i915_gem_gtt.c 56.6 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26
#include <linux/seq_file.h>
27 28
#include <drm/drmP.h>
#include <drm/i915_drm.h>
29 30 31 32
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"

33 34
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
35

36 37
static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
{
38 39 40 41 42 43 44 45 46
	bool has_aliasing_ppgtt;
	bool has_full_ppgtt;

	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
	if (IS_GEN8(dev))
		has_full_ppgtt = false; /* XXX why? */

	if (enable_ppgtt == 0 || !has_aliasing_ppgtt)
47 48 49 50 51
		return 0;

	if (enable_ppgtt == 1)
		return 1;

52
	if (enable_ppgtt == 2 && has_full_ppgtt)
53 54
		return 2;

55 56 57 58
#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
59
		return 0;
60 61 62
	}
#endif

63
	/* Early VLV doesn't have this */
64 65
	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
	    dev->pdev->revision < 0xb) {
66 67 68 69
		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
		return 0;
	}

70
	return has_full_ppgtt ? 2 : has_aliasing_ppgtt ? 1 : 0;
71 72
}

73

74 75 76 77 78
static void ppgtt_bind_vma(struct i915_vma *vma,
			   enum i915_cache_level cache_level,
			   u32 flags);
static void ppgtt_unbind_vma(struct i915_vma *vma);

79 80 81 82 83 84
static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
					     enum i915_cache_level level,
					     bool valid)
{
	gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
	pte |= addr;
85 86 87

	switch (level) {
	case I915_CACHE_NONE:
88
		pte |= PPAT_UNCACHED_INDEX;
89 90 91 92 93 94 95 96 97
		break;
	case I915_CACHE_WT:
		pte |= PPAT_DISPLAY_ELLC_INDEX;
		break;
	default:
		pte |= PPAT_CACHED_INDEX;
		break;
	}

98 99 100
	return pte;
}

101 102 103 104 105 106 107 108 109 110 111 112 113
static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
					     dma_addr_t addr,
					     enum i915_cache_level level)
{
	gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
	pde |= addr;
	if (level != I915_CACHE_NONE)
		pde |= PPAT_CACHED_PDE_INDEX;
	else
		pde |= PPAT_UNCACHED_INDEX;
	return pde;
}

114
static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
115
				     enum i915_cache_level level,
116
				     bool valid, u32 unused)
117
{
118
	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
119
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
120 121

	switch (level) {
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
		WARN_ON(1);
	}

	return pte;
}

static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
137
				     enum i915_cache_level level,
138
				     bool valid, u32 unused)
139
{
140
	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
141 142 143 144 145
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
146 147 148 149 150
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
151
		pte |= GEN6_PTE_UNCACHED;
152 153
		break;
	default:
154
		WARN_ON(1);
155 156
	}

157 158 159
	return pte;
}

160
static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
161
				     enum i915_cache_level level,
162
				     bool valid, u32 flags)
163
{
164
	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
165 166 167 168 169
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	/* Mark the page as writeable.  Other platforms don't have a
	 * setting for read-only/writable, so this matches that behavior.
	 */
170 171
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
172 173 174 175 176 177 178

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

179
static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
180
				     enum i915_cache_level level,
181
				     bool valid, u32 unused)
182
{
183
	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
184
	pte |= HSW_PTE_ADDR_ENCODE(addr);
185 186

	if (level != I915_CACHE_NONE)
187
		pte |= HSW_WB_LLC_AGE3;
188 189 190 191

	return pte;
}

192
static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
193
				      enum i915_cache_level level,
194
				      bool valid, u32 unused)
195
{
196
	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
197 198
	pte |= HSW_PTE_ADDR_ENCODE(addr);

199 200 201 202
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
203
		pte |= HSW_WT_ELLC_LLC_AGE3;
204 205
		break;
	default:
206
		pte |= HSW_WB_ELLC_LLC_AGE3;
207 208
		break;
	}
209 210 211 212

	return pte;
}

213
/* Broadwell Page Directory Pointer Descriptors */
214
static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
215
			   uint64_t val)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
{
	int ret;

	BUG_ON(entry >= 4);

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
	intel_ring_emit(ring, (u32)(val >> 32));
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
	intel_ring_emit(ring, (u32)(val));
	intel_ring_advance(ring);

	return 0;
}

236
static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
237
			  struct intel_engine_cs *ring)
238
{
239
	int i, ret;
240 241 242 243 244 245

	/* bit of a hack to find the actual last used pd */
	int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;

	for (i = used_pd - 1; i >= 0; i--) {
		dma_addr_t addr = ppgtt->pd_dma_addr[i];
246
		ret = gen8_write_pdp(ring, i, addr);
247 248
		if (ret)
			return ret;
249
	}
250

251
	return 0;
252 253
}

254
static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
255 256
				   uint64_t start,
				   uint64_t length,
257 258 259 260 261
				   bool use_scratch)
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(vm, struct i915_hw_ppgtt, base);
	gen8_gtt_pte_t *pt_vaddr, scratch_pte;
262 263 264
	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
265
	unsigned num_entries = length >> PAGE_SHIFT;
266 267 268 269 270 271
	unsigned last_pte, i;

	scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
				      I915_CACHE_LLC, use_scratch);

	while (num_entries) {
272
		struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
273

274
		last_pte = pte + num_entries;
275 276 277 278 279
		if (last_pte > GEN8_PTES_PER_PAGE)
			last_pte = GEN8_PTES_PER_PAGE;

		pt_vaddr = kmap_atomic(page_table);

280
		for (i = pte; i < last_pte; i++) {
281
			pt_vaddr[i] = scratch_pte;
282 283
			num_entries--;
		}
284

285 286
		if (!HAS_LLC(ppgtt->base.dev))
			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
287 288
		kunmap_atomic(pt_vaddr);

289 290 291 292 293
		pte = 0;
		if (++pde == GEN8_PDES_PER_PAGE) {
			pdpe++;
			pde = 0;
		}
294 295 296
	}
}

297 298
static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
				      struct sg_table *pages,
299
				      uint64_t start,
300
				      enum i915_cache_level cache_level, u32 unused)
301 302 303 304
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(vm, struct i915_hw_ppgtt, base);
	gen8_gtt_pte_t *pt_vaddr;
305 306 307
	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
308 309
	struct sg_page_iter sg_iter;

310
	pt_vaddr = NULL;
311

312
	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
313 314 315
		if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
			break;

316
		if (pt_vaddr == NULL)
317
			pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
318

319
		pt_vaddr[pte] =
320 321
			gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
					cache_level, true);
322
		if (++pte == GEN8_PTES_PER_PAGE) {
323 324
			if (!HAS_LLC(ppgtt->base.dev))
				drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
325
			kunmap_atomic(pt_vaddr);
326
			pt_vaddr = NULL;
327 328 329 330 331
			if (++pde == GEN8_PDES_PER_PAGE) {
				pdpe++;
				pde = 0;
			}
			pte = 0;
332 333
		}
	}
334 335 336
	if (pt_vaddr) {
		if (!HAS_LLC(ppgtt->base.dev))
			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
337
		kunmap_atomic(pt_vaddr);
338
	}
339 340
}

341 342 343 344 345 346 347 348 349 350 351 352 353
static void gen8_free_page_tables(struct page **pt_pages)
{
	int i;

	if (pt_pages == NULL)
		return;

	for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
		if (pt_pages[i])
			__free_pages(pt_pages[i], 0);
}

static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
354 355 356
{
	int i;

357 358 359
	for (i = 0; i < ppgtt->num_pd_pages; i++) {
		gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
		kfree(ppgtt->gen8_pt_pages[i]);
360
		kfree(ppgtt->gen8_pt_dma_addr[i]);
361
	}
362 363 364 365 366 367

	__free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
}

static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
{
368
	struct pci_dev *hwdev = ppgtt->base.dev->pdev;
369 370 371 372 373 374 375 376
	int i, j;

	for (i = 0; i < ppgtt->num_pd_pages; i++) {
		/* TODO: In the future we'll support sparse mappings, so this
		 * will have to change. */
		if (!ppgtt->pd_dma_addr[i])
			continue;

377 378
		pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
			       PCI_DMA_BIDIRECTIONAL);
379 380 381 382

		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
			dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
			if (addr)
383 384
				pci_unmap_page(hwdev, addr, PAGE_SIZE,
					       PCI_DMA_BIDIRECTIONAL);
385 386 387 388
		}
	}
}

389 390 391 392 393
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(vm, struct i915_hw_ppgtt, base);

394 395
	gen8_ppgtt_unmap_pages(ppgtt);
	gen8_ppgtt_free(ppgtt);
396 397
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
static struct page **__gen8_alloc_page_tables(void)
{
	struct page **pt_pages;
	int i;

	pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
	if (!pt_pages)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
		pt_pages[i] = alloc_page(GFP_KERNEL);
		if (!pt_pages[i])
			goto bail;
	}

	return pt_pages;

bail:
	gen8_free_page_tables(pt_pages);
	kfree(pt_pages);
	return ERR_PTR(-ENOMEM);
}

421 422 423
static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
					   const int max_pdp)
{
424 425
	struct page **pt_pages[GEN8_LEGACY_PDPS];
	int i, ret;
426

427 428 429 430 431 432 433 434 435 436 437 438 439
	for (i = 0; i < max_pdp; i++) {
		pt_pages[i] = __gen8_alloc_page_tables();
		if (IS_ERR(pt_pages[i])) {
			ret = PTR_ERR(pt_pages[i]);
			goto unwind_out;
		}
	}

	/* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
	 * "atomic" - for cleanup purposes.
	 */
	for (i = 0; i < max_pdp; i++)
		ppgtt->gen8_pt_pages[i] = pt_pages[i];
440 441

	return 0;
442 443 444 445 446 447 448 449

unwind_out:
	while (i--) {
		gen8_free_page_tables(pt_pages[i]);
		kfree(pt_pages[i]);
	}

	return ret;
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
}

static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
{
	int i;

	for (i = 0; i < ppgtt->num_pd_pages; i++) {
		ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
						     sizeof(dma_addr_t),
						     GFP_KERNEL);
		if (!ppgtt->gen8_pt_dma_addr[i])
			return -ENOMEM;
	}

	return 0;
}

static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
						const int max_pdp)
{
	ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
	if (!ppgtt->pd_pages)
		return -ENOMEM;

	ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
	BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);

	return 0;
}

static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
			    const int max_pdp)
{
	int ret;

	ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
	if (ret)
		return ret;

	ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
	if (ret) {
		__free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
		return ret;
	}

	ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;

	ret = gen8_ppgtt_allocate_dma(ppgtt);
	if (ret)
		gen8_ppgtt_free(ppgtt);

	return ret;
}

static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
					     const int pd)
{
	dma_addr_t pd_addr;
	int ret;

	pd_addr = pci_map_page(ppgtt->base.dev->pdev,
			       &ppgtt->pd_pages[pd], 0,
			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);

	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
	if (ret)
		return ret;

	ppgtt->pd_dma_addr[pd] = pd_addr;

	return 0;
}

static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
					const int pd,
					const int pt)
{
	dma_addr_t pt_addr;
	struct page *p;
	int ret;

531
	p = ppgtt->gen8_pt_pages[pd][pt];
532 533 534 535 536 537 538 539 540 541 542
	pt_addr = pci_map_page(ppgtt->base.dev->pdev,
			       p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
	if (ret)
		return ret;

	ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;

	return 0;
}

543
/**
544 545 546 547
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
548
 *
549 550
 * FIXME: split allocation into smaller pieces. For now we only ever do this
 * once, but with full PPGTT, the multiple contiguous allocations will be bad.
551
 * TODO: Do something with the size parameter
552
 */
553 554 555
static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
{
	const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
556
	const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
557
	int i, j, ret;
558 559 560 561

	if (size % (1<<30))
		DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);

562 563 564 565
	/* 1. Do all our allocations for page directories and page tables. */
	ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
	if (ret)
		return ret;
566

567
	/*
568
	 * 2. Create DMA mappings for the page directories and page tables.
569 570
	 */
	for (i = 0; i < max_pdp; i++) {
571
		ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
572 573
		if (ret)
			goto bail;
574 575

		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
576
			ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
577 578
			if (ret)
				goto bail;
579 580 581
		}
	}

582 583 584 585 586
	/*
	 * 3. Map all the page directory entires to point to the page tables
	 * we've allocated.
	 *
	 * For now, the PPGTT helper functions all require that the PDEs are
587
	 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
588 589
	 * will never need to touch the PDEs again.
	 */
590 591 592 593 594 595 596 597
	for (i = 0; i < max_pdp; i++) {
		gen8_ppgtt_pde_t *pd_vaddr;
		pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
			dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
			pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
						      I915_CACHE_LLC);
		}
598 599
		if (!HAS_LLC(ppgtt->base.dev))
			drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
600 601 602
		kunmap_atomic(pd_vaddr);
	}

603 604 605 606 607
	ppgtt->switch_mm = gen8_mm_switch;
	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
	ppgtt->base.start = 0;
608
	ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
609

610
	ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
611

612 613 614
	DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
			 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
	DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
615 616
			 ppgtt->num_pd_entries,
			 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
617
	return 0;
618

619 620 621
bail:
	gen8_ppgtt_unmap_pages(ppgtt);
	gen8_ppgtt_free(ppgtt);
622 623 624
	return ret;
}

B
Ben Widawsky 已提交
625 626 627 628 629 630 631 632 633
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
	struct i915_address_space *vm = &ppgtt->base;
	gen6_gtt_pte_t __iomem *pd_addr;
	gen6_gtt_pte_t scratch_pte;
	uint32_t pd_entry;
	int pte, pde;

634
	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
B
Ben Widawsky 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

	pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);

	seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
		   ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
	for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
		u32 expected;
		gen6_gtt_pte_t *pt_vaddr;
		dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
		pd_entry = readl(pd_addr + pde);
		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);

		if (pd_entry != expected)
			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
				   pde,
				   pd_entry,
				   expected);
		seq_printf(m, "\tPDE: %x\n", pd_entry);

		pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
		for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
			unsigned long va =
				(pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
				(pte * PAGE_SIZE);
			int i;
			bool found = false;
			for (i = 0; i < 4; i++)
				if (pt_vaddr[pte + i] != scratch_pte)
					found = true;
			if (!found)
				continue;

			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
			for (i = 0; i < 4; i++) {
				if (pt_vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", pt_vaddr[pte + i]);
				else
					seq_puts(m, "  SCRATCH ");
			}
			seq_puts(m, "\n");
		}
		kunmap_atomic(pt_vaddr);
	}
}

681
static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
682
{
683
	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
684 685 686 687
	gen6_gtt_pte_t __iomem *pd_addr;
	uint32_t pd_entry;
	int i;

688
	WARN_ON(ppgtt->pd_offset & 0x3f);
689 690 691 692 693 694 695 696 697 698 699 700
	pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		pt_addr = ppgtt->pt_dma_addr[i];
		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);
701 702
}

703
static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
704
{
705 706 707 708 709
	BUG_ON(ppgtt->pd_offset & 0x3f);

	return (ppgtt->pd_offset / 64) << 16;
}

710
static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
711
			 struct intel_engine_cs *ring)
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
{
	int ret;

	/* NB: TLBs must be flushed and invalidated before a switch */
	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	if (ret)
		return ret;

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
	intel_ring_emit(ring, PP_DIR_DCLV_2G);
	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
	intel_ring_emit(ring, get_pd_offset(ppgtt));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

735
static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
736
			  struct intel_engine_cs *ring)
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
{
	int ret;

	/* NB: TLBs must be flushed and invalidated before a switch */
	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	if (ret)
		return ret;

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
	intel_ring_emit(ring, PP_DIR_DCLV_2G);
	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
	intel_ring_emit(ring, get_pd_offset(ppgtt));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

757 758 759 760 761 762 763
	/* XXX: RCS is the only one to auto invalidate the TLBs? */
	if (ring->id != RCS) {
		ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
		if (ret)
			return ret;
	}

764 765 766
	return 0;
}

767
static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
768
			  struct intel_engine_cs *ring)
769 770 771 772
{
	struct drm_device *dev = ppgtt->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

773

774 775 776 777 778 779 780 781
	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));

	POSTING_READ(RING_PP_DIR_DCLV(ring));

	return 0;
}

782
static void gen8_ppgtt_enable(struct drm_device *dev)
783 784
{
	struct drm_i915_private *dev_priv = dev->dev_private;
785
	struct intel_engine_cs *ring;
786
	int j;
787

788 789 790 791 792
	for_each_ring(ring, dev_priv, j) {
		I915_WRITE(RING_MODE_GEN7(ring),
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
	}
}
793

794
static void gen7_ppgtt_enable(struct drm_device *dev)
795
{
796
	struct drm_i915_private *dev_priv = dev->dev_private;
797
	struct intel_engine_cs *ring;
798
	uint32_t ecochk, ecobits;
799
	int i;
800

801 802
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
803

804 805 806 807 808 809 810 811
	ecochk = I915_READ(GAM_ECOCHK);
	if (IS_HASWELL(dev)) {
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
812

813
	for_each_ring(ring, dev_priv, i) {
814
		/* GFX_MODE is per-ring on gen7+ */
815 816
		I915_WRITE(RING_MODE_GEN7(ring),
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
817
	}
818
}
819

820
static void gen6_ppgtt_enable(struct drm_device *dev)
821
{
822
	struct drm_i915_private *dev_priv = dev->dev_private;
823
	uint32_t ecochk, gab_ctl, ecobits;
824

825 826 827
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
828

829 830 831 832 833 834 835
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
836 837
}

838
/* PPGTT support for Sandybdrige/Gen6 and later */
839
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
840 841
				   uint64_t start,
				   uint64_t length,
842
				   bool use_scratch)
843
{
844 845
	struct i915_hw_ppgtt *ppgtt =
		container_of(vm, struct i915_hw_ppgtt, base);
846
	gen6_gtt_pte_t *pt_vaddr, scratch_pte;
847 848
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
849
	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
850 851
	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
	unsigned last_pte, i;
852

853
	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
854

855 856 857 858 859
	while (num_entries) {
		last_pte = first_pte + num_entries;
		if (last_pte > I915_PPGTT_PT_ENTRIES)
			last_pte = I915_PPGTT_PT_ENTRIES;

860
		pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
861

862 863
		for (i = first_pte; i < last_pte; i++)
			pt_vaddr[i] = scratch_pte;
864 865 866

		kunmap_atomic(pt_vaddr);

867 868
		num_entries -= last_pte - first_pte;
		first_pte = 0;
869
		act_pt++;
870
	}
871 872
}

873
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
874
				      struct sg_table *pages,
875
				      uint64_t start,
876
				      enum i915_cache_level cache_level, u32 flags)
877
{
878 879
	struct i915_hw_ppgtt *ppgtt =
		container_of(vm, struct i915_hw_ppgtt, base);
880
	gen6_gtt_pte_t *pt_vaddr;
881
	unsigned first_entry = start >> PAGE_SHIFT;
882
	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
883 884 885
	unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
	struct sg_page_iter sg_iter;

886
	pt_vaddr = NULL;
887
	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
888 889
		if (pt_vaddr == NULL)
			pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
890

891 892
		pt_vaddr[act_pte] =
			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
893 894
				       cache_level, true, flags);

895 896
		if (++act_pte == I915_PPGTT_PT_ENTRIES) {
			kunmap_atomic(pt_vaddr);
897
			pt_vaddr = NULL;
898
			act_pt++;
899
			act_pte = 0;
900 901
		}
	}
902 903
	if (pt_vaddr)
		kunmap_atomic(pt_vaddr);
904 905
}

906
static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
907
{
908 909 910 911
	int i;

	if (ppgtt->pt_dma_addr) {
		for (i = 0; i < ppgtt->num_pd_entries; i++)
912
			pci_unmap_page(ppgtt->base.dev->pdev,
913 914 915
				       ppgtt->pt_dma_addr[i],
				       4096, PCI_DMA_BIDIRECTIONAL);
	}
916 917 918 919 920
}

static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
{
	int i;
921 922 923 924 925 926 927

	kfree(ppgtt->pt_dma_addr);
	for (i = 0; i < ppgtt->num_pd_entries; i++)
		__free_page(ppgtt->pt_pages[i]);
	kfree(ppgtt->pt_pages);
}

928 929 930 931 932 933 934 935 936 937 938
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(vm, struct i915_hw_ppgtt, base);

	drm_mm_remove_node(&ppgtt->node);

	gen6_ppgtt_unmap_pages(ppgtt);
	gen6_ppgtt_free(ppgtt);
}

939
static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
940
{
941
	struct drm_device *dev = ppgtt->base.dev;
942
	struct drm_i915_private *dev_priv = dev->dev_private;
943
	bool retried = false;
944
	int ret;
945

946 947 948 949 950
	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
951
alloc:
952 953 954 955
	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
						  &ppgtt->node, GEN6_PD_SIZE,
						  GEN6_PD_ALIGN, 0,
						  0, dev_priv->gtt.base.total,
956
						  DRM_MM_TOPDOWN);
957 958 959
	if (ret == -ENOSPC && !retried) {
		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
960 961 962
					       I915_CACHE_NONE,
					       0, dev_priv->gtt.base.total,
					       0);
963 964 965 966 967 968
		if (ret)
			return ret;

		retried = true;
		goto alloc;
	}
969 970 971

	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
		DRM_DEBUG("Forced to use aperture for PDEs\n");
972

973
	ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
974 975 976 977 978 979 980
	return ret;
}

static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
{
	int i;

981
	ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
982
				  GFP_KERNEL);
983 984

	if (!ppgtt->pt_pages)
985
		return -ENOMEM;
986 987 988

	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		if (!ppgtt->pt_pages[i]) {
			gen6_ppgtt_free(ppgtt);
			return -ENOMEM;
		}
	}

	return 0;
}

static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
{
	int ret;

	ret = gen6_ppgtt_allocate_page_directories(ppgtt);
	if (ret)
		return ret;

	ret = gen6_ppgtt_allocate_page_tables(ppgtt);
	if (ret) {
		drm_mm_remove_node(&ppgtt->node);
		return ret;
1010 1011
	}

1012
	ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
B
Ben Widawsky 已提交
1013
				     GFP_KERNEL);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	if (!ppgtt->pt_dma_addr) {
		drm_mm_remove_node(&ppgtt->node);
		gen6_ppgtt_free(ppgtt);
		return -ENOMEM;
	}

	return 0;
}

static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
{
	struct drm_device *dev = ppgtt->base.dev;
	int i;
1027

B
Ben Widawsky 已提交
1028 1029
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;
1030

B
Ben Widawsky 已提交
1031 1032
		pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
				       PCI_DMA_BIDIRECTIONAL);
1033

B
Ben Widawsky 已提交
1034
		if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1035 1036
			gen6_ppgtt_unmap_pages(ppgtt);
			return -EIO;
1037
		}
1038

B
Ben Widawsky 已提交
1039
		ppgtt->pt_dma_addr[i] = pt_addr;
1040 1041
	}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	return 0;
}

static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
{
	struct drm_device *dev = ppgtt->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
	if (IS_GEN6(dev)) {
		ppgtt->switch_mm = gen6_mm_switch;
	} else if (IS_HASWELL(dev)) {
		ppgtt->switch_mm = hsw_mm_switch;
	} else if (IS_GEN7(dev)) {
		ppgtt->switch_mm = gen7_mm_switch;
	} else
		BUG();

	ret = gen6_ppgtt_alloc(ppgtt);
	if (ret)
		return ret;

	ret = gen6_ppgtt_setup_page_tables(ppgtt);
	if (ret) {
		gen6_ppgtt_free(ppgtt);
		return ret;
	}

	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.start = 0;
1075
	ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
B
Ben Widawsky 已提交
1076
	ppgtt->debug_dump = gen6_dump_ppgtt;
1077

1078 1079
	ppgtt->pd_offset =
		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1080

1081
	ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1082

1083 1084 1085
	DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
			 ppgtt->node.size >> 20,
			 ppgtt->node.start / PAGE_SIZE);
1086

1087 1088 1089 1090
	gen6_write_pdes(ppgtt);
	DRM_DEBUG("Adding PPGTT at offset %x\n",
		  ppgtt->pd_offset << 10);

1091
	return 0;
1092 1093
}

1094
static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1095 1096 1097
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1098
	ppgtt->base.dev = dev;
1099
	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1100

1101
	if (INTEL_INFO(dev)->gen < 8)
1102
		return gen6_ppgtt_init(ppgtt);
1103
	else if (IS_GEN8(dev) || IS_GEN9(dev))
1104
		return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1105 1106
	else
		BUG();
1107 1108 1109 1110 1111
}
int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret = 0;
1112

1113 1114
	ret = __hw_ppgtt_init(dev, ppgtt);
	if (ret == 0) {
1115
		kref_init(&ppgtt->ref);
1116 1117
		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
			    ppgtt->base.total);
1118
		i915_init_vm(dev_priv, &ppgtt->base);
1119
	}
1120 1121 1122 1123

	return ret;
}

1124 1125 1126 1127 1128 1129 1130
int i915_ppgtt_init_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	int i, ret = 0;

1131 1132 1133 1134 1135 1136
	/* In the case of execlists, PPGTT is enabled by the context descriptor
	 * and the PDPs are contained within the context itself.  We don't
	 * need to do anything here. */
	if (i915.enable_execlists)
		return 0;

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	if (!USES_PPGTT(dev))
		return 0;

	if (IS_GEN6(dev))
		gen6_ppgtt_enable(dev);
	else if (IS_GEN7(dev))
		gen7_ppgtt_enable(dev);
	else if (INTEL_INFO(dev)->gen >= 8)
		gen8_ppgtt_enable(dev);
	else
		WARN_ON(1);

	if (ppgtt) {
		for_each_ring(ring, dev_priv, i) {
1151
			ret = ppgtt->switch_mm(ppgtt, ring);
1152 1153 1154 1155 1156 1157 1158
			if (ret != 0)
				return ret;
		}
	}

	return ret;
}
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
struct i915_hw_ppgtt *
i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
{
	struct i915_hw_ppgtt *ppgtt;
	int ret;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

	ret = i915_ppgtt_init(dev, ppgtt);
	if (ret) {
		kfree(ppgtt);
		return ERR_PTR(ret);
	}

	ppgtt->file_priv = fpriv;

	return ppgtt;
}

1180 1181 1182 1183 1184 1185 1186 1187 1188
void  i915_ppgtt_release(struct kref *kref)
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

	/* vmas should already be unbound */
	WARN_ON(!list_empty(&ppgtt->base.active_list));
	WARN_ON(!list_empty(&ppgtt->base.inactive_list));

1189 1190 1191
	list_del(&ppgtt->base.global_link);
	drm_mm_takedown(&ppgtt->base.mm);

1192 1193 1194 1195
	ppgtt->base.cleanup(&ppgtt->base);
	kfree(ppgtt);
}

1196
static void
1197 1198 1199
ppgtt_bind_vma(struct i915_vma *vma,
	       enum i915_cache_level cache_level,
	       u32 flags)
1200
{
1201 1202 1203 1204
	/* Currently applicable only to VLV */
	if (vma->obj->gt_ro)
		flags |= PTE_READ_ONLY;

1205
	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1206
				cache_level, flags);
1207 1208
}

1209
static void ppgtt_unbind_vma(struct i915_vma *vma)
1210
{
1211
	vma->vm->clear_range(vma->vm,
1212 1213
			     vma->node.start,
			     vma->obj->base.size,
1214
			     true);
1215 1216
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
extern int intel_iommu_gfx_mapped;
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
static inline bool needs_idle_maps(struct drm_device *dev)
{
#ifdef CONFIG_INTEL_IOMMU
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
		return true;
#endif
	return false;
}

1233 1234 1235 1236
static bool do_idling(struct drm_i915_private *dev_priv)
{
	bool ret = dev_priv->mm.interruptible;

1237
	if (unlikely(dev_priv->gtt.do_idle_maps)) {
1238
		dev_priv->mm.interruptible = false;
1239
		if (i915_gpu_idle(dev_priv->dev)) {
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
			DRM_ERROR("Couldn't idle GPU\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}

	return ret;
}

static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
{
1251
	if (unlikely(dev_priv->gtt.do_idle_maps))
1252 1253 1254
		dev_priv->mm.interruptible = interruptible;
}

1255 1256 1257
void i915_check_and_clear_faults(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1258
	struct intel_engine_cs *ring;
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	int i;

	if (INTEL_INFO(dev)->gen < 6)
		return;

	for_each_ring(ring, dev_priv, i) {
		u32 fault_reg;
		fault_reg = I915_READ(RING_FAULT_REG(ring));
		if (fault_reg & RING_FAULT_VALID) {
			DRM_DEBUG_DRIVER("Unexpected fault\n"
					 "\tAddr: 0x%08lx\\n"
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
					 fault_reg & PAGE_MASK,
					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault_reg),
					 RING_FAULT_FAULT_TYPE(fault_reg));
			I915_WRITE(RING_FAULT_REG(ring),
				   fault_reg & ~RING_FAULT_VALID);
		}
	}
	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
}

void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
	if (INTEL_INFO(dev)->gen < 6)
		return;

	i915_check_and_clear_faults(dev);

	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1297 1298
				       dev_priv->gtt.base.start,
				       dev_priv->gtt.base.total,
1299
				       true);
1300 1301
}

1302 1303 1304
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1305
	struct drm_i915_gem_object *obj;
1306
	struct i915_address_space *vm;
1307

1308 1309
	i915_check_and_clear_faults(dev);

1310
	/* First fill our portion of the GTT with scratch pages */
1311
	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1312 1313
				       dev_priv->gtt.base.start,
				       dev_priv->gtt.base.total,
1314
				       true);
1315

1316
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1317 1318 1319 1320 1321
		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
							   &dev_priv->gtt.base);
		if (!vma)
			continue;

1322
		i915_gem_clflush_object(obj, obj->pin_display);
1323 1324 1325 1326 1327 1328
		/* The bind_vma code tries to be smart about tracking mappings.
		 * Unfortunately above, we've just wiped out the mappings
		 * without telling our object about it. So we need to fake it.
		 */
		obj->has_global_gtt_mapping = 0;
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1329 1330
	}

1331

1332
	if (INTEL_INFO(dev)->gen >= 8) {
1333 1334 1335 1336 1337
		if (IS_CHERRYVIEW(dev))
			chv_setup_private_ppat(dev_priv);
		else
			bdw_setup_private_ppat(dev_priv);

1338
		return;
1339
	}
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		/* TODO: Perhaps it shouldn't be gen6 specific */
		if (i915_is_ggtt(vm)) {
			if (dev_priv->mm.aliasing_ppgtt)
				gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
			continue;
		}

		gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1350 1351
	}

1352
	i915_gem_chipset_flush(dev);
1353
}
1354

1355
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1356
{
1357
	if (obj->has_dma_mapping)
1358
		return 0;
1359 1360 1361 1362 1363 1364 1365

	if (!dma_map_sg(&obj->base.dev->pdev->dev,
			obj->pages->sgl, obj->pages->nents,
			PCI_DMA_BIDIRECTIONAL))
		return -ENOSPC;

	return 0;
1366 1367
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
{
#ifdef writeq
	writeq(pte, addr);
#else
	iowrite32((u32)pte, addr);
	iowrite32(pte >> 32, addr + 4);
#endif
}

static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
				     struct sg_table *st,
1380
				     uint64_t start,
1381
				     enum i915_cache_level level, u32 unused)
1382 1383
{
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1384
	unsigned first_entry = start >> PAGE_SHIFT;
1385 1386 1387 1388
	gen8_gtt_pte_t __iomem *gtt_entries =
		(gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
	int i = 0;
	struct sg_page_iter sg_iter;
1389
	dma_addr_t addr = 0; /* shut up gcc */
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
		addr = sg_dma_address(sg_iter.sg) +
			(sg_iter.sg_pgoffset << PAGE_SHIFT);
		gen8_set_pte(&gtt_entries[i],
			     gen8_pte_encode(addr, level, true));
		i++;
	}

	/*
	 * XXX: This serves as a posting read to make sure that the PTE has
	 * actually been updated. There is some concern that even though
	 * registers and PTEs are within the same BAR that they are potentially
	 * of NUMA access patterns. Therefore, even with the way we assume
	 * hardware should work, we must keep this posting read for paranoia.
	 */
	if (i != 0)
		WARN_ON(readq(&gtt_entries[i-1])
			!= gen8_pte_encode(addr, level, true));

	/* This next bit makes the above posting read even more important. We
	 * want to flush the TLBs only after we're certain all the PTE updates
	 * have finished.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

1418 1419 1420 1421 1422 1423
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
1424
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1425
				     struct sg_table *st,
1426
				     uint64_t start,
1427
				     enum i915_cache_level level, u32 flags)
1428
{
1429
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1430
	unsigned first_entry = start >> PAGE_SHIFT;
1431 1432
	gen6_gtt_pte_t __iomem *gtt_entries =
		(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1433 1434
	int i = 0;
	struct sg_page_iter sg_iter;
1435
	dma_addr_t addr = 0;
1436

1437
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1438
		addr = sg_page_iter_dma_address(&sg_iter);
1439
		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1440
		i++;
1441 1442 1443 1444 1445 1446 1447 1448
	}

	/* XXX: This serves as a posting read to make sure that the PTE has
	 * actually been updated. There is some concern that even though
	 * registers and PTEs are within the same BAR that they are potentially
	 * of NUMA access patterns. Therefore, even with the way we assume
	 * hardware should work, we must keep this posting read for paranoia.
	 */
1449 1450 1451 1452
	if (i != 0) {
		unsigned long gtt = readl(&gtt_entries[i-1]);
		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
	}
1453 1454 1455 1456 1457 1458 1459

	/* This next bit makes the above posting read even more important. We
	 * want to flush the TLBs only after we're certain all the PTE updates
	 * have finished.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1460 1461
}

1462
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1463 1464
				  uint64_t start,
				  uint64_t length,
1465 1466 1467
				  bool use_scratch)
{
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1468 1469
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
		(gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	scratch_pte = gen8_pte_encode(vm->scratch.addr,
				      I915_CACHE_LLC,
				      use_scratch);
	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
	readl(gtt_base);
}

1488
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1489 1490
				  uint64_t start,
				  uint64_t length,
1491
				  bool use_scratch)
1492
{
1493
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1494 1495
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
1496 1497
	gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
		(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1498
	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1499 1500 1501 1502 1503 1504 1505
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

1506
	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1507

1508 1509 1510 1511 1512
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
	readl(gtt_base);
}

1513 1514 1515 1516

static void i915_ggtt_bind_vma(struct i915_vma *vma,
			       enum i915_cache_level cache_level,
			       u32 unused)
1517
{
1518
	const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1519 1520 1521
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

1522 1523 1524
	BUG_ON(!i915_is_ggtt(vma->vm));
	intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
	vma->obj->has_global_gtt_mapping = 1;
1525 1526
}

1527
static void i915_ggtt_clear_range(struct i915_address_space *vm,
1528 1529
				  uint64_t start,
				  uint64_t length,
1530
				  bool unused)
1531
{
1532 1533
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
1534 1535 1536
	intel_gtt_clear_range(first_entry, num_entries);
}

1537 1538 1539 1540
static void i915_ggtt_unbind_vma(struct i915_vma *vma)
{
	const unsigned int first = vma->node.start >> PAGE_SHIFT;
	const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1541

1542 1543 1544 1545
	BUG_ON(!i915_is_ggtt(vma->vm));
	vma->obj->has_global_gtt_mapping = 0;
	intel_gtt_clear_range(first, size);
}
1546

1547 1548 1549
static void ggtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 flags)
1550
{
1551
	struct drm_device *dev = vma->vm->dev;
1552
	struct drm_i915_private *dev_priv = dev->dev_private;
1553
	struct drm_i915_gem_object *obj = vma->obj;
1554

1555 1556 1557 1558
	/* Currently applicable only to VLV */
	if (obj->gt_ro)
		flags |= PTE_READ_ONLY;

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	/* If there is no aliasing PPGTT, or the caller needs a global mapping,
	 * or we have a global mapping already but the cacheability flags have
	 * changed, set the global PTEs.
	 *
	 * If there is an aliasing PPGTT it is anecdotally faster, so use that
	 * instead if none of the above hold true.
	 *
	 * NB: A global mapping should only be needed for special regions like
	 * "gtt mappable", SNB errata, or if specified via special execbuf
	 * flags. At all other times, the GPU will use the aliasing PPGTT.
	 */
	if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
		if (!obj->has_global_gtt_mapping ||
		    (cache_level != obj->cache_level)) {
1573 1574
			vma->vm->insert_entries(vma->vm, obj->pages,
						vma->node.start,
1575
						cache_level, flags);
1576 1577 1578
			obj->has_global_gtt_mapping = 1;
		}
	}
1579

1580 1581 1582 1583 1584
	if (dev_priv->mm.aliasing_ppgtt &&
	    (!obj->has_aliasing_ppgtt_mapping ||
	     (cache_level != obj->cache_level))) {
		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
		appgtt->base.insert_entries(&appgtt->base,
1585 1586
					    vma->obj->pages,
					    vma->node.start,
1587
					    cache_level, flags);
1588 1589
		vma->obj->has_aliasing_ppgtt_mapping = 1;
	}
1590 1591
}

1592
static void ggtt_unbind_vma(struct i915_vma *vma)
1593
{
1594
	struct drm_device *dev = vma->vm->dev;
1595
	struct drm_i915_private *dev_priv = dev->dev_private;
1596 1597 1598
	struct drm_i915_gem_object *obj = vma->obj;

	if (obj->has_global_gtt_mapping) {
1599 1600 1601
		vma->vm->clear_range(vma->vm,
				     vma->node.start,
				     obj->base.size,
1602 1603 1604
				     true);
		obj->has_global_gtt_mapping = 0;
	}
1605

1606 1607 1608
	if (obj->has_aliasing_ppgtt_mapping) {
		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
		appgtt->base.clear_range(&appgtt->base,
1609 1610
					 vma->node.start,
					 obj->base.size,
1611 1612 1613
					 true);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
1614 1615 1616
}

void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1617
{
1618 1619 1620 1621 1622 1623
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible;

	interruptible = do_idling(dev_priv);

1624 1625 1626 1627
	if (!obj->has_dma_mapping)
		dma_unmap_sg(&dev->pdev->dev,
			     obj->pages->sgl, obj->pages->nents,
			     PCI_DMA_BIDIRECTIONAL);
1628 1629

	undo_idling(dev_priv, interruptible);
1630
}
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
static void i915_gtt_color_adjust(struct drm_mm_node *node,
				  unsigned long color,
				  unsigned long *start,
				  unsigned long *end)
{
	if (node->color != color)
		*start += 4096;

	if (!list_empty(&node->node_list)) {
		node = list_entry(node->node_list.next,
				  struct drm_mm_node,
				  node_list);
		if (node->allocated && node->color != color)
			*end -= 4096;
	}
}
1648

1649 1650 1651 1652
int i915_gem_setup_global_gtt(struct drm_device *dev,
			      unsigned long start,
			      unsigned long mappable_end,
			      unsigned long end)
1653
{
1654 1655 1656 1657 1658 1659 1660 1661 1662
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
1663 1664
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1665 1666 1667
	struct drm_mm_node *entry;
	struct drm_i915_gem_object *obj;
	unsigned long hole_start, hole_end;
1668
	int ret;
1669

1670 1671
	BUG_ON(mappable_end > end);

1672
	/* Subtract the guard page ... */
1673
	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1674
	if (!HAS_LLC(dev))
1675
		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1676

1677
	/* Mark any preallocated objects as occupied */
1678
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1679
		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1680

1681
		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1682 1683 1684
			      i915_gem_obj_ggtt_offset(obj), obj->base.size);

		WARN_ON(i915_gem_obj_ggtt_bound(obj));
1685
		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1686 1687 1688 1689
		if (ret) {
			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
			return ret;
		}
1690 1691 1692
		obj->has_global_gtt_mapping = 1;
	}

1693 1694
	dev_priv->gtt.base.start = start;
	dev_priv->gtt.base.total = end - start;
1695

1696
	/* Clear any non-preallocated blocks */
1697
	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1698 1699
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
1700 1701
		ggtt_vm->clear_range(ggtt_vm, hole_start,
				     hole_end - hole_start, true);
1702 1703 1704
	}

	/* And finally clear the reserved guard page */
1705
	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
		struct i915_hw_ppgtt *ppgtt;

		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
		if (!ppgtt)
			return -ENOMEM;

		ret = __hw_ppgtt_init(dev, ppgtt);
		if (ret != 0)
			return ret;

		dev_priv->mm.aliasing_ppgtt = ppgtt;
	}

1721
	return 0;
1722 1723
}

1724 1725 1726 1727 1728
void i915_gem_init_global_gtt(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;

1729
	gtt_size = dev_priv->gtt.base.total;
1730
	mappable_size = dev_priv->gtt.mappable_end;
1731

1732
	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1733 1734
}

1735 1736 1737 1738 1739
void i915_global_gtt_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_address_space *vm = &dev_priv->gtt.base;

1740 1741 1742 1743 1744 1745
	if (dev_priv->mm.aliasing_ppgtt) {
		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;

		ppgtt->base.cleanup(&ppgtt->base);
	}

1746 1747 1748 1749 1750 1751 1752
	if (drm_mm_initialized(&vm->mm)) {
		drm_mm_takedown(&vm->mm);
		list_del(&vm->global_link);
	}

	vm->cleanup(vm);
}
1753

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
static int setup_scratch_page(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct page *page;
	dma_addr_t dma_addr;

	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
	if (page == NULL)
		return -ENOMEM;
	set_pages_uc(page, 1);

#ifdef CONFIG_INTEL_IOMMU
	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
				PCI_DMA_BIDIRECTIONAL);
	if (pci_dma_mapping_error(dev->pdev, dma_addr))
		return -EINVAL;
#else
	dma_addr = page_to_phys(page);
#endif
1773 1774
	dev_priv->gtt.base.scratch.page = page;
	dev_priv->gtt.base.scratch.addr = dma_addr;
1775 1776 1777 1778 1779 1780 1781

	return 0;
}

static void teardown_scratch_page(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1782 1783 1784 1785
	struct page *page = dev_priv->gtt.base.scratch.page;

	set_pages_wb(page, 1);
	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1786
		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1787
	__free_page(page);
1788 1789 1790 1791 1792 1793 1794 1795 1796
}

static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

1797 1798 1799 1800 1801 1802
static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1803 1804 1805 1806 1807 1808 1809

#ifdef CONFIG_X86_32
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

1810 1811 1812
	return bdw_gmch_ctl << 20;
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

1824
static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1825 1826 1827 1828 1829 1830
{
	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
	return snb_gmch_ctl << 25; /* 32 MB units */
}

1831 1832 1833 1834 1835 1836 1837
static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
{
	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
	return bdw_gmch_ctl << 25; /* 32 MB units */
}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static size_t chv_get_stolen_size(u16 gmch_ctrl)
{
	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GMS_MASK;

	/*
	 * 0x0  to 0x10: 32MB increments starting at 0MB
	 * 0x11 to 0x16: 4MB increments starting at 8MB
	 * 0x17 to 0x1d: 4MB increments start at 36MB
	 */
	if (gmch_ctrl < 0x11)
		return gmch_ctrl << 25;
	else if (gmch_ctrl < 0x17)
		return (gmch_ctrl - 0x11 + 2) << 22;
	else
		return (gmch_ctrl - 0x17 + 9) << 22;
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
{
	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;

	if (gen9_gmch_ctl < 0xf0)
		return gen9_gmch_ctl << 25; /* 32 MB units */
	else
		/* 4MB increments starting at 0xf0 for 4MB */
		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
}

1868 1869 1870 1871
static int ggtt_probe_common(struct drm_device *dev,
			     size_t gtt_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1872
	phys_addr_t gtt_phys_addr;
1873 1874 1875
	int ret;

	/* For Modern GENs the PTEs and register space are split in the BAR */
1876
	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1877 1878
		(pci_resource_len(dev->pdev, 0) / 2);

1879
	dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	if (!dev_priv->gtt.gsm) {
		DRM_ERROR("Failed to map the gtt page table\n");
		return -ENOMEM;
	}

	ret = setup_scratch_page(dev);
	if (ret) {
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
		iounmap(dev_priv->gtt.gsm);
	}

	return ret;
}

1895 1896 1897
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
1898
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
{
	uint64_t pat;

	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));

	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
	 * write would work. */
	I915_WRITE(GEN8_PRIVATE_PAT, pat);
	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
{
	uint64_t pat;

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
	 * Note that the harware enforces snooping for all page
	 * table accesses. The snoop bit is actually ignored for
	 * PDEs.
	 */
	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(1, 0) |
	      GEN8_PPAT(2, 0) |
	      GEN8_PPAT(3, 0) |
	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(7, CHV_PPAT_SNOOP);

	I915_WRITE(GEN8_PRIVATE_PAT, pat);
	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
static int gen8_gmch_probe(struct drm_device *dev,
			   size_t *gtt_total,
			   size_t *stolen,
			   phys_addr_t *mappable_base,
			   unsigned long *mappable_end)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned int gtt_size;
	u16 snb_gmch_ctl;
	int ret;

	/* TODO: We're not aware of mappable constraints on gen8 yet */
	*mappable_base = pci_resource_start(dev->pdev, 2);
	*mappable_end = pci_resource_len(dev->pdev, 2);

	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));

	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);

1964 1965 1966 1967
	if (INTEL_INFO(dev)->gen >= 9) {
		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
	} else if (IS_CHERRYVIEW(dev)) {
1968 1969 1970 1971 1972 1973
		*stolen = chv_get_stolen_size(snb_gmch_ctl);
		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
	} else {
		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
	}
1974

1975
	*gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1976

1977 1978 1979 1980
	if (IS_CHERRYVIEW(dev))
		chv_setup_private_ppat(dev_priv);
	else
		bdw_setup_private_ppat(dev_priv);
1981

1982 1983
	ret = ggtt_probe_common(dev, gtt_size);

1984 1985
	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1986 1987 1988 1989

	return ret;
}

1990 1991
static int gen6_gmch_probe(struct drm_device *dev,
			   size_t *gtt_total,
1992 1993 1994
			   size_t *stolen,
			   phys_addr_t *mappable_base,
			   unsigned long *mappable_end)
1995 1996
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1997
	unsigned int gtt_size;
1998 1999 2000
	u16 snb_gmch_ctl;
	int ret;

2001 2002 2003
	*mappable_base = pci_resource_start(dev->pdev, 2);
	*mappable_end = pci_resource_len(dev->pdev, 2);

2004 2005
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
2006
	 */
2007
	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2008 2009 2010
		DRM_ERROR("Unknown GMADR size (%lx)\n",
			  dev_priv->gtt.mappable_end);
		return -ENXIO;
2011 2012 2013 2014 2015 2016
	}

	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);

2017
	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
2018

2019 2020
	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
	*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
2021

2022
	ret = ggtt_probe_common(dev, gtt_size);
2023

2024 2025
	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2026

2027 2028 2029
	return ret;
}

2030
static void gen6_gmch_remove(struct i915_address_space *vm)
2031
{
2032 2033

	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2034

2035 2036
	iounmap(gtt->gsm);
	teardown_scratch_page(vm->dev);
2037
}
2038 2039 2040

static int i915_gmch_probe(struct drm_device *dev,
			   size_t *gtt_total,
2041 2042 2043
			   size_t *stolen,
			   phys_addr_t *mappable_base,
			   unsigned long *mappable_end)
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

2054
	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2055 2056

	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2057
	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2058

2059 2060 2061
	if (unlikely(dev_priv->gtt.do_idle_maps))
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

2062 2063 2064
	return 0;
}

2065
static void i915_gmch_remove(struct i915_address_space *vm)
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
{
	intel_gmch_remove();
}

int i915_gem_gtt_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_gtt *gtt = &dev_priv->gtt;
	int ret;

	if (INTEL_INFO(dev)->gen <= 5) {
2077
		gtt->gtt_probe = i915_gmch_probe;
2078
		gtt->base.cleanup = i915_gmch_remove;
2079
	} else if (INTEL_INFO(dev)->gen < 8) {
2080
		gtt->gtt_probe = gen6_gmch_probe;
2081
		gtt->base.cleanup = gen6_gmch_remove;
2082
		if (IS_HASWELL(dev) && dev_priv->ellc_size)
2083
			gtt->base.pte_encode = iris_pte_encode;
2084
		else if (IS_HASWELL(dev))
2085
			gtt->base.pte_encode = hsw_pte_encode;
2086
		else if (IS_VALLEYVIEW(dev))
2087
			gtt->base.pte_encode = byt_pte_encode;
2088 2089
		else if (INTEL_INFO(dev)->gen >= 7)
			gtt->base.pte_encode = ivb_pte_encode;
2090
		else
2091
			gtt->base.pte_encode = snb_pte_encode;
2092 2093 2094
	} else {
		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2095 2096
	}

2097
	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2098
			     &gtt->mappable_base, &gtt->mappable_end);
2099
	if (ret)
2100 2101
		return ret;

2102 2103
	gtt->base.dev = dev;

2104
	/* GMADR is the PCI mmio aperture into the global GTT. */
2105 2106
	DRM_INFO("Memory usable by graphics device = %zdM\n",
		 gtt->base.total >> 20);
2107 2108
	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2109 2110 2111 2112
#ifdef CONFIG_INTEL_IOMMU
	if (intel_iommu_gfx_mapped)
		DRM_INFO("VT-d active for gfx access\n");
#endif
2113 2114 2115 2116 2117 2118 2119 2120
	/*
	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
	 * user's requested state against the hardware/driver capabilities.  We
	 * do this now so that we can print out any log messages once rather
	 * than every time we check intel_enable_ppgtt().
	 */
	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2121 2122 2123

	return 0;
}
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
					      struct i915_address_space *vm)
{
	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
	if (vma == NULL)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&vma->vma_link);
	INIT_LIST_HEAD(&vma->mm_list);
	INIT_LIST_HEAD(&vma->exec_list);
	vma->vm = vm;
	vma->obj = obj;

	switch (INTEL_INFO(vm->dev)->gen) {
2139
	case 9:
2140 2141 2142
	case 8:
	case 7:
	case 6:
2143 2144 2145 2146 2147 2148 2149
		if (i915_is_ggtt(vm)) {
			vma->unbind_vma = ggtt_unbind_vma;
			vma->bind_vma = ggtt_bind_vma;
		} else {
			vma->unbind_vma = ppgtt_unbind_vma;
			vma->bind_vma = ppgtt_bind_vma;
		}
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
		break;
	case 5:
	case 4:
	case 3:
	case 2:
		BUG_ON(!i915_is_ggtt(vm));
		vma->unbind_vma = i915_ggtt_unbind_vma;
		vma->bind_vma = i915_ggtt_bind_vma;
		break;
	default:
		BUG();
	}

	/* Keep GGTT vmas first to make debug easier */
	if (i915_is_ggtt(vm))
		list_add(&vma->vma_link, &obj->vma_list);
2166
	else {
2167
		list_add_tail(&vma->vma_link, &obj->vma_list);
2168 2169
		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
	}
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

	return vma;
}

struct i915_vma *
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
				  struct i915_address_space *vm)
{
	struct i915_vma *vma;

	vma = i915_gem_obj_to_vma(obj, vm);
	if (!vma)
		vma = __i915_gem_vma_create(obj, vm);

	return vma;
}
反馈
建议
客服 返回
顶部