rt61pci.c 75.5 KB
Newer Older
1
/*
I
Ivo van Doorn 已提交
2
	Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt61pci
	Abstract: rt61pci device specific routines.
	Supported chipsets: RT2561, RT2561s, RT2661.
 */

27
#include <linux/crc-itu-t.h>
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt61pci.h"

/*
 * Register access.
 * BBP and RF register require indirect register access,
 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
A
Adam Baker 已提交
51
static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
52 53 54 55 56 57 58 59 60 61 62 63 64 65
{
	u32 reg;
	unsigned int i;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
		if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
			break;
		udelay(REGISTER_BUSY_DELAY);
	}

	return reg;
}

A
Adam Baker 已提交
66
static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
			      const unsigned int word, const u8 value)
{
	u32 reg;

	/*
	 * Wait until the BBP becomes ready.
	 */
	reg = rt61pci_bbp_check(rt2x00dev);
	if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
		ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
		return;
	}

	/*
	 * Write the data into the BBP.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
	rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
	rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
	rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);

	rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
}

A
Adam Baker 已提交
92
static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
			     const unsigned int word, u8 *value)
{
	u32 reg;

	/*
	 * Wait until the BBP becomes ready.
	 */
	reg = rt61pci_bbp_check(rt2x00dev);
	if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
		ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
		return;
	}

	/*
	 * Write the request into the BBP.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
	rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
	rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);

	rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);

	/*
	 * Wait until the BBP becomes ready.
	 */
	reg = rt61pci_bbp_check(rt2x00dev);
	if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
		ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
		*value = 0xff;
		return;
	}

	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
}

A
Adam Baker 已提交
129
static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
			     const unsigned int word, const u32 value)
{
	u32 reg;
	unsigned int i;

	if (!word)
		return;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
		if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
			goto rf_write;
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
	return;

rf_write:
	reg = 0;
	rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
	rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
	rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
	rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);

	rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
	rt2x00_rf_write(rt2x00dev, word, value);
}

159 160 161 162 163 164
#ifdef CONFIG_RT61PCI_LEDS
/*
 * This function is only called from rt61pci_led_brightness()
 * make gcc happy by placing this function inside the
 * same ifdef statement as the caller.
 */
A
Adam Baker 已提交
165
static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
				const u8 command, const u8 token,
				const u8 arg0, const u8 arg1)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);

	if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
		ERROR(rt2x00dev, "mcu request error. "
		      "Request 0x%02x failed for token 0x%02x.\n",
		      command, token);
		return;
	}

	rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
	rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
	rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
	rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
	rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
	rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
}
191
#endif /* CONFIG_RT61PCI_LEDS */
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
#define CSR_OFFSET(__word)	( CSR_REG_BASE + ((__word) * sizeof(u32)) )

A
Adam Baker 已提交
226
static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
227 228 229 230 231
			     const unsigned int word, u32 *data)
{
	rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
}

A
Adam Baker 已提交
232
static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
			      const unsigned int word, u32 data)
{
	rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
}

static const struct rt2x00debug rt61pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
		.read		= rt61pci_read_csr,
		.write		= rt61pci_write_csr,
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt61pci_bbp_read,
		.write		= rt61pci_bbp_write,
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt61pci_rf_write,
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

#ifdef CONFIG_RT61PCI_RFKILL
static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
I
Ivo van Doorn 已提交
273
	return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
274
}
275 276
#else
#define rt61pci_rfkill_poll	NULL
277
#endif /* CONFIG_RT61PCI_RFKILL */
278

279
#ifdef CONFIG_RT61PCI_LEDS
280
static void rt61pci_brightness_set(struct led_classdev *led_cdev,
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
				   enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	unsigned int a_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
	unsigned int bg_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);

	if (led->type == LED_TYPE_RADIO) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_RADIO_STATUS, enabled);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_ASSOC) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_A_STATUS, a_mode);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_QUALITY) {
		/*
		 * The brightness is divided into 6 levels (0 - 5),
		 * this means we need to convert the brightness
		 * argument into the matching level within that range.
		 */
		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
				    brightness / (LED_FULL / 6), 0);
	}
}
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

static int rt61pci_blink_set(struct led_classdev *led_cdev,
			     unsigned long *delay_on,
			     unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);

	return 0;
}
333 334 335 336 337 338 339 340 341 342 343

static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00_led *led,
			     enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt61pci_brightness_set;
	led->led_dev.blink_set = rt61pci_blink_set;
	led->flags = LED_INITIALIZED;
}
344 345
#endif /* CONFIG_RT61PCI_LEDS */

346 347 348
/*
 * Configuration handlers.
 */
I
Ivo van Doorn 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
				  const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
370 371
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
372 373 374 375 376 377 378 379 380
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}

381 382 383 384
static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
				struct rt2x00_intf *intf,
				struct rt2x00intf_conf *conf,
				const unsigned int flags)
385
{
386 387
	unsigned int beacon_base;
	u32 reg;
388

389 390 391 392 393 394 395 396 397
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Clear current synchronisation setup.
		 * For the Beacon base registers we only need to clear
		 * the first byte since that byte contains the VALID and OWNER
		 * bits which (when set to 0) will invalidate the entire beacon.
		 */
		beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
		rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
398

399 400 401 402
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
403
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
404
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
405
		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
406 407
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
	}
408

409 410 411 412
	if (flags & CONFIG_UPDATE_MAC) {
		reg = le32_to_cpu(conf->mac[1]);
		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
		conf->mac[1] = cpu_to_le32(reg);
413

414 415 416
		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
					      conf->mac, sizeof(conf->mac));
	}
417

418 419 420 421
	if (flags & CONFIG_UPDATE_BSSID) {
		reg = le32_to_cpu(conf->bssid[1]);
		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
		conf->bssid[1] = cpu_to_le32(reg);
422

423 424 425
		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
					      conf->bssid, sizeof(conf->bssid));
	}
426 427
}

I
Ivo van Doorn 已提交
428 429
static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00lib_erp *erp)
430 431 432 433
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
434
	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
435 436 437
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
438
	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
439
			   !!erp->short_preamble);
440 441 442 443
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
}

static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
444
				   const int basic_rate_mask)
445
{
446
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
447 448
}

449 450
static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
				   struct rf_channel *rf, const int txpower)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
{
	u8 r3;
	u8 r94;
	u8 smart;

	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);

	smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
		  rt2x00_rf(&rt2x00dev->chip, RF2527));

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
	rt61pci_bbp_write(rt2x00dev, 3, r3);

	r94 = 6;
	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
		r94 += txpower - MAX_TXPOWER;
	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
		r94 += txpower;
	rt61pci_bbp_write(rt2x00dev, 94, r94);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	msleep(1);
}

static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				   const int txpower)
{
	struct rf_channel rf;

	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);

505
	rt61pci_config_channel(rt2x00dev, &rf, txpower);
506 507 508
}

static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
509
				      struct antenna_setup *ant)
510 511 512 513 514 515 516 517 518 519
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);

	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
520
			  rt2x00_rf(&rt2x00dev->chip, RF5325));
521 522 523 524

	/*
	 * Configure the RX antenna.
	 */
525
	switch (ant->rx) {
526
	case ANTENNA_HW_DIVERSITY:
527
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
528
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
529
				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
530 531
		break;
	case ANTENNA_A:
532
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
533
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
534
		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
535 536 537
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
538 539
		break;
	case ANTENNA_B:
540
	default:
541
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
542
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
543
		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
544 545 546
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
547 548 549 550 551 552 553 554 555
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
556
				      struct antenna_setup *ant)
557 558 559 560 561 562 563 564 565 566
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);

	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
567
			  rt2x00_rf(&rt2x00dev->chip, RF2529));
568 569 570
	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
			  !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));

571 572 573
	/*
	 * Configure the RX antenna.
	 */
574
	switch (ant->rx) {
575
	case ANTENNA_HW_DIVERSITY:
576
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
577 578
		break;
	case ANTENNA_A:
579 580
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
581 582
		break;
	case ANTENNA_B:
583
	default:
584 585
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
					   const int p1, const int p2)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);

601 602 603 604 605 606 607
	rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
	rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);

	rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
	rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
608 609 610
}

static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
611
					struct antenna_setup *ant)
612 613 614 615 616 617 618 619
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);
620 621 622 623 624 625

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_A:
626 627 628
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
629 630 631
		break;
	case ANTENNA_HW_DIVERSITY:
		/*
632 633 634
		 * FIXME: Antenna selection for the rf 2529 is very confusing
		 * in the legacy driver. Just default to antenna B until the
		 * legacy code can be properly translated into rt2x00 code.
635 636
		 */
	case ANTENNA_B:
637
	default:
638 639 640
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
641 642 643 644
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

struct antenna_sel {
	u8 word;
	/*
	 * value[0] -> non-LNA
	 * value[1] -> LNA
	 */
	u8 value[2];
};

static const struct antenna_sel antenna_sel_a[] = {
	{ 96,  { 0x58, 0x78 } },
	{ 104, { 0x38, 0x48 } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x60, 0x60 } },
	{ 97,  { 0x58, 0x58 } },
	{ 98,  { 0x58, 0x58 } },
};

static const struct antenna_sel antenna_sel_bg[] = {
	{ 96,  { 0x48, 0x68 } },
	{ 104, { 0x2c, 0x3c } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x50, 0x50 } },
	{ 97,  { 0x48, 0x48 } },
	{ 98,  { 0x48, 0x48 } },
};

static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
681
				   struct antenna_setup *ant)
682 683 684 685 686 687
{
	const struct antenna_sel *sel;
	unsigned int lna;
	unsigned int i;
	u32 reg;

688 689 690 691 692 693 694
	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

695
	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
696 697 698 699 700 701 702
		sel = antenna_sel_a;
		lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
	} else {
		sel = antenna_sel_bg;
		lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
	}

703 704 705 706 707
	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);

	rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);

708
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
709
			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
710
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
711
			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
712

713 714 715 716
	rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);

	if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
	    rt2x00_rf(&rt2x00dev->chip, RF5325))
717
		rt61pci_config_antenna_5x(rt2x00dev, ant);
718
	else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
719
		rt61pci_config_antenna_2x(rt2x00dev, ant);
720 721
	else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
		if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
722
			rt61pci_config_antenna_2x(rt2x00dev, ant);
723
		else
724
			rt61pci_config_antenna_2529(rt2x00dev, ant);
725 726 727 728
	}
}

static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
729
				    struct rt2x00lib_conf *libconf)
730 731 732 733
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
734
	rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
735 736 737
	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
738
	rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
739
	rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
740
	rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
741 742 743 744 745 746 747 748 749 750 751
	rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
752 753
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
			   libconf->conf->beacon_int * 16);
754 755 756 757
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
}

static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
758 759
			   struct rt2x00lib_conf *libconf,
			   const unsigned int flags)
760 761
{
	if (flags & CONFIG_UPDATE_PHYMODE)
762
		rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
763
	if (flags & CONFIG_UPDATE_CHANNEL)
764 765
		rt61pci_config_channel(rt2x00dev, &libconf->rf,
				       libconf->conf->power_level);
766
	if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
767
		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
768
	if (flags & CONFIG_UPDATE_ANTENNA)
769
		rt61pci_config_antenna(rt2x00dev, &libconf->ant);
770
	if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
771
		rt61pci_config_duration(rt2x00dev, libconf);
772 773 774 775 776
}

/*
 * Link tuning
 */
777 778
static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual)
779 780 781 782 783 784 785
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
786
	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
787 788 789 790 791

	/*
	 * Update False CCA count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
792
	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
}

static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
{
	rt61pci_bbp_write(rt2x00dev, 17, 0x20);
	rt2x00dev->link.vgc_level = 0x20;
}

static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
{
	int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
	u8 r17;
	u8 up_bound;
	u8 low_bound;

	rt61pci_bbp_read(rt2x00dev, 17, &r17);

	/*
	 * Determine r17 bounds.
	 */
813
	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		low_bound = 0x28;
		up_bound = 0x48;
		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
			low_bound += 0x10;
			up_bound += 0x10;
		}
	} else {
		low_bound = 0x20;
		up_bound = 0x40;
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
			low_bound += 0x10;
			up_bound += 0x10;
		}
	}

829 830 831 832 833 834 835
	/*
	 * If we are not associated, we should go straight to the
	 * dynamic CCA tuning.
	 */
	if (!rt2x00dev->intf_associated)
		goto dynamic_cca_tune;

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	/*
	 * Special big-R17 for very short distance
	 */
	if (rssi >= -35) {
		if (r17 != 0x60)
			rt61pci_bbp_write(rt2x00dev, 17, 0x60);
		return;
	}

	/*
	 * Special big-R17 for short distance
	 */
	if (rssi >= -58) {
		if (r17 != up_bound)
			rt61pci_bbp_write(rt2x00dev, 17, up_bound);
		return;
	}

	/*
	 * Special big-R17 for middle-short distance
	 */
	if (rssi >= -66) {
		low_bound += 0x10;
		if (r17 != low_bound)
			rt61pci_bbp_write(rt2x00dev, 17, low_bound);
		return;
	}

	/*
	 * Special mid-R17 for middle distance
	 */
	if (rssi >= -74) {
		low_bound += 0x08;
		if (r17 != low_bound)
			rt61pci_bbp_write(rt2x00dev, 17, low_bound);
		return;
	}

	/*
	 * Special case: Change up_bound based on the rssi.
	 * Lower up_bound when rssi is weaker then -74 dBm.
	 */
	up_bound -= 2 * (-74 - rssi);
	if (low_bound > up_bound)
		up_bound = low_bound;

	if (r17 > up_bound) {
		rt61pci_bbp_write(rt2x00dev, 17, up_bound);
		return;
	}

887 888
dynamic_cca_tune:

889 890 891 892
	/*
	 * r17 does not yet exceed upper limit, continue and base
	 * the r17 tuning on the false CCA count.
	 */
893
	if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
894 895 896
		if (++r17 > up_bound)
			r17 = up_bound;
		rt61pci_bbp_write(rt2x00dev, 17, r17);
897
	} else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
898 899 900 901 902 903 904
		if (--r17 < low_bound)
			r17 = low_bound;
		rt61pci_bbp_write(rt2x00dev, 17, r17);
	}
}

/*
905
 * Firmware functions
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
 */
static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	char *fw_name;

	switch (rt2x00dev->chip.rt) {
	case RT2561:
		fw_name = FIRMWARE_RT2561;
		break;
	case RT2561s:
		fw_name = FIRMWARE_RT2561s;
		break;
	case RT2661:
		fw_name = FIRMWARE_RT2661;
		break;
	default:
		fw_name = NULL;
		break;
	}

	return fw_name;
}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
static u16 rt61pci_get_firmware_crc(void *data, const size_t len)
{
	u16 crc;

	/*
	 * Use the crc itu-t algorithm.
	 * The last 2 bytes in the firmware array are the crc checksum itself,
	 * this means that we should never pass those 2 bytes to the crc
	 * algorithm.
	 */
	crc = crc_itu_t(0, data, len - 2);
	crc = crc_itu_t_byte(crc, 0);
	crc = crc_itu_t_byte(crc, 0);

	return crc;
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
				 const size_t len)
{
	int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < 100; i++) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
		if (reg)
			break;
		msleep(1);
	}

	if (!reg) {
		ERROR(rt2x00dev, "Unstable hardware.\n");
		return -EBUSY;
	}

	/*
	 * Prepare MCU and mailbox for firmware loading.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);

	/*
	 * Write firmware to device.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	for (i = 0; i < 100; i++) {
		rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
			break;
		msleep(1);
	}

	if (i == 100) {
		ERROR(rt2x00dev, "MCU Control register not ready.\n");
		return -EBUSY;
	}

	/*
	 * Reset MAC and BBP registers.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

1026 1027 1028
/*
 * Initialization functions.
 */
1029
static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
I
Ivo van Doorn 已提交
1030
				 struct queue_entry *entry)
1031
{
1032
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1033 1034
	u32 word;

1035
	rt2x00_desc_read(entry_priv->desc, 5, &word);
1036
	rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1037 1038
			   entry_priv->data_dma);
	rt2x00_desc_write(entry_priv->desc, 5, word);
1039

1040
	rt2x00_desc_read(entry_priv->desc, 0, &word);
1041
	rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1042
	rt2x00_desc_write(entry_priv->desc, 0, word);
1043 1044
}

1045
static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
I
Ivo van Doorn 已提交
1046
				 struct queue_entry *entry)
1047
{
1048
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1049 1050
	u32 word;

1051
	rt2x00_desc_read(entry_priv->desc, 0, &word);
1052 1053
	rt2x00_set_field32(&word, TXD_W0_VALID, 0);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1054
	rt2x00_desc_write(entry_priv->desc, 0, word);
1055 1056
}

I
Ivo van Doorn 已提交
1057
static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1058
{
1059
	struct queue_entry_priv_pci *entry_priv;
1060 1061 1062 1063 1064 1065 1066
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
I
Ivo van Doorn 已提交
1067
			   rt2x00dev->tx[0].limit);
1068
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
I
Ivo van Doorn 已提交
1069
			   rt2x00dev->tx[1].limit);
1070
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
I
Ivo van Doorn 已提交
1071
			   rt2x00dev->tx[2].limit);
1072
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
I
Ivo van Doorn 已提交
1073
			   rt2x00dev->tx[3].limit);
1074 1075 1076 1077
	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
I
Ivo van Doorn 已提交
1078
			   rt2x00dev->tx[0].desc_size / 4);
1079 1080
	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);

1081
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1082
	rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1083
	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1084
			   entry_priv->desc_dma);
1085 1086
	rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);

1087
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1088
	rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1089
	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1090
			   entry_priv->desc_dma);
1091 1092
	rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);

1093
	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1094
	rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1095
	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1096
			   entry_priv->desc_dma);
1097 1098
	rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);

1099
	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1100
	rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1101
	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1102
			   entry_priv->desc_dma);
1103 1104 1105
	rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
I
Ivo van Doorn 已提交
1106
	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1107 1108 1109 1110 1111
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
			   rt2x00dev->rx->desc_size / 4);
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
	rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);

1112
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1113
	rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1114
	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1115
			   entry_priv->desc_dma);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
	rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
	rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);

	/*
	 * CCK TXD BBP registers
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);

	/*
	 * OFDM TXD BBP registers
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);

	rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);

	/*
	 * Invalidate all Shared Keys (SEC_CSR0),
	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
	 */
	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
	rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
	rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);

	rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);

	rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);

	rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);

	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);

	rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
	rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
	rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
	rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
	rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
	rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
	rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	/*
	 * Clear all beacons
	 * For the Beacon base registers we only need to clear
	 * the first byte since that byte contains the VALID and OWNER
	 * bits which (when set to 0) will invalidate the entire beacon.
	 */
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * We must clear the error counters.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
	rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);

	/*
	 * Reset MAC and BBP registers.
	 */
	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

1284
static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1285 1286 1287 1288 1289 1290 1291
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt61pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
1292
			return 0;
1293 1294 1295 1296 1297
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
}

static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
	rt61pci_bbp_write(rt2x00dev, 107, 0x04);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt61pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
			      enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1358 1359
			   (state == STATE_RADIO_RX_OFF) ||
			   (state == STATE_RADIO_RX_OFF_LINK));
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}

static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

		rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
}

static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Initialize all registers.
	 */
1411 1412 1413
	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
		     rt61pci_init_registers(rt2x00dev) ||
		     rt61pci_init_bbp(rt2x00dev)))
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		return -EIO;

	/*
	 * Enable RX.
	 */
	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);

	/*
	 * Disable synchronisation.
	 */
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);

	/*
	 * Cancel RX and TX.
	 */
	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
}

static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
	u32 reg;
	unsigned int i;
	char put_to_sleep;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1468 1469
		state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
		if (state == !put_to_sleep)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
			return 0;
		msleep(10);
	}

	return -EBUSY;
}

static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				    enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt61pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt61pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
1490
	case STATE_RADIO_RX_ON_LINK:
1491
	case STATE_RADIO_RX_OFF:
1492
	case STATE_RADIO_RX_OFF_LINK:
1493 1494 1495 1496 1497
		rt61pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt61pci_toggle_irq(rt2x00dev, state);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt61pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1510 1511 1512 1513
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1514 1515 1516 1517 1518 1519 1520
	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1521
				    struct sk_buff *skb,
1522
				    struct txentry_desc *txdesc)
1523
{
I
Ivo van Doorn 已提交
1524
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1525
	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1526
	__le32 *txd = skbdesc->desc;
1527 1528 1529 1530 1531 1532
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
	rt2x00_desc_read(txd, 1, &word);
I
Ivo van Doorn 已提交
1533 1534 1535 1536
	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
	rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
	rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
	rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1537 1538
	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
1539
	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1540 1541 1542
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
I
Ivo van Doorn 已提交
1543 1544 1545 1546
	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1547 1548 1549
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 5, &word);
1550 1551 1552
	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
			   skbdesc->entry->entry_idx);
1553
	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1554
			   TXPOWER_TO_DEV(rt2x00dev->tx_power));
1555 1556 1557
	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
	rt2x00_desc_write(txd, 5, word);

1558 1559 1560 1561 1562
	rt2x00_desc_read(txd, 6, &word);
	rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
			   entry_priv->data_dma);
	rt2x00_desc_write(txd, 6, word);

1563 1564
	if (skbdesc->desc_len > TXINFO_SIZE) {
		rt2x00_desc_read(txd, 11, &word);
1565
		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1566 1567
		rt2x00_desc_write(txd, 11, word);
	}
1568 1569 1570 1571 1572

	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1573
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1574
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1575
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1576
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1577
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1578
	rt2x00_set_field32(&word, TXD_W0_OFDM,
I
Ivo van Doorn 已提交
1579 1580
			   test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1581
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1582
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1583
	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1584
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1585
	rt2x00_set_field32(&word, TXD_W0_BURST,
I
Ivo van Doorn 已提交
1586
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1587 1588 1589 1590 1591 1592 1593 1594
	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
	rt2x00_desc_write(txd, 0, word);
}

/*
 * TX data initialization
 */
static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1595
				  const enum data_queue_qid queue)
1596 1597 1598
{
	u32 reg;

1599
	if (queue == QID_BEACON) {
1600 1601 1602 1603 1604 1605 1606 1607
		/*
		 * For Wi-Fi faily generated beacons between participating
		 * stations. Set TBTT phase adaptive adjustment step to 8us.
		 */
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);

		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
		if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1608 1609
			rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
			rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1610 1611 1612 1613 1614 1615 1616
			rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
			rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
		}
		return;
	}

	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1617 1618 1619 1620
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
}

/*
 * RX control handlers
 */
static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
{
	u16 eeprom;
	u8 offset;
	u8 lna;

	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
	switch (lna) {
	case 3:
		offset = 90;
		break;
	case 2:
		offset = 74;
		break;
	case 1:
		offset = 64;
		break;
	default:
		return 0;
	}

1648
	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
			offset += 14;

		if (lna == 3 || lna == 2)
			offset += 10;

		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
		offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
	} else {
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
			offset += 14;

		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
		offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
	}

	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
}

I
Ivo van Doorn 已提交
1668 1669
static void rt61pci_fill_rxdone(struct queue_entry *entry,
			        struct rxdone_entry_desc *rxdesc)
1670
{
1671
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1672 1673 1674
	u32 word0;
	u32 word1;

1675 1676
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 1, &word1);
1677

1678
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1679
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1680 1681 1682

	/*
	 * Obtain the status about this packet.
I
Ivo van Doorn 已提交
1683 1684 1685
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
1686
	 */
I
Ivo van Doorn 已提交
1687 1688 1689
	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
	rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1690 1691 1692 1693 1694

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1695 1696 1697 1698 1699 1700 1701
}

/*
 * Interrupt functions.
 */
static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
{
I
Ivo van Doorn 已提交
1702 1703 1704
	struct data_queue *queue;
	struct queue_entry *entry;
	struct queue_entry *entry_done;
1705
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
1706
	struct txdone_entry_desc txdesc;
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	u32 word;
	u32 reg;
	u32 old_reg;
	int type;
	int index;

	/*
	 * During each loop we will compare the freshly read
	 * STA_CSR4 register value with the value read from
	 * the previous loop. If the 2 values are equal then
	 * we should stop processing because the chance it
	 * quite big that the device has been unplugged and
	 * we risk going into an endless loop.
	 */
	old_reg = 0;

	while (1) {
		rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
			break;

		if (old_reg == reg)
			break;
		old_reg = reg;

		/*
		 * Skip this entry when it contains an invalid
I
Ivo van Doorn 已提交
1734
		 * queue identication number.
1735 1736
		 */
		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
I
Ivo van Doorn 已提交
1737 1738
		queue = rt2x00queue_get_queue(rt2x00dev, type);
		if (unlikely(!queue))
1739 1740 1741 1742 1743 1744 1745
			continue;

		/*
		 * Skip this entry when it contains an invalid
		 * index number.
		 */
		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
I
Ivo van Doorn 已提交
1746
		if (unlikely(index >= queue->limit))
1747 1748
			continue;

I
Ivo van Doorn 已提交
1749
		entry = &queue->entries[index];
1750 1751
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1752 1753 1754 1755 1756

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			return;

I
Ivo van Doorn 已提交
1757
		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1758
		while (entry != entry_done) {
I
Ivo van Doorn 已提交
1759 1760 1761
			/* Catch up.
			 * Just report any entries we missed as failed.
			 */
1762
			WARNING(rt2x00dev,
I
Ivo van Doorn 已提交
1763 1764 1765
				"TX status report missed for entry %d\n",
				entry_done->entry_idx);

I
Ivo van Doorn 已提交
1766 1767
			txdesc.flags = 0;
			__set_bit(TXDONE_UNKNOWN, &txdesc.flags);
I
Ivo van Doorn 已提交
1768 1769 1770 1771
			txdesc.retry = 0;

			rt2x00pci_txdone(rt2x00dev, entry_done, &txdesc);
			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1772 1773
		}

1774 1775 1776
		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
		txdesc.flags = 0;
		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
		case 0: /* Success, maybe with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 6: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
1788
		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1789

I
Ivo van Doorn 已提交
1790
		rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	}
}

static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg_mcu;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
	rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);

	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg && !reg_mcu)
		return IRQ_NONE;

	if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 2 - Tx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
		rt61pci_txdone(rt2x00dev);

	/*
	 * 3 - Handle MCU command done.
	 */
	if (reg_mcu)
		rt2x00pci_register_write(rt2x00dev,
					 M2H_CMD_DONE_CSR, 0xffffffff);

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;
	s8 value;

	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt61pci_eepromregister_read;
	eeprom.register_write = rt61pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
1875 1876
		DECLARE_MAC_BUF(macbuf);

1877
		random_ether_addr(mac);
1878
		EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1879 1880 1881 1882 1883
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
I
Ivo van Doorn 已提交
1884 1885 1886 1887
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_B);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_B);
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
				   LED_MODE_DEFAULT);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
		EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1945
		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
	}

	return 0;
}

static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;
	u16 device;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 * To determine the RT chip we have to read the
	 * PCI header of the device.
	 */
	pci_read_config_word(rt2x00dev_pci(rt2x00dev),
			     PCI_CONFIG_HEADER_DEVICE, &device);
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
	rt2x00_set_chip(rt2x00dev, device, value, reg);

	if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

1990 1991 1992 1993 1994 1995
	/*
	 * Determine number of antenna's.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
		__set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);

1996 1997 1998
	/*
	 * Identify default antenna configuration.
	 */
1999
	rt2x00dev->default_ant.tx =
2000
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2001
	rt2x00dev->default_ant.rx =
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

	/*
	 * Read the Frame type.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
		__set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
2013
#ifdef CONFIG_RT61PCI_RFKILL
2014
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2015
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2016
#endif /* CONFIG_RT61PCI_RFKILL */
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

	/*
	 * Read frequency offset and RF programming sequence.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
		__set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);

	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);

	/*
	 * Read external LNA informations.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);

	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	/*
	 * When working with a RF2529 chip without double antenna
	 * the antenna settings should be gathered from the NIC
	 * eeprom word.
	 */
	if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
	    !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
		switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
		case 0:
			rt2x00dev->default_ant.tx = ANTENNA_B;
			rt2x00dev->default_ant.rx = ANTENNA_A;
			break;
		case 1:
			rt2x00dev->default_ant.tx = ANTENNA_B;
			rt2x00dev->default_ant.rx = ANTENNA_B;
			break;
		case 2:
			rt2x00dev->default_ant.tx = ANTENNA_A;
			rt2x00dev->default_ant.rx = ANTENNA_A;
			break;
		case 3:
			rt2x00dev->default_ant.tx = ANTENNA_A;
			rt2x00dev->default_ant.rx = ANTENNA_B;
			break;
		}

		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
	}

2069 2070 2071 2072 2073
	/*
	 * Store led settings, for correct led behaviour.
	 * If the eeprom value is invalid,
	 * switch to default led mode.
	 */
2074
#ifdef CONFIG_RT61PCI_LEDS
2075
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2076 2077
	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);

2078 2079 2080 2081 2082
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
	if (value == LED_MODE_SIGNAL_STRENGTH)
		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				 LED_TYPE_QUALITY);
2083

2084 2085
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2086 2087
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_0));
2088
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2089 2090
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_1));
2091
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2092 2093
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_2));
2094
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2095 2096
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_3));
2097
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2098 2099
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_4));
2100
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2101
			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2102
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2103 2104
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_G));
2105
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2106 2107
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_A));
2108
#endif /* CONFIG_RT61PCI_LEDS */
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

	return 0;
}

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
 */
static const struct rf_channel rf_vals_noseq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },

	/* 802.11 UNII */
	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
};

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
 */
static const struct rf_channel rf_vals_seq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },

	/* 802.11 UNII */
	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
};

static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
	u8 *txpower;
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
	rt2x00dev->hw->flags =
	    IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
2238 2239
	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
	    IEEE80211_HW_SIGNAL_DBM;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	rt2x00dev->hw->extra_tx_headroom = 0;

	SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Convert tx_power array in eeprom.
	 */
	txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
	for (i = 0; i < 14; i++)
		txpower[i] = TXPOWER_FROM_DEV(txpower[i]);

	/*
	 * Initialize hw_mode information.
	 */
2257 2258
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	spec->tx_power_a = NULL;
	spec->tx_power_bg = txpower;
	spec->tx_power_default = DEFAULT_TXPOWER;

	if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
		spec->num_channels = 14;
		spec->channels = rf_vals_noseq;
	} else {
		spec->num_channels = 14;
		spec->channels = rf_vals_seq;
	}

	if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
	    rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2273
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		spec->num_channels = ARRAY_SIZE(rf_vals_seq);

		txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
		for (i = 0; i < 14; i++)
			txpower[i] = TXPOWER_FROM_DEV(txpower[i]);

		spec->tx_power_a = txpower;
	}
}

static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt61pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt61pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
	rt61pci_probe_hw_mode(rt2x00dev);

	/*
2305
	 * This device requires firmware.
2306
	 */
2307
	__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
				   u32 short_retry, u32 long_retry)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);

	return 0;
}

static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);

	return tsf;
}

2348
static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
2349 2350
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
2351 2352
	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
2353
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
2354
	struct skb_frame_desc *skbdesc;
2355
	struct txentry_desc txdesc;
2356
	unsigned int beacon_base;
2357
	u32 reg;
2358

2359 2360
	if (unlikely(!intf->beacon))
		return -ENOBUFS;
2361

2362 2363 2364 2365 2366 2367
	/*
	 * Copy all TX descriptor information into txdesc,
	 * after that we are free to use the skb->cb array
	 * for our information.
	 */
	intf->beacon->skb = skb;
2368
	rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
2369

2370 2371
	entry_priv = intf->beacon->priv_data;
	memset(entry_priv->desc, 0, intf->beacon->queue->desc_size);
I
Ivo van Doorn 已提交
2372 2373 2374

	/*
	 * Fill in skb descriptor
2375
	 */
I
Ivo van Doorn 已提交
2376 2377
	skbdesc = get_skb_frame_desc(skb);
	memset(skbdesc, 0, sizeof(*skbdesc));
2378
	skbdesc->desc = entry_priv->desc;
2379 2380
	skbdesc->desc_len = intf->beacon->queue->desc_size;
	skbdesc->entry = intf->beacon;
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

2392 2393 2394 2395
	/*
	 * Write entire beacon with descriptor to register,
	 * and kick the beacon generator.
	 */
2396
	rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
2397 2398
	beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2399 2400 2401
				      skbdesc->desc, skbdesc->desc_len);
	rt2x00pci_register_multiwrite(rt2x00dev,
				      beacon_base + skbdesc->desc_len,
2402
				      skb->data, skb->len);
2403
	rt61pci_kick_tx_queue(rt2x00dev, QID_BEACON);
2404 2405 2406 2407 2408 2409

	return 0;
}

static const struct ieee80211_ops rt61pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
2410 2411
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
2412 2413 2414 2415
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.config_interface	= rt2x00mac_config_interface,
I
Ivo van Doorn 已提交
2416
	.configure_filter	= rt2x00mac_configure_filter,
2417 2418
	.get_stats		= rt2x00mac_get_stats,
	.set_retry_limit	= rt61pci_set_retry_limit,
2419
	.bss_info_changed	= rt2x00mac_bss_info_changed,
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	.conf_tx		= rt2x00mac_conf_tx,
	.get_tx_stats		= rt2x00mac_get_tx_stats,
	.get_tsf		= rt61pci_get_tsf,
	.beacon_update		= rt61pci_beacon_update,
};

static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
	.irq_handler		= rt61pci_interrupt,
	.probe_hw		= rt61pci_probe_hw,
	.get_firmware_name	= rt61pci_get_firmware_name,
2430
	.get_firmware_crc	= rt61pci_get_firmware_crc,
2431 2432 2433
	.load_firmware		= rt61pci_load_firmware,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
2434 2435
	.init_rxentry		= rt61pci_init_rxentry,
	.init_txentry		= rt61pci_init_txentry,
2436 2437 2438 2439 2440 2441 2442 2443 2444
	.set_device_state	= rt61pci_set_device_state,
	.rfkill_poll		= rt61pci_rfkill_poll,
	.link_stats		= rt61pci_link_stats,
	.reset_tuner		= rt61pci_reset_tuner,
	.link_tuner		= rt61pci_link_tuner,
	.write_tx_desc		= rt61pci_write_tx_desc,
	.write_tx_data		= rt2x00pci_write_tx_data,
	.kick_tx_queue		= rt61pci_kick_tx_queue,
	.fill_rxdone		= rt61pci_fill_rxdone,
I
Ivo van Doorn 已提交
2445
	.config_filter		= rt61pci_config_filter,
2446
	.config_intf		= rt61pci_config_intf,
2447
	.config_erp		= rt61pci_config_erp,
2448 2449 2450
	.config			= rt61pci_config,
};

I
Ivo van Doorn 已提交
2451 2452 2453 2454
static const struct data_queue_desc rt61pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
2455
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2456 2457 2458 2459 2460 2461
};

static const struct data_queue_desc rt61pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
2462
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2463 2464 2465
};

static const struct data_queue_desc rt61pci_queue_bcn = {
2466
	.entry_num		= 4 * BEACON_ENTRIES,
2467
	.data_size		= 0, /* No DMA required for beacons */
I
Ivo van Doorn 已提交
2468
	.desc_size		= TXINFO_SIZE,
2469
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2470 2471
};

2472
static const struct rt2x00_ops rt61pci_ops = {
2473
	.name		= KBUILD_MODNAME,
2474 2475
	.max_sta_intf	= 1,
	.max_ap_intf	= 4,
2476 2477
	.eeprom_size	= EEPROM_SIZE,
	.rf_size	= RF_SIZE,
2478
	.tx_queues	= NUM_TX_QUEUES,
I
Ivo van Doorn 已提交
2479 2480 2481
	.rx		= &rt61pci_queue_rx,
	.tx		= &rt61pci_queue_tx,
	.bcn		= &rt61pci_queue_bcn,
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	.lib		= &rt61pci_rt2x00_ops,
	.hw		= &rt61pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
	.debugfs	= &rt61pci_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT61pci module information.
 */
static struct pci_device_id rt61pci_device_table[] = {
	/* RT2561s */
	{ PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
	/* RT2561 v2 */
	{ PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
	/* RT2661 */
	{ PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
			"PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
MODULE_FIRMWARE(FIRMWARE_RT2561);
MODULE_FIRMWARE(FIRMWARE_RT2561s);
MODULE_FIRMWARE(FIRMWARE_RT2661);
MODULE_LICENSE("GPL");

static struct pci_driver rt61pci_driver = {
2514
	.name		= KBUILD_MODNAME,
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	.id_table	= rt61pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt61pci_init(void)
{
	return pci_register_driver(&rt61pci_driver);
}

static void __exit rt61pci_exit(void)
{
	pci_unregister_driver(&rt61pci_driver);
}

module_init(rt61pci_init);
module_exit(rt61pci_exit);