denali.c 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
24
#include <linux/slab.h>
25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

32 33
/*
 * We define a module parameter that allows the user to override
34 35 36 37 38 39
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
40 41
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
42 43 44

#define DENALI_NAND_NAME    "denali-nand"

45 46 47 48
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
49 50 51 52 53 54 55 56 57 58
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)
59

60 61 62 63
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
64
#define CHIP_SELECT_INVALID	-1
65 66 67

#define SUPPORT_8BITECC		1

68 69 70 71
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
72 73
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

74 75
/*
 * this macro allows us to convert from an MTD structure to our own
76 77 78 79
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

80 81 82 83
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
84 85 86
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43
87
#define PIPELINE_ACCESS		0x2000
88 89 90 91 92 93 94 95 96

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

97 98 99 100
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
101 102 103 104
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
105 106 107 108
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
109 110
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

111 112 113 114
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
115
 * abstracts this common operation.
116
 */
117 118
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
119
{
120 121
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
122 123 124 125 126 127
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
128
	iowrite32(address, denali->flash_mem);
129 130 131
	*pdata = ioread32(denali->flash_mem + 0x10);
}

132 133 134 135
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
136 137 138 139 140 141 142 143 144 145 146 147 148
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
149
	uint32_t cmd;
150 151 152 153

	/* initialize the data buffer to store status */
	reset_buf(denali);

154 155 156 157 158
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
159 160 161 162 163
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
164
	uint32_t irq_status;
165 166
	uint32_t irq_mask = INTR_STATUS__RST_COMP |
			    INTR_STATUS__TIME_OUT;
167 168 169

	clear_interrupts(denali);

170
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
171 172

	irq_status = wait_for_irq(denali, irq_mask);
173

174
	if (irq_status & INTR_STATUS__TIME_OUT)
175
		dev_err(denali->dev, "reset bank failed.\n");
176 177 178
}

/* Reset the flash controller */
179
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
180
{
181
	int i;
182

183
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
184 185
		       __FILE__, __LINE__, __func__);

186
	for (i = 0 ; i < denali->max_banks; i++)
187 188
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));
189

190
	for (i = 0 ; i < denali->max_banks; i++) {
191
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
192
		while (!(ioread32(denali->flash_reg +
193 194
				INTR_STATUS(i)) &
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
195
			cpu_relax();
196 197
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
198
			dev_dbg(denali->dev,
199 200 201
			"NAND Reset operation timed out on bank %d\n", i);
	}

202
	for (i = 0; i < denali->max_banks; i++)
203 204
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
			denali->flash_reg + INTR_STATUS(i));
205 206 207 208

	return PASS;
}

209 210
/*
 * this routine calculates the ONFI timing values for a given mode and
211 212
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
213
 */
214
static void nand_onfi_timing_set(struct denali_nand_info *denali,
215
								uint16_t mode)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

237
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
274
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

302 303 304 305 306 307 308 309
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
310 311 312 313 314 315
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
316 317 318

	/*
	 * we needn't to do a reset here because driver has already
319
	 * reset all the banks before
320
	 */
321 322 323 324 325
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
326 327
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
328 329 330
			break;
	}

331
	nand_onfi_timing_set(denali, i);
332

333 334 335 336
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
337 338 339 340 341 342
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

343 344
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
345
{
346
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
347
		/* Set timing register values according to datasheet */
348 349 350 351 352 353 354
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
355 356 357 358 359 360 361
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

362 363 364 365
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
366 367
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
368
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
369 370
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
371
		iowrite32(tmp,
372
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
373
#if SUPPORT_15BITECC
374
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
375
#elif SUPPORT_8BITECC
376
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
377 378 379 380
#endif
	}
}

381 382
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
383 384 385
{
	uint32_t main_size, spare_size;

386
	switch (device_id) {
387 388
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
389 390 391
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
392 393 394 395
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
396
		iowrite32(main_size,
397
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
398
		iowrite32(spare_size,
399
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
400
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
401
#if SUPPORT_15BITECC
402
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
403
#elif SUPPORT_8BITECC
404
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
405 406 407
#endif
		break;
	default:
408
		dev_warn(denali->dev,
409 410
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
411
			device_id);
412 413 414
	}
}

415 416
/*
 * determines how many NAND chips are connected to the controller. Note for
417
 * Intel CE4100 devices we don't support more than one device.
418 419 420
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
421
	uint32_t id[denali->max_banks];
422 423 424
	int i;

	denali->total_used_banks = 1;
425
	for (i = 0; i < denali->max_banks; i++) {
426 427
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
428
		index_addr_read_data(denali,
429
				MODE_11 | (i << 24) | 2, &id[i]);
430

431
		dev_dbg(denali->dev,
432 433 434 435 436 437 438 439 440 441 442 443 444
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

445
	if (denali->platform == INTEL_CE4100) {
446 447
		/*
		 * Platform limitations of the CE4100 device limit
448
		 * users to a single chip solution for NAND.
449 450
		 * Multichip support is not enabled.
		 */
451
		if (denali->total_used_banks != 1) {
452
			dev_err(denali->dev,
453
					"Sorry, Intel CE4100 only supports "
454 455 456 457
					"a single NAND device.\n");
			BUG();
		}
	}
458
	dev_dbg(denali->dev,
459 460 461
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

462 463 464 465 466 467 468 469 470 471 472
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}

473 474
static void detect_partition_feature(struct denali_nand_info *denali)
{
475 476
	/*
	 * For MRST platform, denali->fwblks represent the
477 478 479 480
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
481
	 */
482
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
483 484
		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
485
			denali->fwblks =
486 487
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
			      MIN_MAX_BANK__MIN_VALUE) *
488
			     denali->blksperchip)
489
			    +
490 491
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
			    MIN_BLK_ADDR__VALUE);
492 493 494 495
		} else
			denali->fwblks = SPECTRA_START_BLOCK;
	} else
		denali->fwblks = SPECTRA_START_BLOCK;
496 497
}

498
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
499 500
{
	uint16_t status = PASS;
501
	uint32_t id_bytes[8], addr;
502 503
	uint8_t maf_id, device_id;
	int i;
504

505
	dev_dbg(denali->dev,
506 507
			"%s, Line %d, Function: %s\n",
			__FILE__, __LINE__, __func__);
508

509 510 511 512 513
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
514 515 516
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
517
	for (i = 0; i < 8; i++)
518 519 520
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
521 522 523 524 525

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
526
	} else if (maf_id == 0xEC) { /* Samsung NAND */
527
		get_samsung_nand_para(denali, device_id);
528
	} else if (maf_id == 0x98) { /* Toshiba NAND */
529
		get_toshiba_nand_para(denali);
530 531
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
532 533
	}

534
	dev_info(denali->dev,
535 536 537
			"Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
538 539 540
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
541
			ioread32(denali->flash_reg + RE_2_RE),
542 543 544 545 546 547 548 549 550 551
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

552 553
	/*
	 * If the user specified to override the default timings
554
	 * with a specific ONFI mode, we apply those changes here.
555 556
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
557
		nand_onfi_timing_set(denali, onfi_timing_mode);
558 559 560 561

	return status;
}

562
static void denali_set_intr_modes(struct denali_nand_info *denali,
563 564
					uint16_t INT_ENABLE)
{
565
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
566 567 568
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
569
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
570
	else
571
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
572 573
}

574 575
/*
 * validation function to verify that the controlling software is making
576
 * a valid request
577 578 579
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
580
	return (flash_bank >= 0 && flash_bank < 4);
581 582 583 584
}

static void denali_irq_init(struct denali_nand_info *denali)
{
585
	uint32_t int_mask;
586
	int i;
587 588

	/* Disable global interrupts */
589
	denali_set_intr_modes(denali, false);
590 591 592 593

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
594
	for (i = 0; i < denali->max_banks; ++i)
595
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
596 597 598 599 600 601

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
602
	denali_set_intr_modes(denali, false);
603 604 605
	free_irq(irqnum, denali);
}

606 607
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
608
{
609 610
	int i;

611
	for (i = 0; i < denali->max_banks; ++i)
612
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
613 614
}

615 616
/*
 * This function only returns when an interrupt that this driver cares about
617
 * occurs. This is to reduce the overhead of servicing interrupts
618 619 620
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
621
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
622 623 624
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
625 626
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
627
{
628
	uint32_t intr_status_reg;
629

630
	intr_status_reg = INTR_STATUS(denali->flash_bank);
631

632
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
633 634 635 636
}

static void clear_interrupts(struct denali_nand_info *denali)
{
637 638
	uint32_t status;

639 640 641
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
642
	clear_interrupt(denali, status);
643 644 645 646 647 648 649

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
650
	uint32_t intr_status_reg;
651

652
	intr_status_reg = INTR_STATUS(denali->flash_bank);
653 654 655 656

	return ioread32(denali->flash_reg + intr_status_reg);
}

657 658 659
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
660 661 662 663
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
664
	uint32_t irq_status;
665 666 667 668
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

669
	/* check to see if a valid NAND chip has been selected. */
670
	if (is_flash_bank_valid(denali->flash_bank)) {
671 672 673 674
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
675 676
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
677 678 679
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
680 681 682 683
			/*
			 * store the status in the device context for someone
			 * to read
			 */
684 685 686 687 688 689 690 691 692 693 694 695 696 697
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
698 699
	unsigned long comp_res;
	uint32_t intr_status;
700 701
	unsigned long timeout = msecs_to_jiffies(1000);

702
	do {
703 704
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
705 706 707
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

708
		if (intr_status & irq_mask) {
709 710 711 712
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
713
		} else {
714 715 716 717
			/*
			 * these are not the interrupts you are looking for -
			 * need to wait again
			 */
718 719 720 721
			spin_unlock_irq(&denali->irq_lock);
		}
	} while (comp_res != 0);

722
	if (comp_res == 0) {
723
		/* timeout */
724
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
725
				intr_status, irq_mask);
726 727 728 729 730 731

		intr_status = 0;
	}
	return intr_status;
}

732 733 734 735
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
736
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
737 738
				bool transfer_spare)
{
739
	int ecc_en_flag, transfer_spare_flag;
740 741 742 743 744 745

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
746 747
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	iowrite32(transfer_spare_flag,
748
			denali->flash_reg + TRANSFER_SPARE_REG);
749 750
}

751 752
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
753
 * controller's user guide for more information (section 4.2.3.6).
754
 */
755 756 757 758 759
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
760 761
{
	int status = PASS;
762 763
	uint32_t page_count = 1;
	uint32_t addr, cmd, irq_status, irq_mask;
764

765
	if (op == DENALI_READ)
766
		irq_mask = INTR_STATUS__LOAD_COMP;
767 768 769 770
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
771 772 773

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

774
	clear_interrupts(denali);
775 776 777

	addr = BANK(denali->flash_bank) | denali->page;

778
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
779
		cmd = MODE_01 | addr;
780
		iowrite32(cmd, denali->flash_mem);
781
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
782
		/* read spare area */
783
		cmd = MODE_10 | addr;
784
		index_addr(denali, cmd, access_type);
785

786
		cmd = MODE_01 | addr;
787
		iowrite32(cmd, denali->flash_mem);
788
	} else if (op == DENALI_READ) {
789
		/* setup page read request for access type */
790
		cmd = MODE_10 | addr;
791
		index_addr(denali, cmd, access_type);
792

793 794 795 796
		/*
		 * page 33 of the NAND controller spec indicates we should not
		 * use the pipeline commands in Spare area only mode.
		 * So we don't.
797
		 */
798
		if (access_type == SPARE_ACCESS) {
799
			cmd = MODE_01 | addr;
800
			iowrite32(cmd, denali->flash_mem);
801
		} else {
802
			index_addr(denali, cmd,
803
					PIPELINE_ACCESS | op | page_count);
804

805 806
			/*
			 * wait for command to be accepted
807
			 * can always use status0 bit as the
808 809
			 * mask is identical for each bank.
			 */
810 811
			irq_status = wait_for_irq(denali, irq_mask);

812
			if (irq_status == 0) {
813
				dev_err(denali->dev,
814 815 816
						"cmd, page, addr on timeout "
						"(0x%x, 0x%x, 0x%x)\n",
						cmd, denali->page, addr);
817
				status = FAIL;
818
			} else {
819
				cmd = MODE_01 | addr;
820
				iowrite32(cmd, denali->flash_mem);
821 822 823 824 825 826 827
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
828 829 830
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
831
{
832 833
	uint32_t *buf32;
	int i;
834

835 836 837 838
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
839 840 841 842 843
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
844
		iowrite32(*buf32++, denali->flash_mem + 0x10);
845
	return i*4; /* intent is to return the number of bytes read */
846 847 848
}

/* helper function that simply reads a buffer from the flash */
849 850 851
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
852
{
853 854
	uint32_t *buf32;
	int i;
855

856 857 858 859 860
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
861 862 863 864 865 866 867
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
868
	return i*4; /* intent is to return the number of bytes read */
869 870 871 872 873 874
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
875
	uint32_t irq_status;
876 877
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
878 879 880 881
	int status = 0;

	denali->page = page;

882
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
883
							DENALI_WRITE) == PASS) {
884 885 886 887 888
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

889
		if (irq_status == 0) {
890
			dev_err(denali->dev, "OOB write failed\n");
891 892
			status = -EIO;
		}
893
	} else {
894
		dev_err(denali->dev, "unable to send pipeline command\n");
895
		status = -EIO;
896 897 898 899 900 901 902 903
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
904 905
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
	uint32_t irq_status, addr, cmd;
906 907 908

	denali->page = page;

909
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
910
							DENALI_READ) == PASS) {
911
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
912

913 914 915 916 917
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
918 919 920
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
921
			dev_err(denali->dev, "page on OOB timeout %d\n",
922
					denali->page);
923

924 925
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
926 927 928
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
929
		 * if you are in MAIN_ACCESS.
930 931
		 */
		addr = BANK(denali->flash_bank) | denali->page;
932
		cmd = MODE_10 | addr;
933
		index_addr(denali, cmd, MAIN_ACCESS);
934 935 936
	}
}

937 938
/*
 * this function examines buffers to see if they contain data that
939 940
 * indicate that the buffer is part of an erased region of flash.
 */
941
static bool is_erased(uint8_t *buf, int len)
942
{
943
	int i;
944 945 946 947 948 949 950 951 952 953
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
954 955
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
956 957
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

958
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
959
		       uint32_t irq_status, unsigned int *max_bitflips)
960 961
{
	bool check_erased_page = false;
962
	unsigned int bitflips = 0;
963

964
	if (irq_status & INTR_STATUS__ECC_ERR) {
965
		/* read the ECC errors. we'll ignore them for now */
966 967
		uint32_t err_address, err_correction_info, err_byte,
			 err_sector, err_device, err_correction_value;
968
		denali_set_intr_modes(denali, false);
969

970
		do {
971
			err_address = ioread32(denali->flash_reg +
972 973 974 975
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

976
			err_correction_info = ioread32(denali->flash_reg +
977
						ERR_CORRECTION_INFO);
978
			err_correction_value =
979 980 981
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

982
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
983 984
				/*
				 * If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
985
				 * means error happened in OOB, so we ignore
986 987 988 989
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
990
				 */
991 992 993 994 995 996 997
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
998 999 1000
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
1001
					bitflips++;
1002
				}
1003
			} else {
1004 1005
				/*
				 * if the error is not correctable, need to
1006 1007
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
1008
				 */
1009 1010 1011
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
1012 1013
		/*
		 * Once handle all ecc errors, controller will triger
1014 1015
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
1016
		 */
1017
		while (!(read_interrupt_status(denali) &
1018
				INTR_STATUS__ECC_TRANSACTION_DONE))
1019 1020 1021
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
1022
	}
1023
	*max_bitflips = bitflips;
1024 1025 1026 1027
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1028
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1029
{
1030
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1031 1032 1033 1034
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1035
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1036
{
1037
	uint32_t mode;
1038
	const int page_count = 1;
1039
	uint32_t addr = denali->buf.dma_buf;
1040 1041 1042 1043 1044 1045 1046 1047 1048

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
1049
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1050 1051

	/* 3. set memory low address bits 23:8 */
1052
	index_addr(denali, mode | ((addr & 0xff) << 8), 0x2300);
1053

1054
	/* 4. interrupt when complete, burst len = 64 bytes */
1055 1056 1057
	index_addr(denali, mode | 0x14000, 0x2400);
}

1058 1059 1060 1061
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1062
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1063 1064 1065 1066 1067 1068 1069
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

1070
	uint32_t irq_status;
1071 1072
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;
1073

1074 1075
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1076 1077 1078 1079 1080 1081 1082 1083
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1084
	if (raw_xfer) {
1085
		/* transfer the data to the spare area */
1086 1087 1088
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1089 1090
	}

1091
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1092 1093

	clear_interrupts(denali);
1094
	denali_enable_dma(denali, true);
1095

1096
	denali_setup_dma(denali, DENALI_WRITE);
1097 1098 1099 1100

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1101
	if (irq_status == 0) {
1102
		dev_err(denali->dev,
1103 1104
				"timeout on write_page (type = %d)\n",
				raw_xfer);
1105
		denali->status = NAND_STATUS_FAIL;
1106 1107
	}

1108
	denali_enable_dma(denali, false);
1109
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1110 1111

	return 0;
1112 1113 1114 1115
}

/* NAND core entry points */

1116 1117
/*
 * this is the callback that the NAND core calls to write a page. Since
1118 1119
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1120
 */
1121
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1122
				const uint8_t *buf, int oob_required)
1123
{
1124 1125 1126 1127
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1128
	return write_page(mtd, chip, buf, false);
1129 1130
}

1131 1132
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1133
 * raw access is similar to ECC page writes, so all the work is done in the
1134
 * write_page() function above.
1135
 */
1136
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1137
					const uint8_t *buf, int oob_required)
1138
{
1139 1140 1141 1142
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1143
	return write_page(mtd, chip, buf, true);
1144 1145
}

1146
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1147 1148
			    int page)
{
1149
	return write_oob_data(mtd, chip->oob_poi, page);
1150 1151
}

1152
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1153
			   int page)
1154 1155 1156
{
	read_oob_data(mtd, chip->oob_poi, page);

1157
	return 0;
1158 1159 1160
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1161
			    uint8_t *buf, int oob_required, int page)
1162
{
1163
	unsigned int max_bitflips;
1164 1165 1166 1167 1168
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

1169
	uint32_t irq_status;
1170 1171
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
1172 1173
	bool check_erased_page = false;

1174
	if (page != denali->page) {
1175
		dev_err(denali->dev, "IN %s: page %d is not"
1176 1177 1178 1179 1180
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1181 1182
	setup_ecc_for_xfer(denali, true, false);

1183
	denali_enable_dma(denali, true);
1184
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1185 1186

	clear_interrupts(denali);
1187
	denali_setup_dma(denali, DENALI_READ);
1188 1189 1190 1191

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1192
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1193 1194

	memcpy(buf, denali->buf.buf, mtd->writesize);
1195

1196
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1197
	denali_enable_dma(denali, false);
1198

1199
	if (check_erased_page) {
1200 1201 1202
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1203
		if (check_erased_page) {
1204 1205 1206 1207
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1208
		}
1209
	}
1210
	return max_bitflips;
1211 1212 1213
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1214
				uint8_t *buf, int oob_required, int page)
1215 1216 1217 1218 1219 1220
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

1221
	uint32_t irq_status;
1222
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1223

1224
	if (page != denali->page) {
1225
		dev_err(denali->dev, "IN %s: page %d is not"
1226 1227 1228 1229 1230
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1231
	setup_ecc_for_xfer(denali, false, true);
1232
	denali_enable_dma(denali, true);
1233

1234
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1235 1236

	clear_interrupts(denali);
1237
	denali_setup_dma(denali, DENALI_READ);
1238 1239 1240 1241

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1242
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1243

1244
	denali_enable_dma(denali, false);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

	return status;
}

1281
static int denali_erase(struct mtd_info *mtd, int page)
1282 1283 1284
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1285
	uint32_t cmd, irq_status;
1286

1287
	clear_interrupts(denali);
1288 1289 1290

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1291
	index_addr(denali, cmd, 0x1);
1292 1293

	/* wait for erase to complete or failure to occur */
1294 1295
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);
1296

1297
	return (irq_status & INTR_STATUS__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS;
1298 1299
}

1300
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1301 1302 1303
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1304 1305
	uint32_t addr, id;
	int i;
1306

1307
	switch (cmd) {
1308 1309 1310 1311 1312 1313
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1314
	case NAND_CMD_PARAM:
1315
		reset_buf(denali);
1316 1317
		/*
		 * sometimes ManufactureId read from register is not right
1318 1319
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1320
		 */
1321 1322 1323
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
		index_addr(denali, addr | 1, 0);
1324
		for (i = 0; i < 8; i++) {
1325
			index_addr_read_data(denali,
1326
						addr | 2,
1327 1328
						&id);
			write_byte_to_buf(denali, id);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1342
		pr_err(": unsupported command received 0x%x\n", cmd);
1343
		break;
1344 1345 1346 1347
	}
}

/* stubs for ECC functions not used by the NAND core */
1348
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1349 1350
				uint8_t *ecc_code)
{
1351
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1352
	dev_err(denali->dev,
1353
			"denali_ecc_calculate called unexpectedly\n");
1354 1355 1356 1357
	BUG();
	return -EIO;
}

1358
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1359 1360
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
1361
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1362
	dev_err(denali->dev,
1363
			"denali_ecc_correct called unexpectedly\n");
1364 1365 1366 1367 1368 1369
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
1370
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1371
	dev_err(denali->dev,
1372
			"denali_ecc_hwctl called unexpectedly\n");
1373 1374 1375 1376 1377 1378 1379
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1380 1381
	/*
	 * tell driver how many bit controller will skip before
1382 1383 1384
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1385
	 */
1386 1387
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1388
	detect_max_banks(denali);
1389
	denali_nand_reset(denali);
1390 1391
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1392
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1393

1394
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1395 1396

	/* Should set value for these registers when init */
1397 1398
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1399 1400
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1401 1402
}

1403 1404
/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1405 1406
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
1407
 */
1408 1409 1410
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
1411 1412
};

1413 1414 1415
#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1441
/* initialize driver data structures */
1442
static void denali_drv_init(struct denali_nand_info *denali)
1443 1444 1445 1446
{
	denali->idx = 0;

	/* setup interrupt handler */
1447 1448 1449 1450
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1451 1452
	init_completion(&denali->complete);

1453 1454 1455 1456
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1457 1458 1459 1460 1461 1462 1463 1464 1465
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1466
int denali_init(struct denali_nand_info *denali)
1467
{
1468
	int ret;
1469

1470
	if (denali->platform == INTEL_CE4100) {
1471 1472
		/*
		 * Due to a silicon limitation, we can only support
1473 1474
		 * ONFI timing mode 1 and below.
		 */
1475
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1476 1477
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1478 1479 1480
		}
	}

1481 1482 1483 1484 1485
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1486

1487
	denali->mtd.dev.parent = denali->dev;
1488 1489 1490
	denali_hw_init(denali);
	denali_drv_init(denali);

1491 1492 1493 1494
	/*
	 * denali_isr register is done after all the hardware
	 * initilization is finished
	 */
1495
	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1496
			DENALI_NAND_NAME, denali)) {
1497 1498
		pr_err("Spectra: Unable to allocate IRQ\n");
		return -ENODEV;
1499 1500 1501
	}

	/* now that our ISR is registered, we can enable interrupts */
1502
	denali_set_intr_modes(denali, true);
1503
	denali->mtd.name = "denali-nand";
1504 1505 1506 1507 1508 1509 1510 1511 1512
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1513 1514
	/*
	 * scan for NAND devices attached to the controller
1515
	 * this is the first stage in a two step process to register
1516 1517
	 * with the nand subsystem
	 */
1518
	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1519
		ret = -ENXIO;
1520
		goto failed_req_irq;
1521
	}
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
		pr_err("Spectra: no usable DMA configuration\n");
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
		ret = -EIO;
1546
		goto failed_req_irq;
1547 1548
	}

1549 1550 1551 1552
	/*
	 * support for multi nand
	 * MTD known nothing about multi nand, so we should tell it
	 * the real pagesize and anything necessery
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

1568 1569
	/*
	 * second stage of the NAND scan
1570
	 * this stage requires information regarding ECC and
1571 1572
	 * bad block management.
	 */
1573 1574 1575 1576 1577 1578

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
1579
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1580
	denali->nand.options |= NAND_SKIP_BBTSCAN;
1581 1582
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1583 1584
	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1585 1586 1587
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1588
	if (!nand_is_slc(&denali->nand) &&
1589 1590 1591 1592
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
M
Mike Dunn 已提交
1593
		denali->nand.ecc.strength = 15;
1594 1595
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
1596
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1597 1598 1599
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
1600 1601
		pr_err("Your NAND chip OOB is not large enough to \
				contain 8bit ECC correction codes");
1602
		goto failed_req_irq;
1603
	} else {
M
Mike Dunn 已提交
1604
		denali->nand.ecc.strength = 8;
1605 1606
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
1607
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1608 1609
	}

1610
	denali->nand.ecc.bytes *= denali->devnum;
M
Mike Dunn 已提交
1611
	denali->nand.ecc.strength *= denali->devnum;
1612 1613 1614 1615 1616 1617 1618 1619
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

1620 1621 1622 1623 1624
	/*
	 * Let driver know the total blocks number and how many blocks
	 * contained by each nand chip. blksperchip will help driver to
	 * know how many blocks is taken by FW.
	 */
1625 1626 1627 1628
	denali->totalblks = denali->mtd.size >>
				denali->nand.phys_erase_shift;
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1629 1630
	/*
	 * These functions are required by the NAND core framework, otherwise,
1631
	 * the NAND core will assert. However, we don't need them, so we'll stub
1632 1633
	 * them out.
	 */
1634 1635 1636 1637 1638
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
1639
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1640 1641 1642 1643 1644 1645
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
1646
	denali->nand.erase = denali_erase;
1647

1648
	if (nand_scan_tail(&denali->mtd)) {
1649
		ret = -ENXIO;
1650
		goto failed_req_irq;
1651 1652
	}

1653
	ret = mtd_device_register(&denali->mtd, NULL, 0);
1654
	if (ret) {
1655
		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1656
				ret);
1657
		goto failed_req_irq;
1658 1659 1660
	}
	return 0;

1661
failed_req_irq:
1662 1663
	denali_irq_cleanup(denali->irq, denali);

1664 1665
	return ret;
}
1666
EXPORT_SYMBOL(denali_init);
1667 1668

/* driver exit point */
1669
void denali_remove(struct denali_nand_info *denali)
1670
{
1671
	denali_irq_cleanup(denali->irq, denali);
1672 1673
	dma_unmap_single(denali->dev, denali->buf.dma_buf,
			denali->mtd.writesize + denali->mtd.oobsize,
1674
			DMA_BIDIRECTIONAL);
1675
}
1676
EXPORT_SYMBOL(denali_remove);