i915_request.c 46.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33 34
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"

35
#include "i915_active.h"
36
#include "i915_drv.h"
37
#include "i915_globals.h"
38
#include "i915_trace.h"
39
#include "intel_pm.h"
40

41 42 43 44
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
45 46
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
47 48
};

49
static struct i915_global_request {
50
	struct i915_global base;
51 52
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
53
	struct kmem_cache *slab_execute_cbs;
54 55
} global;

56
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57 58 59 60
{
	return "i915";
}

61
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62
{
63 64
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
65 66 67 68 69 70 71 72 73 74
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

75
	return to_request(fence)->gem_context->name ?: "[i915]";
76 77
}

78
static bool i915_fence_signaled(struct dma_fence *fence)
79
{
80
	return i915_request_completed(to_request(fence));
81 82
}

83
static bool i915_fence_enable_signaling(struct dma_fence *fence)
84
{
85
	return i915_request_enable_breadcrumb(to_request(fence));
86 87
}

88
static signed long i915_fence_wait(struct dma_fence *fence,
89
				   bool interruptible,
90
				   signed long timeout)
91
{
92 93 94
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
95 96
}

97
static void i915_fence_release(struct dma_fence *fence)
98
{
99
	struct i915_request *rq = to_request(fence);
100

101 102
	/*
	 * The request is put onto a RCU freelist (i.e. the address
103 104 105 106 107
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
108
	i915_sw_fence_fini(&rq->submit);
109
	i915_sw_fence_fini(&rq->semaphore);
110

111
	kmem_cache_free(global.slab_requests, rq);
112 113
}

114
const struct dma_fence_ops i915_fence_ops = {
115 116 117 118 119 120 121 122
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

167
static inline void
168
remove_from_client(struct i915_request *request)
169
{
170
	struct drm_i915_file_private *file_priv;
171

172
	file_priv = READ_ONCE(request->file_priv);
173 174 175 176
	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
177 178 179 180
	if (request->file_priv) {
		list_del(&request->client_link);
		request->file_priv = NULL;
	}
181 182 183
	spin_unlock(&file_priv->mm.lock);
}

184
static void free_capture_list(struct i915_request *request)
185
{
186
	struct i915_capture_list *capture;
187 188 189

	capture = request->capture_list;
	while (capture) {
190
		struct i915_capture_list *next = capture->next;
191 192 193 194 195 196

		kfree(capture);
		capture = next;
	}
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
	spin_lock(&locked->active.lock);
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
	list_del(&rq->sched.link);
	spin_unlock(&locked->active.lock);
}

218
static bool i915_request_retire(struct i915_request *rq)
219
{
220
	struct i915_active_request *active, *next;
221

222
	lockdep_assert_held(&rq->timeline->mutex);
223 224
	if (!i915_request_completed(rq))
		return false;
225

226 227 228 229
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
		  hwsp_seqno(rq));
230

231 232
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
233

234 235 236 237 238 239 240 241 242 243 244
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
	rq->ring->head = rq->postfix;
245

246 247
	/*
	 * Walk through the active list, calling retire on each. This allows
248 249 250 251 252 253 254 255
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
256
	list_for_each_entry_safe(active, next, &rq->active_list, link) {
257 258
		/*
		 * In microbenchmarks or focusing upon time inside the kernel,
259 260 261
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
262 263 264 265
		 * cache misses when jumping around the list of
		 * i915_active_request.  So we try to keep this loop as
		 * streamlined as possible and also prefetch the next
		 * i915_active_request to try and hide the likely cache miss.
266 267 268 269
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
270
		RCU_INIT_POINTER(active->request, NULL);
271

272
		active->retire(active, rq);
273 274
	}

275
	local_irq_disable();
276

277 278 279 280 281 282
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
283
	remove_from_engine(rq);
284

285 286 287 288 289 290
	spin_lock(&rq->lock);
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
291
	if (i915_request_has_waitboost(rq)) {
292 293 294
		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
	}
295 296 297 298 299
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
300 301 302
	spin_unlock(&rq->lock);

	local_irq_enable();
303

304
	remove_from_client(rq);
305
	list_del(&rq->link);
306

307 308 309
	intel_context_exit(rq->hw_context);
	intel_context_unpin(rq->hw_context);

310 311 312 313 314
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
315 316
}

317
void i915_request_retire_upto(struct i915_request *rq)
318
{
319
	struct intel_timeline * const tl = rq->timeline;
320
	struct i915_request *tmp;
321

322
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
323 324
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
325
		  hwsp_seqno(rq));
326

327
	lockdep_assert_held(&tl->mutex);
328
	GEM_BUG_ON(!i915_request_completed(rq));
329

330
	do {
331
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
332
	} while (i915_request_retire(tmp) && tmp != rq);
333 334
}

335
static int
336 337 338 339 340
__i915_request_await_execution(struct i915_request *rq,
			       struct i915_request *signal,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal),
			       gfp_t gfp)
341 342 343
{
	struct execute_cb *cb;

344 345 346
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
347
		return 0;
348
	}
349 350 351 352 353 354 355 356 357

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

358 359 360 361 362 363
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

364 365
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
366 367 368 369
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
370 371 372 373 374 375 376 377 378 379
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

380
bool __i915_request_submit(struct i915_request *request)
381
{
382
	struct intel_engine_cs *engine = request->engine;
383
	bool result = false;
384

385
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
386
		  engine->name,
387
		  request->fence.context, request->fence.seqno,
388
		  hwsp_seqno(request));
389

390
	GEM_BUG_ON(!irqs_disabled());
391
	lockdep_assert_held(&engine->active.lock);
392

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

412 413 414
	if (i915_gem_context_is_banned(request->gem_context))
		i915_request_skip(request, -EIO);

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
433
		engine->saturated |= request->sched.semaphores;
434

435 436
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
437

438 439 440
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
441

442 443 444 445 446
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
		list_move_tail(&request->sched.link, &engine->active.requests);
447

448
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
449
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
450 451
	    !i915_request_enable_breadcrumb(request))
		intel_engine_queue_breadcrumbs(engine);
452

453 454
	__notify_execute_cb(request);

455 456
	spin_unlock(&request->lock);

457
	return result;
458 459
}

460
void i915_request_submit(struct i915_request *request)
461 462 463
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
464

465
	/* Will be called from irq-context when using foreign fences. */
466
	spin_lock_irqsave(&engine->active.lock, flags);
467

468
	__i915_request_submit(request);
469

470
	spin_unlock_irqrestore(&engine->active.lock, flags);
471 472
}

473
void __i915_request_unsubmit(struct i915_request *request)
474
{
475
	struct intel_engine_cs *engine = request->engine;
476

477
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
478
		  engine->name,
479
		  request->fence.context, request->fence.seqno,
480
		  hwsp_seqno(request));
481

482
	GEM_BUG_ON(!irqs_disabled());
483
	lockdep_assert_held(&engine->active.lock);
484

485 486
	/*
	 * Only unwind in reverse order, required so that the per-context list
487 488
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
489

490 491
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
492

493
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
494
		i915_request_cancel_breadcrumb(request);
495

496 497
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
498

499 500
	spin_unlock(&request->lock);

501 502 503 504 505 506
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

507 508
	/*
	 * We don't need to wake_up any waiters on request->execute, they
509
	 * will get woken by any other event or us re-adding this request
510
	 * to the engine timeline (__i915_request_submit()). The waiters
511 512 513 514 515
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

516
void i915_request_unsubmit(struct i915_request *request)
517 518 519 520 521
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
522
	spin_lock_irqsave(&engine->active.lock, flags);
523

524
	__i915_request_unsubmit(request);
525

526
	spin_unlock_irqrestore(&engine->active.lock, flags);
527 528
}

529
static int __i915_sw_fence_call
530
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
531
{
532
	struct i915_request *request =
533 534 535 536
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
537
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
538 539 540 541

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

542
		/*
543 544 545 546 547 548
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
549 550
		 */
		rcu_read_lock();
551
		request->engine->submit_request(request);
552
		rcu_read_unlock();
553 554 555
		break;

	case FENCE_FREE:
556
		i915_request_put(request);
557 558 559
		break;
	}

560 561 562
	return NOTIFY_DONE;
}

563 564 565 566 567 568 569 570
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
571
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
572 573 574 575 576 577 578 579 580 581
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

582
static void retire_requests(struct intel_timeline *tl)
583 584 585
{
	struct i915_request *rq, *rn;

586
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
587
		if (!i915_request_retire(rq))
588 589 590 591
			break;
}

static noinline struct i915_request *
592
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
593 594 595
{
	struct i915_request *rq;

596
	if (list_empty(&tl->requests))
597 598
		goto out;

599 600 601
	if (!gfpflags_allow_blocking(gfp))
		goto out;

602
	/* Move our oldest request to the slab-cache (if not in use!) */
603
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
604 605 606 607 608 609 610
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

611
	/* Ratelimit ourselves to prevent oom from malicious clients */
612
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
613 614 615
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
616
	retire_requests(tl);
617 618

out:
619
	return kmem_cache_alloc(global.slab_requests, gfp);
620 621
}

622
struct i915_request *
623
__i915_request_create(struct intel_context *ce, gfp_t gfp)
624
{
625
	struct intel_timeline *tl = ce->timeline;
626 627
	struct i915_request *rq;
	u32 seqno;
628 629
	int ret;

630
	might_sleep_if(gfpflags_allow_blocking(gfp));
631

632 633
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
634

635 636
	/*
	 * Beware: Dragons be flying overhead.
637 638 639 640
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
641
	 * of being read by __i915_active_request_get_rcu(). As such,
642 643
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
644
	 * read the request->global_seqno and increment the reference count.
645 646 647 648
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
649 650
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
651 652 653 654 655 656 657 658 659 660 661 662 663
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
664
	rq = kmem_cache_alloc(global.slab_requests,
665
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
666
	if (unlikely(!rq)) {
667
		rq = request_alloc_slow(tl, gfp);
668
		if (!rq) {
669 670 671
			ret = -ENOMEM;
			goto err_unreserve;
		}
672
	}
673

674
	ret = intel_timeline_get_seqno(tl, rq, &seqno);
675 676 677
	if (ret)
		goto err_free;

678
	rq->i915 = ce->engine->i915;
679
	rq->hw_context = ce;
680 681
	rq->gem_context = ce->gem_context;
	rq->engine = ce->engine;
682
	rq->ring = ce->ring;
683 684 685 686
	rq->timeline = tl;
	rq->hwsp_seqno = tl->hwsp_seqno;
	rq->hwsp_cacheline = tl->hwsp_cacheline;
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
687

688
	spin_lock_init(&rq->lock);
689 690
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
		       tl->fence_context, seqno);
691

692
	/* We bump the ref for the fence chain */
693
	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
694
	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
695

696
	i915_sched_node_init(&rq->sched);
697

698
	/* No zalloc, must clear what we need by hand */
699 700 701
	rq->file_priv = NULL;
	rq->batch = NULL;
	rq->capture_list = NULL;
702
	rq->flags = 0;
703
	rq->execution_mask = ALL_ENGINES;
704

705 706 707
	INIT_LIST_HEAD(&rq->active_list);
	INIT_LIST_HEAD(&rq->execute_cb);

708 709 710
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
711
	 * i915_request_add() call can't fail. Note that the reserve may need
712 713
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
714 715 716 717 718
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
719
	 */
720 721
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
722

723 724
	/*
	 * Record the position of the start of the request so that
725 726 727 728
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
729
	rq->head = rq->ring->emit;
730

731
	ret = rq->engine->request_alloc(rq);
732 733
	if (ret)
		goto err_unwind;
734

735 736
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

737
	intel_context_mark_active(ce);
738
	return rq;
739

740
err_unwind:
741
	ce->ring->emit = rq->head;
742

743
	/* Make sure we didn't add ourselves to external state before freeing */
744
	GEM_BUG_ON(!list_empty(&rq->active_list));
745 746
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
747

748
err_free:
749
	kmem_cache_free(global.slab_requests, rq);
750
err_unreserve:
751
	intel_context_unpin(ce);
752
	return ERR_PTR(ret);
753 754
}

755 756 757 758
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
759
	struct intel_timeline *tl;
760

761 762 763
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
764 765

	/* Move our oldest request to the slab-cache (if not in use!) */
766 767
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
768 769 770 771 772 773 774 775 776
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
777
	rq->cookie = lockdep_pin_lock(&tl->mutex);
778 779 780 781

	return rq;

err_unlock:
782
	intel_context_timeline_unlock(tl);
783 784 785
	return rq;
}

786 787 788
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
789
	if (list_is_first(&signal->link, &signal->timeline->requests))
790 791
		return 0;

792
	signal = list_prev_entry(signal, link);
793
	if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
794 795 796 797 798 799 800
		return 0;

	return i915_sw_fence_await_dma_fence(&rq->submit,
					     &signal->fence, 0,
					     I915_FENCE_GFP);
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
816
	return rq->sched.semaphores | rq->engine->saturated;
817 818
}

819 820 821 822 823 824 825 826 827 828 829 830
static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
	u32 hwsp_offset;
	u32 *cs;
	int err;

	GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

831
	/* Just emit the first semaphore we see as request space is limited. */
832
	if (already_busywaiting(to) & from->engine->mask)
833 834 835 836
		return i915_sw_fence_await_dma_fence(&to->submit,
						     &from->fence, 0,
						     I915_FENCE_GFP);

837 838 839 840
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

841
	/* Only submit our spinner after the signaler is running! */
842
	err = __i915_request_await_execution(to, from, NULL, gfp);
843 844 845
	if (err)
		return err;

846
	/* We need to pin the signaler's HWSP until we are finished reading. */
847
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	if (err)
		return err;

	cs = intel_ring_begin(to, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_GTE_SDD;
	*cs++ = from->fence.seqno;
	*cs++ = hwsp_offset;
	*cs++ = 0;

	intel_ring_advance(to, cs);
872 873
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
874 875 876
	return 0;
}

877
static int
878
i915_request_await_request(struct i915_request *to, struct i915_request *from)
879
{
880
	int ret;
881 882

	GEM_BUG_ON(to == from);
883
	GEM_BUG_ON(to->timeline == from->timeline);
884

885
	if (i915_request_completed(from))
886 887
		return 0;

888
	if (to->engine->schedule) {
889
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
890 891 892 893
		if (ret < 0)
			return ret;
	}

894 895 896
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
897
						       I915_FENCE_GFP);
898 899 900
	} else if (intel_engine_has_semaphores(to->engine) &&
		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
901 902 903 904
	} else {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
905
	}
906 907 908 909 910 911 912 913 914 915
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
916

917
	return 0;
918 919
}

920
int
921
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
922
{
923 924
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
925 926
	int ret;

927 928
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
929 930 931 932 933 934
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
935 936 937 938 939 940 941
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
942

943 944 945 946
	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;
947

948 949
		/*
		 * Requests on the same timeline are explicitly ordered, along
950
		 * with their dependencies, by i915_request_add() which ensures
951 952
		 * that requests are submitted in-order through each ring.
		 */
953
		if (fence->context == rq->fence.context)
954 955
			continue;

956
		/* Squash repeated waits to the same timelines */
957
		if (fence->context &&
958
		    intel_timeline_sync_is_later(rq->timeline, fence))
959 960
			continue;

961
		if (dma_fence_is_i915(fence))
962
			ret = i915_request_await_request(rq, to_request(fence));
963
		else
964
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
965
							    I915_FENCE_TIMEOUT,
966
							    I915_FENCE_GFP);
967 968
		if (ret < 0)
			return ret;
969 970

		/* Record the latest fence used against each timeline */
971
		if (fence->context)
972
			intel_timeline_sync_set(rq->timeline, fence);
973
	} while (--nchild);
974 975 976 977

	return 0;
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook,
							     I915_FENCE_GFP);
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1024
/**
1025
 * i915_request_await_object - set this request to (async) wait upon a bo
1026 1027
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1028
 * @write: whether the wait is on behalf of a writer
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1045 1046 1047
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1048
{
1049 1050
	struct dma_fence *excl;
	int ret = 0;
1051 1052

	if (write) {
1053 1054 1055
		struct dma_fence **shared;
		unsigned int count, i;

1056
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1057 1058 1059 1060 1061
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1062
			ret = i915_request_await_dma_fence(to, shared[i]);
1063 1064 1065 1066 1067 1068 1069 1070 1071
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1072
	} else {
1073
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1074 1075
	}

1076 1077
	if (excl) {
		if (ret == 0)
1078
			ret = i915_request_await_dma_fence(to, excl);
1079

1080
		dma_fence_put(excl);
1081 1082
	}

1083
	return ret;
1084 1085
}

1086 1087 1088 1089 1090 1091 1092 1093
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1094 1095 1096
	if (rq->infix == rq->postfix)
		return;

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1108
	rq->infix = rq->postfix;
1109 1110
}

1111 1112 1113
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1114
	struct intel_timeline *timeline = rq->timeline;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1137 1138
	prev = rcu_dereference_protected(timeline->last_request.request,
					 lockdep_is_held(&timeline->mutex));
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1157 1158 1159 1160 1161
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1162 1163 1164 1165 1166 1167
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
	__i915_active_request_set(&timeline->last_request, rq);

	return prev;
}

1168 1169 1170 1171 1172
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1173
struct i915_request *__i915_request_commit(struct i915_request *rq)
1174
{
1175 1176
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1177
	u32 *cs;
1178

1179
	GEM_TRACE("%s fence %llx:%lld\n",
1180
		  engine->name, rq->fence.context, rq->fence.seqno);
1181

1182 1183 1184 1185 1186
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1187 1188
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1189
	rq->emitted_jiffies = jiffies;
1190

1191 1192
	/*
	 * Record the position of the start of the breadcrumb so that
1193 1194
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1195
	 * position of the ring's HEAD.
1196
	 */
1197
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1198
	GEM_BUG_ON(IS_ERR(cs));
1199
	rq->postfix = intel_ring_offset(rq, cs);
1200

1201
	return __i915_request_add_to_timeline(rq);
1202 1203 1204 1205 1206
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1207 1208
	/*
	 * Let the backend know a new request has arrived that may need
1209 1210 1211 1212 1213 1214 1215 1216 1217
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1218
	i915_sw_fence_commit(&rq->semaphore);
1219 1220
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1221 1222 1223 1224 1225
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1226
	struct i915_sched_attr attr = rq->gem_context->sched;
1227
	struct intel_timeline * const tl = rq->timeline;
1228 1229
	struct i915_request *prev;

1230 1231
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1232 1233 1234 1235 1236

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1261
	local_bh_disable();
1262
	__i915_request_queue(rq, &attr);
1263
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1282
	if (prev && i915_request_completed(prev) && prev->timeline == tl)
1283
		i915_request_retire_upto(prev);
1284

1285
	mutex_unlock(&tl->mutex);
1286 1287 1288 1289 1290 1291
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1292 1293
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1321 1322
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1323
{
1324
	unsigned int cpu;
1325 1326 1327 1328 1329 1330 1331

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1332 1333 1334 1335
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1336
	 */
1337
	if (!i915_request_is_running(rq))
1338 1339
		return false;

1340 1341
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1353 1354
		if (i915_request_completed(rq))
			return true;
1355

1356 1357 1358 1359 1360 1361
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1362
		cpu_relax();
1363 1364 1365 1366 1367
	} while (!need_resched());

	return false;
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1380
/**
1381
 * i915_request_wait - wait until execution of request has finished
1382
 * @rq: the request to wait upon
1383
 * @flags: how to wait
1384 1385
 * @timeout: how long to wait in jiffies
 *
1386
 * i915_request_wait() waits for the request to be completed, for a
1387 1388
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1389
 *
1390 1391 1392 1393
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1394
 */
1395
long i915_request_wait(struct i915_request *rq,
1396 1397
		       unsigned int flags,
		       long timeout)
1398
{
1399 1400
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1401
	struct request_wait wait;
1402 1403

	might_sleep();
1404
	GEM_BUG_ON(timeout < 0);
1405

1406
	if (dma_fence_is_signaled(&rq->fence))
1407
		return timeout;
1408

1409 1410
	if (!timeout)
		return -ETIME;
1411

1412
	trace_i915_request_wait_begin(rq, flags);
1413 1414 1415 1416 1417 1418 1419

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1420
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
	if (CONFIG_DRM_I915_SPIN_REQUEST &&
1446 1447
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1448
		goto out;
1449
	}
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq);
1466
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1467
	}
1468

1469 1470 1471
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1472

1473 1474
	for (;;) {
		set_current_state(state);
1475

1476 1477
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1478
			break;
1479
		}
1480 1481

		if (signal_pending_state(state, current)) {
1482
			timeout = -ERESTARTSYS;
1483 1484 1485
			break;
		}

1486 1487
		if (!timeout) {
			timeout = -ETIME;
1488 1489 1490
			break;
		}

1491
		timeout = io_schedule_timeout(timeout);
1492
	}
1493
	__set_current_state(TASK_RUNNING);
1494

1495 1496 1497
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1498
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1499
	trace_i915_request_wait_end(rq);
1500
	return timeout;
1501
}
1502

1503
bool i915_retire_requests(struct drm_i915_private *i915)
1504
{
1505 1506
	struct intel_gt_timelines *timelines = &i915->gt.timelines;
	struct intel_timeline *tl, *tn;
1507
	unsigned long flags;
1508 1509
	LIST_HEAD(free);

1510
	spin_lock_irqsave(&timelines->lock, flags);
1511 1512 1513
	list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
		if (!mutex_trylock(&tl->mutex))
			continue;
1514

1515 1516 1517
		intel_timeline_get(tl);
		GEM_BUG_ON(!tl->active_count);
		tl->active_count++; /* pin the list element */
1518
		spin_unlock_irqrestore(&timelines->lock, flags);
1519

1520 1521
		retire_requests(tl);

1522
		spin_lock_irqsave(&timelines->lock, flags);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

		/* Resume iteration after dropping lock */
		list_safe_reset_next(tl, tn, link);
		if (!--tl->active_count)
			list_del(&tl->link);

		mutex_unlock(&tl->mutex);

		/* Defer the final release to after the spinlock */
		if (refcount_dec_and_test(&tl->kref.refcount)) {
			GEM_BUG_ON(tl->active_count);
			list_add(&tl->link, &free);
		}
1536
	}
1537
	spin_unlock_irqrestore(&timelines->lock, flags);
1538 1539 1540

	list_for_each_entry_safe(tl, tn, &free, link)
		__intel_timeline_free(&tl->kref);
1541

1542
	return !list_empty(&timelines->active_list);
1543
}
1544 1545 1546

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1547
#include "selftests/i915_request.c"
1548
#endif
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1569 1570 1571 1572 1573 1574 1575 1576 1577
int __init i915_global_request_init(void)
{
	global.slab_requests = KMEM_CACHE(i915_request,
					  SLAB_HWCACHE_ALIGN |
					  SLAB_RECLAIM_ACCOUNT |
					  SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_requests)
		return -ENOMEM;

1578 1579 1580 1581 1582 1583 1584
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1585 1586 1587 1588
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1589
		goto err_execute_cbs;
1590

1591
	i915_global_register(&global.base);
1592 1593
	return 0;

1594 1595
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1596 1597 1598 1599
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}