_UDF_0_A_0_8_PORT_0 + slice_num * UDF_SLICE_OFFSET;
	unsigned int i;

	for (i = 0; i < UDF_NUM_SLICES; i++)
		core_writel(priv, layout[i], offset + i * 4);
}

static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_CFP_ACC);
	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
	reg |= OP_STR_DONE | op;
	core_writel(priv, reg, CORE_CFP_ACC);

	do {
		reg = core_readl(priv, CORE_CFP_ACC);
		if (!(reg & OP_STR_DONE))
			break;

		cpu_relax();
	} while (timeout--);

	if (!timeout)
		return -ETIMEDOUT;

	return 0;
}

static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
					     unsigned int addr)
{
	u32 reg;

101
	WARN_ON(addr >= priv->num_cfp_rules);
102 103 104 105 106 107 108 109 110 111

	reg = core_readl(priv, CORE_CFP_ACC);
	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
	reg |= addr << XCESS_ADDR_SHIFT;
	core_writel(priv, reg, CORE_CFP_ACC);
}

static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
{
	/* Entry #0 is reserved */
112
	return priv->num_cfp_rules - 1;
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
}

static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
				struct ethtool_rx_flow_spec *fs)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	struct ethtool_tcpip4_spec *v4_spec;
	const struct cfp_udf_layout *layout;
	unsigned int slice_num, rule_index;
	unsigned int queue_num, port_num;
	u8 ip_proto, ip_frag;
	u8 num_udf;
	u32 reg;
	int ret;

	/* Check for unsupported extensions */
	if ((fs->flow_type & FLOW_EXT) &&
	    (fs->m_ext.vlan_etype || fs->m_ext.data[1]))
		return -EINVAL;

	if (fs->location != RX_CLS_LOC_ANY &&
	    test_bit(fs->location, priv->cfp.used))
		return -EBUSY;

	if (fs->location != RX_CLS_LOC_ANY &&
	    fs->location > bcm_sf2_cfp_rule_size(priv))
		return -EINVAL;

	ip_frag = be32_to_cpu(fs->m_ext.data[0]);

	/* We do not support discarding packets, check that the
	 * destination port is enabled and that we are within the
	 * number of ports supported by the switch
	 */
	port_num = fs->ring_cookie / 8;

	if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
	    !(BIT(port_num) & ds->enabled_port_mask) ||
	    port_num >= priv->hw_params.num_ports)
		return -EINVAL;

	switch (fs->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
		ip_proto = IPPROTO_TCP;
		v4_spec = &fs->h_u.tcp_ip4_spec;
		break;
	case UDP_V4_FLOW:
		ip_proto = IPPROTO_UDP;
		v4_spec = &fs->h_u.udp_ip4_spec;
		break;
	default:
		return -EINVAL;
	}

	/* We only use one UDF slice for now */
	slice_num = 1;
	layout = &udf_tcpip4_layout;
	num_udf = bcm_sf2_get_num_udf_slices(layout->slices);

	/* Apply the UDF layout for this filter */
	bcm_sf2_cfp_udf_set(priv, slice_num, layout->slices);

	/* Apply to all packets received through this port */
	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));

	/* S-Tag status		[31:30]
	 * C-Tag status		[29:28]
	 * L2 framing		[27:26]
	 * L3 framing		[25:24]
	 * IP ToS		[23:16]
	 * IP proto		[15:08]
	 * IP Fragm		[7]
	 * Non 1st frag		[6]
	 * IP Authen		[5]
	 * TTL range		[4:3]
	 * PPPoE session	[2]
	 * Reserved		[1]
	 * UDF_Valid[8]		[0]
	 */
	core_writel(priv, v4_spec->tos << 16 | ip_proto << 8 | ip_frag << 7,
		    CORE_CFP_DATA_PORT(6));

	/* UDF_Valid[7:0]	[31:24]
	 * S-Tag		[23:8]
	 * C-Tag		[7:0]
	 */
	core_writel(priv, GENMASK(num_udf - 1, 0) << 24, CORE_CFP_DATA_PORT(5));

	/* C-Tag		[31:24]
	 * UDF_n_A8		[23:8]
	 * UDF_n_A7		[7:0]
	 */
	core_writel(priv, 0, CORE_CFP_DATA_PORT(4));

	/* UDF_n_A7		[31:24]
	 * UDF_n_A6		[23:8]
	 * UDF_n_A5		[7:0]
	 */
	core_writel(priv, be16_to_cpu(v4_spec->pdst) >> 8,
		    CORE_CFP_DATA_PORT(3));

	/* UDF_n_A5		[31:24]
	 * UDF_n_A4		[23:8]
	 * UDF_n_A3		[7:0]
	 */
	reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
	      (u32)be16_to_cpu(v4_spec->psrc) << 8 |
	      (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(2));

	/* UDF_n_A3		[31:24]
	 * UDF_n_A2		[23:8]
	 * UDF_n_A1		[7:0]
	 */
	reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
	      (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
	      (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(1));

	/* UDF_n_A1		[31:24]
	 * UDF_n_A0		[23:8]
	 * Reserved		[7:4]
	 * Slice ID		[3:2]
	 * Slice valid		[1:0]
	 */
	reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
	      (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
	      SLICE_NUM(slice_num) | SLICE_VALID;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));

	/* Source port map match */
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));

	/* Mask with the specific layout for IPv4 packets */
	core_writel(priv, layout->mask_value, CORE_CFP_MASK_PORT(6));

	/* Mask all but valid UDFs */
	core_writel(priv, GENMASK(num_udf - 1, 0) << 24, CORE_CFP_MASK_PORT(5));

	/* Mask all */
	core_writel(priv, 0, CORE_CFP_MASK_PORT(4));

	/* All other UDFs should be matched with the filter */
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(3));
	core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(2));
	core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(1));
	core_writel(priv, 0xffffff0f, CORE_CFP_MASK_PORT(0));

	/* Locate the first rule available */
	if (fs->location == RX_CLS_LOC_ANY)
		rule_index = find_first_zero_bit(priv->cfp.used,
						 bcm_sf2_cfp_rule_size(priv));
	else
		rule_index = fs->location;

	/* Insert into TCAM now */
	bcm_sf2_cfp_rule_addr_set(priv, rule_index);

	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret) {
		pr_err("TCAM entry at addr %d failed\n", rule_index);
		return ret;
	}

	/* Replace ARL derived destination with DST_MAP derived, define
	 * which port and queue this should be forwarded to.
	 *
	 * We have a small oddity where Port 6 just does not have a
	 * valid bit here (so we subtract by one).
	 */
	queue_num = fs->ring_cookie % 8;
	if (port_num >= 7)
		port_num -= 1;

	reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) |
		CHANGE_TC | queue_num << NEW_TC_SHIFT;

	core_writel(priv, reg, CORE_ACT_POL_DATA0);

	/* Set classification ID that needs to be put in Broadcom tag */
	core_writel(priv, rule_index << CHAIN_ID_SHIFT,
		    CORE_ACT_POL_DATA1);

	core_writel(priv, 0, CORE_ACT_POL_DATA2);

	/* Configure policer RAM now */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
	if (ret) {
		pr_err("Policer entry at %d failed\n", rule_index);
		return ret;
	}

	/* Disable the policer */
	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);

	/* Now the rate meter */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
	if (ret) {
		pr_err("Meter entry at %d failed\n", rule_index);
		return ret;
	}

	/* Turn on CFP for this rule now */
	reg = core_readl(priv, CORE_CFP_CTL_REG);
	reg |= BIT(port);
	core_writel(priv, reg, CORE_CFP_CTL_REG);

	/* Flag the rule as being used and return it */
	set_bit(rule_index, priv->cfp.used);
	fs->location = rule_index;

	return 0;
}

static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
				u32 loc)
{
	int ret;
	u32 reg;

	/* Refuse deletion of unused rules, and the default reserved rule */
	if (!test_bit(loc, priv->cfp.used) || loc == 0)
		return -EINVAL;

	/* Indicate which rule we want to read */
	bcm_sf2_cfp_rule_addr_set(priv, loc);

	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
	if (ret)
		return ret;

	/* Clear its valid bits */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
	reg &= ~SLICE_VALID;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));

	/* Write back this entry into the TCAM now */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret)
		return ret;

	clear_bit(loc, priv->cfp.used);

	return 0;
}

static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
{
	unsigned int i;

	for (i = 0; i < sizeof(flow->m_u); i++)
		flow->m_u.hdata[i] ^= 0xff;

	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
	flow->m_ext.data[0] ^= cpu_to_be32(~0);
	flow->m_ext.data[1] ^= cpu_to_be32(~0);
}

static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
				struct ethtool_rxnfc *nfc, bool search)
{
	struct ethtool_tcpip4_spec *v4_spec;
	unsigned int queue_num;
	u16 src_dst_port;
	u32 reg, ipv4;
	int ret;

	if (!search) {
		bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);

		ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
		if (ret)
			return ret;

		reg = core_readl(priv, CORE_ACT_POL_DATA0);

		ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
		if (ret)
			return ret;
	} else {
		reg = core_readl(priv, CORE_ACT_POL_DATA0);
	}

	/* Extract the destination port */
	nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
				  DST_MAP_IB_MASK) - 1;

	/* There is no Port 6, so we compensate for that here */
	if (nfc->fs.ring_cookie >= 6)
		nfc->fs.ring_cookie++;
	nfc->fs.ring_cookie *= 8;

	/* Extract the destination queue */
	queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
	nfc->fs.ring_cookie += queue_num;

	/* Extract the IP protocol */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
	case IPPROTO_TCP:
		nfc->fs.flow_type = TCP_V4_FLOW;
		v4_spec = &nfc->fs.h_u.tcp_ip4_spec;
		break;
	case IPPROTO_UDP:
		nfc->fs.flow_type = UDP_V4_FLOW;
		v4_spec = &nfc->fs.h_u.udp_ip4_spec;
		break;
	default:
		/* Clear to exit the search process */
		if (search)
			core_readl(priv, CORE_CFP_DATA_PORT(7));
		return -EINVAL;
	}

	v4_spec->tos = (reg >> 16) & IPPROTO_MASK;
	nfc->fs.m_ext.data[0] = cpu_to_be32((reg >> 7) & 1);

	reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
	/* src port [15:8] */
	src_dst_port = reg << 8;

	reg = core_readl(priv, CORE_CFP_DATA_PORT(2));
	/* src port [7:0] */
	src_dst_port |= (reg >> 24);

	v4_spec->pdst = cpu_to_be16(src_dst_port);
	nfc->fs.m_u.tcp_ip4_spec.pdst = cpu_to_be16(~0);
	v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
	nfc->fs.m_u.tcp_ip4_spec.psrc = cpu_to_be16(~0);

	/* IPv4 dst [15:8] */
445
	ipv4 = (reg & 0xff) << 8;
446 447
	reg = core_readl(priv, CORE_CFP_DATA_PORT(1));
	/* IPv4 dst [31:16] */
448
	ipv4 |= ((reg >> 8) & 0xffff) << 16;
449 450 451 452 453 454
	/* IPv4 dst [7:0] */
	ipv4 |= (reg >> 24) & 0xff;
	v4_spec->ip4dst = cpu_to_be32(ipv4);
	nfc->fs.m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(~0);

	/* IPv4 src [15:8] */
455
	ipv4 = (reg & 0xff) << 8;
456 457 458 459 460 461 462 463
	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));

	if (!(reg & SLICE_VALID))
		return -EINVAL;

	/* IPv4 src [7:0] */
	ipv4 |= (reg >> 24) & 0xff;
	/* IPv4 src [31:16] */
464
	ipv4 |= ((reg >> 8) & 0xffff) << 16;
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	v4_spec->ip4src = cpu_to_be32(ipv4);
	nfc->fs.m_u.tcp_ip4_spec.ip4src = cpu_to_be32(~0);

	/* Read last to avoid next entry clobbering the results during search
	 * operations
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
	if (!(reg & 1 << port))
		return -EINVAL;

	bcm_sf2_invert_masks(&nfc->fs);

	/* Put the TCAM size here */
	nfc->data = bcm_sf2_cfp_rule_size(priv);

	return 0;
}

/* We implement the search doing a TCAM search operation */
static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
				    int port, struct ethtool_rxnfc *nfc,
				    u32 *rule_locs)
{
	unsigned int index = 1, rules_cnt = 0;
	int ret;
	u32 reg;

	/* Do not poll on OP_STR_DONE to be self-clearing for search
	 * operations, we cannot use bcm_sf2_cfp_op here because it completes
	 * on clearing OP_STR_DONE which won't clear until the entire search
	 * operation is over.
	 */
	reg = core_readl(priv, CORE_CFP_ACC);
	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
	reg |= index << XCESS_ADDR_SHIFT;
	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
	reg |= OP_SEL_SEARCH | TCAM_SEL | OP_STR_DONE;
	core_writel(priv, reg, CORE_CFP_ACC);

	do {
		/* Wait for results to be ready */
		reg = core_readl(priv, CORE_CFP_ACC);

		/* Extract the address we are searching */
		index = reg >> XCESS_ADDR_SHIFT;
		index &= XCESS_ADDR_MASK;

		/* We have a valid search result, so flag it accordingly */
		if (reg & SEARCH_STS) {
			ret = bcm_sf2_cfp_rule_get(priv, port, nfc, true);
			if (ret)
				continue;

			rule_locs[rules_cnt] = index;
			rules_cnt++;
		}

		/* Search is over break out */
		if (!(reg & OP_STR_DONE))
			break;

526
	} while (index < priv->num_cfp_rules);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546

	/* Put the TCAM size here */
	nfc->data = bcm_sf2_cfp_rule_size(priv);
	nfc->rule_cnt = rules_cnt;

	return 0;
}

int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	int ret = 0;

	mutex_lock(&priv->cfp.lock);

	switch (nfc->cmd) {
	case ETHTOOL_GRXCLSRLCNT:
		/* Subtract the default, unusable rule */
		nfc->rule_cnt = bitmap_weight(priv->cfp.used,
547
					      priv->num_cfp_rules) - 1;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
		/* We support specifying rule locations */
		nfc->data |= RX_CLS_LOC_SPECIAL;
		break;
	case ETHTOOL_GRXCLSRULE:
		ret = bcm_sf2_cfp_rule_get(priv, port, nfc, false);
		break;
	case ETHTOOL_GRXCLSRLALL:
		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&priv->cfp.lock);

	return ret;
}

int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
		      struct ethtool_rxnfc *nfc)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	int ret = 0;

	mutex_lock(&priv->cfp.lock);

	switch (nfc->cmd) {
	case ETHTOOL_SRXCLSRLINS:
		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
		break;

	case ETHTOOL_SRXCLSRLDEL:
		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&priv->cfp.lock);

	return ret;
}

int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_CFP_ACC);
	reg |= TCAM_RESET;
	core_writel(priv, reg, CORE_CFP_ACC);

	do {
		reg = core_readl(priv, CORE_CFP_ACC);
		if (!(reg & TCAM_RESET))
			break;

		cpu_relax();
	} while (timeout--);

	if (!timeout)
		return -ETIMEDOUT;

	return 0;
}