dmar.c 31.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28 29 30
 */

#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
31 32
#include <linux/iova.h>
#include <linux/intel-iommu.h>
33
#include <linux/timer.h>
34 35
#include <linux/irq.h>
#include <linux/interrupt.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/slab.h>
39
#include <asm/intr_remapping.h>
40
#include <asm/iommu_table.h>
41

42
#define PREFIX "DMAR: "
43 44 45 46 47 48 49

/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

50
struct acpi_table_header * __initdata dmar_tbl;
51
static acpi_size dmar_tbl_size;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
			printk(KERN_WARNING
			PREFIX "Device scope bus [%d] not found\n",
			scope->bus);
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
			printk(KERN_WARNING PREFIX
			"Device scope device [%04x:%02x:%02x.%02x] not found\n",
				segment, bus->number, path->dev, path->fn);
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
		printk(KERN_WARNING PREFIX
		"Device scope device [%04x:%02x:%02x.%02x] not found\n",
		segment, scope->bus, path->dev, path->fn);
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
		printk(KERN_WARNING PREFIX
			"Device scope type does not match for %s\n",
			 pci_name(pdev));
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

122 123
int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				struct pci_dev ***devices, u16 segment)
124 125 126 127 128 129 130 131 132 133 134 135
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
136
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
137
			printk(KERN_WARNING PREFIX
138 139
			       "Unsupported device scope\n");
		}
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

181
	drhd = (struct acpi_dmar_hardware_unit *)header;
182 183 184 185
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

186
	dmaru->hdr = header;
187
	dmaru->reg_base_addr = drhd->address;
188
	dmaru->segment = drhd->segment;
189 190
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

191 192 193 194 195 196 197 198 199
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

200
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
201 202
{
	struct acpi_dmar_hardware_unit *drhd;
203
	int ret = 0;
204 205 206

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

207 208 209 210
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
211
				((void *)drhd) + drhd->header.length,
212 213
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
214
	if (ret) {
215
		list_del(&dmaru->list);
216
		kfree(dmaru);
217
	}
218 219 220
	return ret;
}

221
#ifdef CONFIG_ACPI_NUMA
222 223 224 225 226 227 228
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
229
	for_each_drhd_unit(drhd) {
230 231 232 233 234 235
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
236 237
			return 0;
		}
238
	}
239 240 241 242 243 244 245 246
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
247

248
	return 0;
249
}
250
#endif
251

252 253 254 255 256
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
257
	struct acpi_dmar_atsr *atsr;
258
	struct acpi_dmar_rhsa *rhsa;
259 260 261

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
262 263
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
264
		printk (KERN_INFO PREFIX
265 266
			"DRHD base: %#016Lx flags: %#x\n",
			(unsigned long long)drhd->address, drhd->flags);
267 268
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
269 270
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
271
		printk (KERN_INFO PREFIX
272
			"RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
273 274
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
275
		break;
276 277 278 279
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
		printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
		break;
280 281 282 283 284 285
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
		printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
286 287 288
	}
}

289 290 291 292 293 294 295 296
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
297 298 299
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
300 301 302 303 304 305 306 307

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
		printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
308

309 310 311 312 313 314 315 316 317 318
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

319 320 321 322 323 324
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

325 326 327 328 329 330
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

331 332 333 334
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
335
	if (dmar->width < PAGE_SHIFT - 1) {
F
Fenghua Yu 已提交
336
		printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
337 338 339 340 341 342 343 344 345
		return -EINVAL;
	}

	printk (KERN_INFO PREFIX "Host address width %d\n",
		dmar->width + 1);

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
346 347 348 349 350 351 352 353
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			ret = -EINVAL;
			break;
		}

354 355 356 357 358 359 360 361
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
			ret = dmar_parse_one_rmrr(entry_header);
362 363 364
			break;
		case ACPI_DMAR_TYPE_ATSR:
			ret = dmar_parse_one_atsr(entry_header);
365
			break;
366
		case ACPI_DMAR_HARDWARE_AFFINITY:
367
#ifdef CONFIG_ACPI_NUMA
368
			ret = dmar_parse_one_rhsa(entry_header);
369
#endif
370
			break;
371 372
		default:
			printk(KERN_WARNING PREFIX
373 374
				"Unknown DMAR structure type %d\n",
				entry_header->type);
375 376 377 378 379 380 381 382 383 384 385
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

386
static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
406 407 408
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

409 410
	dev = pci_physfn(dev);

411 412 413 414 415 416 417 418
	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
419

420 421 422
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
423 424 425 426 427
	}

	return NULL;
}

428 429
int __init dmar_dev_scope_init(void)
{
430
	static int dmar_dev_scope_initialized;
431
	struct dmar_drhd_unit *drhd, *drhd_n;
432 433
	int ret = -ENODEV;

434 435 436
	if (dmar_dev_scope_initialized)
		return dmar_dev_scope_initialized;

437 438 439
	if (list_empty(&dmar_drhd_units))
		goto fail;

440
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
441 442
		ret = dmar_parse_dev(drhd);
		if (ret)
443
			goto fail;
444 445
	}

446 447 448
	ret = dmar_parse_rmrr_atsr_dev();
	if (ret)
		goto fail;
449

450 451 452 453 454
	dmar_dev_scope_initialized = 1;
	return 0;

fail:
	dmar_dev_scope_initialized = ret;
455 456 457
	return ret;
}

458 459 460

int __init dmar_table_init(void)
{
461
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
462 463
	int ret;

464 465 466 467 468
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
469 470
	ret = parse_dmar_table();
	if (ret) {
471 472
		if (ret != -ENODEV)
			printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
F
Fenghua Yu 已提交
473 474 475
		return ret;
	}

476 477 478 479
	if (list_empty(&dmar_drhd_units)) {
		printk(KERN_INFO PREFIX "No DMAR devices found\n");
		return -ENODEV;
	}
F
Fenghua Yu 已提交
480

481 482 483
	return 0;
}

484 485
static void warn_invalid_dmar(u64 addr, const char *message)
{
486 487 488 489 490 491 492 493
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
494
}
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
int __init check_zero_address(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
515 516 517
			void __iomem *addr;
			u64 cap, ecap;

518 519
			drhd = (void *)entry_header;
			if (!drhd->address) {
520
				warn_invalid_dmar(0, "");
521 522 523 524 525 526 527 528 529 530 531 532
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
533 534
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
535
				goto failed;
536 537 538 539 540 541
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
542 543 544

failed:
	return 0;
545 546
}

547
int __init detect_intel_iommu(void)
548 549 550
{
	int ret;

551
	ret = dmar_table_detect();
552 553
	if (ret)
		ret = check_zero_address();
554
	{
555
		struct acpi_table_dmar *dmar;
556

557
		dmar = (struct acpi_table_dmar *) dmar_tbl;
558

559
		if (ret && irq_remapping_enabled && cpu_has_x2apic &&
560
		    dmar->flags & 0x1)
561
			printk(KERN_INFO
562 563
			       "Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");

564
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
565
			iommu_detected = 1;
C
Chris Wright 已提交
566 567 568
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
569

570 571 572
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
573
#endif
574
	}
575
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
576
	dmar_tbl = NULL;
577

578
	return ret ? 1 : -ENODEV;
579 580 581
}


582
int alloc_iommu(struct dmar_drhd_unit *drhd)
583
{
584
	struct intel_iommu *iommu;
585 586
	int map_size;
	u32 ver;
587
	static int iommu_allocated = 0;
588
	int agaw = 0;
F
Fenghua Yu 已提交
589
	int msagaw = 0;
590

591
	if (!drhd->reg_base_addr) {
592
		warn_invalid_dmar(0, "");
593 594 595
		return -EINVAL;
	}

596 597
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
598
		return -ENOMEM;
599 600

	iommu->seq_id = iommu_allocated++;
601
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
602

F
Fenghua Yu 已提交
603
	iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
604 605 606 607 608 609 610
	if (!iommu->reg) {
		printk(KERN_ERR "IOMMU: can't map the region\n");
		goto error;
	}
	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

611
	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
612
		warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
613 614 615
		goto err_unmap;
	}

W
Weidong Han 已提交
616 617 618
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
		printk(KERN_ERR
F
Fenghua Yu 已提交
619 620
		       "Cannot get a valid agaw for iommu (seq_id = %d)\n",
		       iommu->seq_id);
621
		goto err_unmap;
F
Fenghua Yu 已提交
622 623 624 625 626
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
		printk(KERN_ERR
			"Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
627
			iommu->seq_id);
628
		goto err_unmap;
W
Weidong Han 已提交
629 630
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
631
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
632

633 634
	iommu->node = -1;

635 636 637
	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
		cap_max_fault_reg_offset(iommu->cap));
F
Fenghua Yu 已提交
638 639
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > VTD_PAGE_SIZE) {
640 641 642 643 644 645 646 647 648
		iounmap(iommu->reg);
		iommu->reg = ioremap(drhd->reg_base_addr, map_size);
		if (!iommu->reg) {
			printk(KERN_ERR "IOMMU: can't map the region\n");
			goto error;
		}
	}

	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
649 650
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
651 652 653 654
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
655

656
	raw_spin_lock_init(&iommu->register_lock);
657 658

	drhd->iommu = iommu;
659
	return 0;
660 661 662 663

 err_unmap:
	iounmap(iommu->reg);
 error:
664
	kfree(iommu);
665
	return -1;
666 667 668 669 670 671 672 673 674 675 676 677 678
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

	free_dmar_iommu(iommu);

	if (iommu->reg)
		iounmap(iommu->reg);
	kfree(iommu);
}
679 680 681 682 683 684

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
685 686
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
687 688 689 690 691 692
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

693 694 695
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
696
	int head, tail;
697 698 699
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

700 701 702
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

703 704 705 706 707 708 709 710 711
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
712 713 714 715 716
		if ((head >> DMAR_IQ_SHIFT) == index) {
			printk(KERN_ERR "VT-d detected invalid descriptor: "
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
717 718 719 720 721 722 723 724 725
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

752 753 754
	return 0;
}

755 756 757 758
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
759
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
760
{
761
	int rc;
762 763 764 765 766 767
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
768
		return 0;
769 770 771

	hw = qi->desc;

772 773 774
restart:
	rc = 0;

775
	raw_spin_lock_irqsave(&qi->q_lock, flags);
776
	while (qi->free_cnt < 3) {
777
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
778
		cpu_relax();
779
		raw_spin_lock_irqsave(&qi->q_lock, flags);
780 781 782 783 784 785 786 787 788
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

789 790
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
791 792 793 794 795 796 797 798 799 800 801 802 803 804
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
805
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
806 807

	while (qi->desc_status[wait_index] != QI_DONE) {
808 809 810 811 812 813 814
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
815 816
		rc = qi_check_fault(iommu, index);
		if (rc)
817
			break;
818

819
		raw_spin_unlock(&qi->q_lock);
820
		cpu_relax();
821
		raw_spin_lock(&qi->q_lock);
822
	}
823 824

	qi->desc_status[index] = QI_DONE;
825 826

	reclaim_free_desc(qi);
827
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
828

829 830 831
	if (rc == -EAGAIN)
		goto restart;

832
	return rc;
833 834 835 836 837 838 839 840 841 842 843 844
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

845
	/* should never fail */
846 847 848
	qi_submit_sync(&desc, iommu);
}

849 850
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
851 852 853 854 855 856 857
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

858
	qi_submit_sync(&desc, iommu);
859 860
}

861 862
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

880
	qi_submit_sync(&desc, iommu);
881 882
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

904 905 906 907 908 909 910 911 912 913 914 915
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

916
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
936
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
937 938
}

939 940 941 942 943
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
944
	u32 sts;
945 946 947 948 949 950
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

951
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
952 953 954 955 956 957 958

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
959
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
960 961 962 963

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

964
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
965 966
}

967 968 969 970 971 972 973 974
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
975
	struct page *desc_page;
976 977 978 979 980 981 982 983 984 985

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

986
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
987 988 989 990 991
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

992 993 994

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
995 996 997 998 999
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1000 1001
	qi->desc = page_address(desc_page);

1002
	qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1013
	raw_spin_lock_init(&qi->q_lock);
1014

1015
	__dmar_enable_qi(iommu);
1016 1017 1018

	return 0;
}
1019 1020 1021

/* iommu interrupt handling. Most stuff are MSI-like. */

1022 1023 1024 1025 1026 1027 1028
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
};
1044

1045
static const char *irq_remap_fault_reasons[] =
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1056 1057
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1058
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1059
{
1060
	if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1061
				     ARRAY_SIZE(irq_remap_fault_reasons))) {
1062
		*fault_type = INTR_REMAP;
1063
		return irq_remap_fault_reasons[fault_reason - 0x20];
1064 1065 1066 1067 1068
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1069
		return "Unknown";
1070
	}
1071 1072
}

1073
void dmar_msi_unmask(struct irq_data *data)
1074
{
1075
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1076 1077 1078
	unsigned long flag;

	/* unmask it */
1079
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1080 1081 1082
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1083
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1084 1085
}

1086
void dmar_msi_mask(struct irq_data *data)
1087 1088
{
	unsigned long flag;
1089
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1090 1091

	/* mask it */
1092
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1093 1094 1095
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1096
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1097 1098 1099 1100
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1101
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1102 1103
	unsigned long flag;

1104
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1105 1106 1107
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1108
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1109 1110 1111 1112
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1113
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1114 1115
	unsigned long flag;

1116
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1117 1118 1119
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1120
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1121 1122 1123 1124 1125 1126
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1127
	int fault_type;
1128

1129
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	if (fault_type == INTR_REMAP)
		printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
		printk(KERN_ERR
		       "DMAR:[%s] Request device [%02x:%02x.%d] "
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1146 1147 1148 1149
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1150
irqreturn_t dmar_fault(int irq, void *dev_id)
1151 1152 1153 1154 1155 1156
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

1157
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1158
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1159 1160 1161
	if (fault_status)
		printk(KERN_ERR "DRHD: handling fault status reg %x\n",
		       fault_status);
1162 1163 1164

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1165
		goto clear_rest;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1196
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1197 1198 1199 1200 1201

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1202
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1203
			fault_index = 0;
1204
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1205
	}
1206 1207
clear_rest:
	/* clear all the other faults */
1208
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1209
	writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1210

1211
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1212 1213 1214 1215 1216 1217 1218
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1219 1220 1221 1222 1223 1224
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1225 1226 1227 1228 1229 1230
	irq = create_irq();
	if (!irq) {
		printk(KERN_ERR "IOMMU: no free vectors\n");
		return -EINVAL;
	}

1231
	irq_set_handler_data(irq, iommu);
1232 1233 1234 1235
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
1236
		irq_set_handler_data(irq, NULL);
1237 1238
		iommu->irq = 0;
		destroy_irq(irq);
1239
		return ret;
1240 1241
	}

1242
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1243 1244 1245 1246
	if (ret)
		printk(KERN_ERR "IOMMU: can't request irq\n");
	return ret;
}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
		ret = dmar_set_interrupt(iommu);

		if (ret) {
			printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
			       " interrupt, ret %d\n",
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1266 1267 1268 1269 1270

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1271 1272 1273 1274
	}

	return 0;
}
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1300 1301 1302 1303

/*
 * Check interrupt remapping support in DMAR table description.
 */
1304
int __init dmar_ir_support(void)
1305 1306 1307
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1308 1309
	if (!dmar)
		return 0;
1310 1311
	return dmar->flags & 0x1;
}
1312
IOMMU_INIT_POST(detect_intel_iommu);