dmar.c 33.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28
 */

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */

31 32
#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
33 34
#include <linux/iova.h>
#include <linux/intel-iommu.h>
35
#include <linux/timer.h>
36 37
#include <linux/irq.h>
#include <linux/interrupt.h>
38
#include <linux/tboot.h>
39
#include <linux/dmi.h>
40
#include <linux/slab.h>
41
#include <asm/irq_remapping.h>
42
#include <asm/iommu_table.h>
43

44 45
#include "irq_remapping.h"

46 47 48 49 50 51
/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

52
struct acpi_table_header * __initdata dmar_tbl;
53
static acpi_size dmar_tbl_size;
54

55
static int alloc_iommu(struct dmar_drhd_unit *drhd);
56
static void free_iommu(struct intel_iommu *iommu);
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
91
			pr_warn("Device scope bus [%d] not found\n", scope->bus);
92 93
			break;
		}
L
Lv Zheng 已提交
94
		pdev = pci_get_slot(bus, PCI_DEVFN(path->device, path->function));
95
		if (!pdev) {
96
			/* warning will be printed below */
97 98 99 100 101 102 103
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
104
		pr_warn("Device scope device [%04x:%02x:%02x.%02x] not found\n",
L
Lv Zheng 已提交
105
			segment, scope->bus, path->device, path->function);
106 107 108 109 110 111
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
112 113
		pr_warn("Device scope type does not match for %s\n",
			pci_name(pdev));
114 115 116 117 118 119
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

120 121
int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				struct pci_dev ***devices, u16 segment)
122 123 124 125 126 127 128 129 130 131 132 133
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
134 135
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
136
			pr_warn("Unsupported device scope\n");
137
		}
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
156
				dmar_free_dev_scope(devices, cnt);
157 158 159 160 161 162 163 164 165 166
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

167 168 169 170 171 172 173 174 175 176 177
void dmar_free_dev_scope(struct pci_dev ***devices, int *cnt)
{
	if (*devices && *cnt) {
		while (--*cnt >= 0)
			pci_dev_put((*devices)[*cnt]);
		kfree(*devices);
		*devices = NULL;
		*cnt = 0;
	}
}

178 179 180 181 182 183 184 185 186 187 188 189
/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

190
	drhd = (struct acpi_dmar_hardware_unit *)header;
191 192 193 194
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

195
	dmaru->hdr = header;
196
	dmaru->reg_base_addr = drhd->address;
197
	dmaru->segment = drhd->segment;
198 199
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

200 201 202 203 204 205 206 207 208
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

209 210 211 212 213 214 215 216 217
static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
{
	if (dmaru->devices && dmaru->devices_cnt)
		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
	if (dmaru->iommu)
		free_iommu(dmaru->iommu);
	kfree(dmaru);
}

218
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
219 220 221 222 223
{
	struct acpi_dmar_hardware_unit *drhd;

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

224 225 226
	if (dmaru->include_all)
		return 0;

227 228 229 230
	return dmar_parse_dev_scope((void *)(drhd + 1),
				    ((void *)drhd) + drhd->header.length,
				    &dmaru->devices_cnt, &dmaru->devices,
				    drhd->segment);
231 232
}

233
#ifdef CONFIG_ACPI_NUMA
234 235 236 237 238 239 240
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
241
	for_each_drhd_unit(drhd) {
242 243 244 245 246 247
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
248 249
			return 0;
		}
250
	}
251 252 253 254 255 256 257 258
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
259

260
	return 0;
261
}
262
#endif
263

264 265 266 267 268
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
269
	struct acpi_dmar_atsr *atsr;
270
	struct acpi_dmar_rhsa *rhsa;
271 272 273

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
274 275
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
276
		pr_info("DRHD base: %#016Lx flags: %#x\n",
277
			(unsigned long long)drhd->address, drhd->flags);
278 279
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
280 281
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
282
		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
283 284
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
285
		break;
286 287
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
288
		pr_info("ATSR flags: %#x\n", atsr->flags);
289
		break;
290 291
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
292
		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
293 294 295
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
296 297 298
	}
}

299 300 301 302 303 304 305 306
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
307 308 309
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
310 311

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
312
		pr_warn("Unable to map DMAR\n");
313 314 315 316 317
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
318

319 320 321 322 323 324 325 326 327
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;
328
	int drhd_count = 0;
329

330 331 332 333 334 335
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

336 337 338 339 340 341
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

342 343 344 345
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
346
	if (dmar->width < PAGE_SHIFT - 1) {
347
		pr_warn("Invalid DMAR haw\n");
348 349 350
		return -EINVAL;
	}

351
	pr_info("Host address width %d\n", dmar->width + 1);
352 353 354 355

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
356 357
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
358
			pr_warn("Invalid 0-length structure\n");
359 360 361 362
			ret = -EINVAL;
			break;
		}

363 364 365 366
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
367
			drhd_count++;
368 369 370 371
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
			ret = dmar_parse_one_rmrr(entry_header);
372 373 374
			break;
		case ACPI_DMAR_TYPE_ATSR:
			ret = dmar_parse_one_atsr(entry_header);
375
			break;
376
		case ACPI_DMAR_HARDWARE_AFFINITY:
377
#ifdef CONFIG_ACPI_NUMA
378
			ret = dmar_parse_one_rhsa(entry_header);
379
#endif
380
			break;
381
		default:
382
			pr_warn("Unknown DMAR structure type %d\n",
383
				entry_header->type);
384 385 386 387 388 389 390 391
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
392 393
	if (drhd_count == 0)
		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
394 395 396
	return ret;
}

397
static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
417 418 419
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

420 421
	dev = pci_physfn(dev);

422
	for_each_drhd_unit(dmaru) {
423 424 425 426 427 428 429
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
430

431 432 433
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
434 435 436 437 438
	}

	return NULL;
}

439 440
int __init dmar_dev_scope_init(void)
{
441
	static int dmar_dev_scope_initialized;
442
	struct dmar_drhd_unit *drhd;
443 444
	int ret = -ENODEV;

445 446 447
	if (dmar_dev_scope_initialized)
		return dmar_dev_scope_initialized;

448 449 450
	if (list_empty(&dmar_drhd_units))
		goto fail;

451
	list_for_each_entry(drhd, &dmar_drhd_units, list) {
452 453
		ret = dmar_parse_dev(drhd);
		if (ret)
454
			goto fail;
455 456
	}

457 458 459
	ret = dmar_parse_rmrr_atsr_dev();
	if (ret)
		goto fail;
460

461 462 463 464 465
	dmar_dev_scope_initialized = 1;
	return 0;

fail:
	dmar_dev_scope_initialized = ret;
466 467 468
	return ret;
}

469 470 471

int __init dmar_table_init(void)
{
472
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
473 474
	int ret;

475 476 477 478 479
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
480 481
	ret = parse_dmar_table();
	if (ret) {
482
		if (ret != -ENODEV)
483
			pr_info("parse DMAR table failure.\n");
F
Fenghua Yu 已提交
484 485 486
		return ret;
	}

487
	if (list_empty(&dmar_drhd_units)) {
488
		pr_info("No DMAR devices found\n");
489 490
		return -ENODEV;
	}
F
Fenghua Yu 已提交
491

492 493 494
	return 0;
}

495 496
static void warn_invalid_dmar(u64 addr, const char *message)
{
497 498 499 500 501 502 503 504
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
505
}
506

507
static int __init check_zero_address(void)
508 509 510 511 512 513 514 515 516 517 518 519
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
520
			pr_warn("Invalid 0-length structure\n");
521 522 523 524
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
525 526 527
			void __iomem *addr;
			u64 cap, ecap;

528 529
			drhd = (void *)entry_header;
			if (!drhd->address) {
530
				warn_invalid_dmar(0, "");
531 532 533 534 535 536 537 538 539 540 541 542
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
543 544
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
545
				goto failed;
546 547 548 549 550 551
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
552 553 554

failed:
	return 0;
555 556
}

557
int __init detect_intel_iommu(void)
558 559 560
{
	int ret;

561
	ret = dmar_table_detect();
562 563
	if (ret)
		ret = check_zero_address();
564
	{
565
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
566
			iommu_detected = 1;
C
Chris Wright 已提交
567 568 569
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
570

571 572 573
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
574
#endif
575
	}
576
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
577
	dmar_tbl = NULL;
578

579
	return ret ? 1 : -ENODEV;
580 581 582
}


583 584 585 586 587 588 589 590 591 592
static void unmap_iommu(struct intel_iommu *iommu)
{
	iounmap(iommu->reg);
	release_mem_region(iommu->reg_phys, iommu->reg_size);
}

/**
 * map_iommu: map the iommu's registers
 * @iommu: the iommu to map
 * @phys_addr: the physical address of the base resgister
593
 *
594
 * Memory map the iommu's registers.  Start w/ a single page, and
595
 * possibly expand if that turns out to be insufficent.
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
 */
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
{
	int map_size, err=0;

	iommu->reg_phys = phys_addr;
	iommu->reg_size = VTD_PAGE_SIZE;

	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
		pr_err("IOMMU: can't reserve memory\n");
		err = -EBUSY;
		goto out;
	}

	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
	if (!iommu->reg) {
		pr_err("IOMMU: can't map the region\n");
		err = -ENOMEM;
		goto release;
	}

	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		err = -EINVAL;
		warn_invalid_dmar(phys_addr, " returns all ones");
		goto unmap;
	}

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
			 cap_max_fault_reg_offset(iommu->cap));
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > iommu->reg_size) {
		iounmap(iommu->reg);
		release_mem_region(iommu->reg_phys, iommu->reg_size);
		iommu->reg_size = map_size;
		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
					iommu->name)) {
			pr_err("IOMMU: can't reserve memory\n");
			err = -EBUSY;
			goto out;
		}
		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
		if (!iommu->reg) {
			pr_err("IOMMU: can't map the region\n");
			err = -ENOMEM;
			goto release;
		}
	}
	err = 0;
	goto out;

unmap:
	iounmap(iommu->reg);
release:
	release_mem_region(iommu->reg_phys, iommu->reg_size);
out:
	return err;
}

658
static int alloc_iommu(struct dmar_drhd_unit *drhd)
659
{
660
	struct intel_iommu *iommu;
661
	u32 ver, sts;
662
	static int iommu_allocated = 0;
663
	int agaw = 0;
F
Fenghua Yu 已提交
664
	int msagaw = 0;
665
	int err;
666

667
	if (!drhd->reg_base_addr) {
668
		warn_invalid_dmar(0, "");
669 670 671
		return -EINVAL;
	}

672 673
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
674
		return -ENOMEM;
675 676

	iommu->seq_id = iommu_allocated++;
677
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
678

679 680 681
	err = map_iommu(iommu, drhd->reg_base_addr);
	if (err) {
		pr_err("IOMMU: failed to map %s\n", iommu->name);
682 683
		goto error;
	}
684

685
	err = -EINVAL;
W
Weidong Han 已提交
686 687
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
688 689
		pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
			iommu->seq_id);
690
		goto err_unmap;
F
Fenghua Yu 已提交
691 692 693
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
694
		pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
695
			iommu->seq_id);
696
		goto err_unmap;
W
Weidong Han 已提交
697 698
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
699
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
700

701 702
	iommu->node = -1;

703
	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
704 705
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
706 707 708 709
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
710

711 712 713 714 715 716 717 718 719
	/* Reflect status in gcmd */
	sts = readl(iommu->reg + DMAR_GSTS_REG);
	if (sts & DMA_GSTS_IRES)
		iommu->gcmd |= DMA_GCMD_IRE;
	if (sts & DMA_GSTS_TES)
		iommu->gcmd |= DMA_GCMD_TE;
	if (sts & DMA_GSTS_QIES)
		iommu->gcmd |= DMA_GCMD_QIE;

720
	raw_spin_lock_init(&iommu->register_lock);
721 722

	drhd->iommu = iommu;
723
	return 0;
724 725

 err_unmap:
726
	unmap_iommu(iommu);
727
 error:
728
	kfree(iommu);
729
	return err;
730 731
}

732
static void free_iommu(struct intel_iommu *iommu)
733
{
734 735 736 737 738
	if (iommu->irq) {
		free_irq(iommu->irq, iommu);
		irq_set_handler_data(iommu->irq, NULL);
		destroy_irq(iommu->irq);
	}
739

740 741 742 743 744 745
	if (iommu->qi) {
		free_page((unsigned long)iommu->qi->desc);
		kfree(iommu->qi->desc_status);
		kfree(iommu->qi);
	}

746
	if (iommu->reg)
747 748
		unmap_iommu(iommu);

749 750
	kfree(iommu);
}
751 752 753 754 755 756

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
757 758
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
759 760 761 762 763 764
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

765 766 767
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
768
	int head, tail;
769 770 771
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

772 773 774
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

775 776 777 778 779 780 781 782 783
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
784
		if ((head >> DMAR_IQ_SHIFT) == index) {
785
			pr_err("VT-d detected invalid descriptor: "
786 787 788
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
789 790 791 792 793 794 795 796 797
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

824 825 826
	return 0;
}

827 828 829 830
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
831
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
832
{
833
	int rc;
834 835 836 837 838 839
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
840
		return 0;
841 842 843

	hw = qi->desc;

844 845 846
restart:
	rc = 0;

847
	raw_spin_lock_irqsave(&qi->q_lock, flags);
848
	while (qi->free_cnt < 3) {
849
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
850
		cpu_relax();
851
		raw_spin_lock_irqsave(&qi->q_lock, flags);
852 853 854 855 856 857 858 859 860
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

861 862
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
863 864 865 866 867 868 869 870 871 872 873 874 875 876
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
877
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
878 879

	while (qi->desc_status[wait_index] != QI_DONE) {
880 881 882 883 884 885 886
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
887 888
		rc = qi_check_fault(iommu, index);
		if (rc)
889
			break;
890

891
		raw_spin_unlock(&qi->q_lock);
892
		cpu_relax();
893
		raw_spin_lock(&qi->q_lock);
894
	}
895 896

	qi->desc_status[index] = QI_DONE;
897 898

	reclaim_free_desc(qi);
899
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
900

901 902 903
	if (rc == -EAGAIN)
		goto restart;

904
	return rc;
905 906 907 908 909 910 911 912 913 914 915 916
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

917
	/* should never fail */
918 919 920
	qi_submit_sync(&desc, iommu);
}

921 922
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
923 924 925 926 927 928 929
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

930
	qi_submit_sync(&desc, iommu);
931 932
}

933 934
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

952
	qi_submit_sync(&desc, iommu);
953 954
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

976 977 978 979 980 981 982 983 984 985 986 987
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

988
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
1008
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1009 1010
}

1011 1012 1013 1014 1015
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1016
	u32 sts;
1017 1018 1019 1020 1021 1022
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1023
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1024 1025 1026 1027 1028 1029 1030

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1031
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1032 1033 1034 1035

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1036
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1047
	struct page *desc_page;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1058
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1059 1060 1061 1062 1063
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1064 1065 1066

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1067 1068 1069 1070 1071
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1072 1073
	qi->desc = page_address(desc_page);

1074
	qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1085
	raw_spin_lock_init(&qi->q_lock);
1086

1087
	__dmar_enable_qi(iommu);
1088 1089 1090

	return 0;
}
1091 1092 1093

/* iommu interrupt handling. Most stuff are MSI-like. */

1094 1095 1096 1097 1098 1099 1100
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
1115
	"PCE for translation request specifies blocking",
1116
};
1117

1118
static const char *irq_remap_fault_reasons[] =
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1129
static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1130
{
1131 1132
	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
					ARRAY_SIZE(irq_remap_fault_reasons))) {
1133
		*fault_type = INTR_REMAP;
1134
		return irq_remap_fault_reasons[fault_reason - 0x20];
1135 1136 1137 1138 1139
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1140
		return "Unknown";
1141
	}
1142 1143
}

1144
void dmar_msi_unmask(struct irq_data *data)
1145
{
1146
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1147 1148 1149
	unsigned long flag;

	/* unmask it */
1150
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1151 1152 1153
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1154
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1155 1156
}

1157
void dmar_msi_mask(struct irq_data *data)
1158 1159
{
	unsigned long flag;
1160
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1161 1162

	/* mask it */
1163
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1164 1165 1166
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1167
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1168 1169 1170 1171
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1172
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1173 1174
	unsigned long flag;

1175
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1176 1177 1178
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1179
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1180 1181 1182 1183
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1184
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1185 1186
	unsigned long flag;

1187
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1188 1189 1190
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1191
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1192 1193 1194 1195 1196 1197
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1198
	int fault_type;
1199

1200
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1201

1202
	if (fault_type == INTR_REMAP)
1203
		pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1204 1205 1206 1207 1208 1209
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
1210
		pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1211 1212 1213 1214 1215
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1216 1217 1218 1219
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1220
irqreturn_t dmar_fault(int irq, void *dev_id)
1221 1222 1223 1224 1225 1226
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

1227
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1228
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1229
	if (fault_status)
1230
		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1231 1232 1233

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1234
		goto unlock_exit;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1265
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1266 1267 1268 1269 1270

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1271
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1272
			fault_index = 0;
1273
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1274 1275
	}

1276 1277 1278
	writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);

unlock_exit:
1279
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1280 1281 1282 1283 1284 1285 1286
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1287 1288 1289 1290 1291 1292
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1293 1294
	irq = create_irq();
	if (!irq) {
1295
		pr_err("IOMMU: no free vectors\n");
1296 1297 1298
		return -EINVAL;
	}

1299
	irq_set_handler_data(irq, iommu);
1300 1301 1302 1303
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
1304
		irq_set_handler_data(irq, NULL);
1305 1306
		iommu->irq = 0;
		destroy_irq(irq);
1307
		return ret;
1308 1309
	}

1310
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1311
	if (ret)
1312
		pr_err("IOMMU: can't request irq\n");
1313 1314
	return ret;
}
1315 1316 1317 1318

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;
1319
	struct intel_iommu *iommu;
1320 1321 1322 1323

	/*
	 * Enable fault control interrupt.
	 */
1324
	for_each_iommu(iommu, drhd) {
1325
		u32 fault_status;
1326
		int ret = dmar_set_interrupt(iommu);
1327 1328

		if (ret) {
1329
			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1330 1331 1332
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1333 1334 1335 1336 1337

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1338 1339
		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1340 1341 1342 1343
	}

	return 0;
}
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1369 1370 1371 1372

/*
 * Check interrupt remapping support in DMAR table description.
 */
1373
int __init dmar_ir_support(void)
1374 1375 1376
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1377 1378
	if (!dmar)
		return 0;
1379 1380
	return dmar->flags & 0x1;
}
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static int __init dmar_free_unused_resources(void)
{
	struct dmar_drhd_unit *dmaru, *dmaru_n;

	/* DMAR units are in use */
	if (irq_remapping_enabled || intel_iommu_enabled)
		return 0;

	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
		list_del(&dmaru->list);
		dmar_free_drhd(dmaru);
	}

	return 0;
}

late_initcall(dmar_free_unused_resources);
1399
IOMMU_INIT_POST(detect_intel_iommu);