intel_pm.c 227.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107 108 109 110 111 112 113 114 115 116 117 118 119
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

120
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

158
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

185
	dev_priv->ips.r_t = dev_priv->mem_freq;
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
217
		dev_priv->ips.c_m = 0;
218
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
219
		dev_priv->ips.c_m = 1;
220
	} else {
221
		dev_priv->ips.c_m = 2;
222 223 224
	}
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

263 264
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

325 326 327
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

328
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
329
{
330
	bool was_enabled;
331
	u32 val;
332

333
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
334
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
335
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
336
		POSTING_READ(FW_BLC_SELF_VLV);
337
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
338
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
339
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
340
		POSTING_READ(FW_BLC_SELF);
341
	} else if (IS_PINEVIEW(dev_priv)) {
342 343 344 345 346 347
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
348
		I915_WRITE(DSPFW3, val);
349
		POSTING_READ(DSPFW3);
350
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
351
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
352 353 354
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
355
		POSTING_READ(FW_BLC_SELF);
356
	} else if (IS_I915GM(dev_priv)) {
357 358 359 360 361
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
362
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
363 364 365
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
366
		POSTING_READ(INSTPM);
367
	} else {
368
		return false;
369
	}
370

371 372 373 374 375
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
376 377
}

378
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
379
{
380 381
	bool ret;

382
	mutex_lock(&dev_priv->wm.wm_mutex);
383
	ret = _intel_set_memory_cxsr(dev_priv, enable);
384 385
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
386 387

	return ret;
388
}
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
404
static const int pessimal_latency_ns = 5000;
405

406 407 408
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

409
static int vlv_get_fifo_size(struct intel_plane *plane)
410
{
411
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
412 413
	int sprite0_start, sprite1_start, size;

414 415 416 417
	if (plane->id == PLANE_CURSOR)
		return 63;

	switch (plane->pipe) {
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

441 442
	switch (plane->id) {
	case PLANE_PRIMARY:
443 444
		size = sprite0_start;
		break;
445
	case PLANE_SPRITE0:
446 447
		size = sprite1_start - sprite0_start;
		break;
448
	case PLANE_SPRITE1:
449 450 451 452 453 454
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

455
	DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
456 457 458 459

	return size;
}

460
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
461 462 463 464 465 466 467 468 469 470 471 472 473 474
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

475
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

491
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
508 509 510 511 512
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
513 514
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
515 516 517 518 519
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
520 521
};
static const struct intel_watermark_params pineview_cursor_wm = {
522 523 524 525 526
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
527 528
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
529 530 531 532 533
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
534 535
};
static const struct intel_watermark_params g4x_wm_info = {
536 537 538 539 540
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
541 542
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
543 544 545 546 547
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
548 549
};
static const struct intel_watermark_params i965_cursor_wm_info = {
550 551 552 553 554
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
555 556
};
static const struct intel_watermark_params i945_wm_info = {
557 558 559 560 561
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
562 563
};
static const struct intel_watermark_params i915_wm_info = {
564 565 566 567 568
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
569
};
570
static const struct intel_watermark_params i830_a_wm_info = {
571 572 573 574 575
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
576
};
577 578 579 580 581 582 583
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
584
static const struct intel_watermark_params i845_wm_info = {
585 586 587 588 589
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
590 591 592 593 594 595
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
596
 * @cpp: bytes per pixel
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
612
					int fifo_size, int cpp,
613 614 615 616 617 618 619 620 621 622
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
623
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
624 625 626 627 628 629 630 631 632 633 634 635 636 637
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
638 639 640 641 642 643 644 645 646 647 648

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

649 650 651
	return wm_size;
}

652
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
653
{
654
	struct intel_crtc *crtc, *enabled = NULL;
655

656
	for_each_intel_crtc(&dev_priv->drm, crtc) {
657
		if (intel_crtc_active(crtc)) {
658 659 660 661 662 663 664 665 666
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

667
static void pineview_update_wm(struct intel_crtc *unused_crtc)
668
{
669
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
670
	struct intel_crtc *crtc;
671 672 673 674
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

675 676 677 678
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
679 680
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
681
		intel_set_memory_cxsr(dev_priv, false);
682 683 684
		return;
	}

685
	crtc = single_enabled_crtc(dev_priv);
686
	if (crtc) {
687 688 689 690
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
691
		int cpp = fb->format->cpp[0];
692
		int clock = adjusted_mode->crtc_clock;
693 694 695 696

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
697
					cpp, latency->display_sr);
698 699
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
700
		reg |= FW_WM(wm, SR);
701 702 703 704 705 706
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
707
					cpp, latency->cursor_sr);
708 709
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
710
		reg |= FW_WM(wm, CURSOR_SR);
711 712 713 714 715
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
716
					cpp, latency->display_hpll_disable);
717 718
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
719
		reg |= FW_WM(wm, HPLL_SR);
720 721 722 723 724
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
725
					cpp, latency->cursor_hpll_disable);
726 727
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
728
		reg |= FW_WM(wm, HPLL_CURSOR);
729 730 731
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

732
		intel_set_memory_cxsr(dev_priv, true);
733
	} else {
734
		intel_set_memory_cxsr(dev_priv, false);
735 736 737
	}
}

738
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
739 740 741 742 743 744 745 746
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
747
	struct intel_crtc *crtc;
748
	const struct drm_display_mode *adjusted_mode;
749
	const struct drm_framebuffer *fb;
750
	int htotal, hdisplay, clock, cpp;
751 752 753
	int line_time_us, line_count;
	int entries, tlb_miss;

754
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
755
	if (!intel_crtc_active(crtc)) {
756 757 758 759 760
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

761 762
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
763
	clock = adjusted_mode->crtc_clock;
764
	htotal = adjusted_mode->crtc_htotal;
765
	hdisplay = crtc->config->pipe_src_w;
766
	cpp = fb->format->cpp[0];
767 768

	/* Use the small buffer method to calculate plane watermark */
769
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
770 771 772 773 774 775 776 777 778
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
779
	line_time_us = max(htotal * 1000 / clock, 1);
780
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
781
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
800
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
801 802 803 804 805 806 807 808
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
809
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
810 811 812 813 814
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
815
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
816 817 818 819 820 821 822 823 824 825 826 827
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

828
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
829 830 831 832 833 834
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
835
	struct intel_crtc *crtc;
836
	const struct drm_display_mode *adjusted_mode;
837
	const struct drm_framebuffer *fb;
838
	int hdisplay, htotal, cpp, clock;
839 840 841 842 843 844 845 846 847 848
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

849
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
850 851
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
852
	clock = adjusted_mode->crtc_clock;
853
	htotal = adjusted_mode->crtc_htotal;
854
	hdisplay = crtc->config->pipe_src_w;
855
	cpp = fb->format->cpp[0];
856

857
	line_time_us = max(htotal * 1000 / clock, 1);
858
	line_count = (latency_ns / line_time_us + 1000) / 1000;
859
	line_size = hdisplay * cpp;
860 861

	/* Use the minimum of the small and large buffer method for primary */
862
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
863 864 865 866 867 868
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
869
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
870 871 872
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

873
	return g4x_check_srwm(dev_priv,
874 875 876 877
			      *display_wm, *cursor_wm,
			      display, cursor);
}

878 879 880
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

881
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
882 883
				const struct vlv_wm_values *wm)
{
884 885 886 887 888 889 890 891 892
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
893

894 895 896 897 898 899 900 901 902 903 904
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

905
	I915_WRITE(DSPFW1,
906
		   FW_WM(wm->sr.plane, SR) |
907 908 909
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
910
	I915_WRITE(DSPFW2,
911 912 913
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
914
	I915_WRITE(DSPFW3,
915
		   FW_WM(wm->sr.cursor, CURSOR_SR));
916 917 918

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
919 920
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
921
		I915_WRITE(DSPFW8_CHV,
922 923
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
924
		I915_WRITE(DSPFW9_CHV,
925 926
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
927
		I915_WRITE(DSPHOWM,
928
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
929 930 931 932 933 934 935 936 937
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
938 939
	} else {
		I915_WRITE(DSPFW7,
940 941
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
942
		I915_WRITE(DSPHOWM,
943
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
944 945 946 947 948 949
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
950 951 952
	}

	POSTING_READ(DSPFW1);
953 954
}

955 956
#undef FW_WM_VLV

957 958 959 960 961 962
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

963 964 965 966
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
967
				   unsigned int cpp,
968 969 970 971 972
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
973
	ret = (ret + 1) * horiz_pixels * cpp;
974 975 976 977 978
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

979
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
980 981 982 983
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

984 985
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

986 987 988
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
989 990

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
991 992 993
	}
}

994 995
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
996 997
				     int level)
{
998
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
999
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1000 1001
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1002
	int clock, htotal, cpp, width, wm;
1003 1004 1005 1006

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1007
	if (!plane_state->base.visible)
1008 1009
		return 0;

1010
	cpp = plane_state->base.fb->format->cpp[0];
1011 1012 1013
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1026
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1027 1028 1029 1030 1031 1032
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1049
		if (state->base.visible) {
1050
			wm_state->num_active_planes++;
1051
			total_rate += state->base.fb->format->cpp[0];
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1065
		if (!state->base.visible) {
1066 1067 1068 1069
			plane->wm.fifo_size = 0;
			continue;
		}

1070
		rate = state->base.fb->format->cpp[0];
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1100 1101 1102 1103 1104 1105 1106 1107
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1108 1109 1110 1111 1112 1113
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
1114
		struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1115
		const int sr_fifo_size =
1116
			INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1117 1118
		struct intel_plane *plane;

1119 1120 1121 1122 1123 1124
		wm_state->sr[level].plane =
			vlv_invert_wm_value(wm_state->sr[level].plane,
					    sr_fifo_size);
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(wm_state->sr[level].cursor,
					    63);
1125

1126
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1127 1128 1129
			wm_state->wm[level].plane[plane->id] =
				vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
						    plane->wm.fifo_size);
1130 1131 1132 1133
		}
	}
}

1134
static void vlv_compute_wm(struct intel_crtc *crtc)
1135
{
1136
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1137 1138 1139 1140 1141 1142
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1143
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1144
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1145 1146 1147

	wm_state->num_active_planes = 0;

1148
	vlv_compute_fifo(crtc);
1149 1150 1151 1152

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

1153
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1154 1155
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
1156
		int level;
1157

1158
		if (!state->base.visible)
1159 1160 1161 1162
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
1163
			int wm = vlv_compute_wm_level(crtc->config, state, level);
1164
			int max_wm = plane->wm.fifo_size;
1165 1166 1167 1168 1169

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

1170
			if (wm > max_wm)
1171 1172
				break;

1173
			wm_state->wm[level].plane[plane->id] = wm;
1174 1175 1176 1177 1178 1179 1180 1181
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
1182
		if (plane->id == PLANE_CURSOR) {
1183 1184
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1185 1186
					wm_state->wm[level].plane[PLANE_CURSOR];
		} else {
1187 1188
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1189
					max(wm_state->sr[level].plane,
1190
					    wm_state->wm[level].plane[plane->id]);
1191 1192 1193 1194
		}
	}

	/* clear any (partially) filled invalid levels */
1195
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1196 1197 1198 1199 1200 1201 1202
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1214 1215
		switch (plane->id) {
		case PLANE_PRIMARY:
1216
			sprite0_start = plane->wm.fifo_size;
1217 1218
			break;
		case PLANE_SPRITE0:
1219
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1220 1221
			break;
		case PLANE_SPRITE1:
1222
			fifo_size = sprite1_start + plane->wm.fifo_size;
1223 1224 1225 1226 1227 1228 1229 1230
			break;
		case PLANE_CURSOR:
			WARN_ON(plane->wm.fifo_size != 63);
			break;
		default:
			MISSING_CASE(plane->id);
			break;
		}
1231 1232 1233 1234 1235 1236 1237 1238
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

1239 1240
	spin_lock(&dev_priv->wm.dsparb_lock);

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
1297 1298 1299 1300

	POSTING_READ(DSPARB);

	spin_unlock(&dev_priv->wm.dsparb_lock);
1301 1302 1303 1304
}

#undef VLV_FIFO

1305
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1306 1307 1308 1309 1310
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1311
	wm->level = dev_priv->wm.max_level;
1312 1313
	wm->cxsr = true;

1314
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1330 1331 1332
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1333
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

1344 1345 1346 1347
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1348 1349 1350
	}
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1361
static void vlv_update_wm(struct intel_crtc *crtc)
1362
{
1363
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1364
	enum pipe pipe = crtc->pipe;
1365 1366
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1367

1368
	vlv_compute_wm(crtc);
1369
	vlv_merge_wm(dev_priv, &new_wm);
1370

1371
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
1372
		/* FIXME should be part of crtc atomic commit */
1373
		vlv_pipe_set_fifo_size(crtc);
1374

1375
		return;
1376
	}
1377

1378
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1379 1380
		chv_set_memory_dvfs(dev_priv, false);

1381
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1382 1383
		chv_set_memory_pm5(dev_priv, false);

1384
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1385
		_intel_set_memory_cxsr(dev_priv, false);
1386

1387
	/* FIXME should be part of crtc atomic commit */
1388
	vlv_pipe_set_fifo_size(crtc);
1389

1390
	vlv_write_wm_values(dev_priv, &new_wm);
1391 1392 1393

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1394 1395 1396
		      pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
		      new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
		      new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
1397

1398
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1399
		_intel_set_memory_cxsr(dev_priv, true);
1400

1401
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1402 1403
		chv_set_memory_pm5(dev_priv, true);

1404
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1405 1406
		chv_set_memory_dvfs(dev_priv, true);

1407
	*old_wm = new_wm;
1408 1409
}

1410 1411
#define single_plane_enabled(mask) is_power_of_2(mask)

1412
static void g4x_update_wm(struct intel_crtc *crtc)
1413
{
1414
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1415 1416 1417 1418
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1419
	bool cxsr_enabled;
1420

1421
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1422 1423
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1424
			    &planea_wm, &cursora_wm))
1425
		enabled |= 1 << PIPE_A;
1426

1427
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1428 1429
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1430
			    &planeb_wm, &cursorb_wm))
1431
		enabled |= 1 << PIPE_B;
1432 1433

	if (single_plane_enabled(enabled) &&
1434
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1435 1436 1437
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1438
			     &plane_sr, &cursor_sr)) {
1439
		cxsr_enabled = true;
1440
	} else {
1441
		cxsr_enabled = false;
1442
		intel_set_memory_cxsr(dev_priv, false);
1443 1444
		plane_sr = cursor_sr = 0;
	}
1445

1446 1447
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1448 1449 1450 1451 1452
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1453 1454 1455 1456
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1457
	I915_WRITE(DSPFW2,
1458
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1459
		   FW_WM(cursora_wm, CURSORA));
1460 1461
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1462
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1463
		   FW_WM(cursor_sr, CURSOR_SR));
1464 1465 1466

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1467 1468
}

1469
static void i965_update_wm(struct intel_crtc *unused_crtc)
1470
{
1471
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1472
	struct intel_crtc *crtc;
1473 1474
	int srwm = 1;
	int cursor_sr = 16;
1475
	bool cxsr_enabled;
1476 1477

	/* Calc sr entries for one plane configs */
1478
	crtc = single_enabled_crtc(dev_priv);
1479 1480 1481
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1482 1483 1484 1485
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1486
		int clock = adjusted_mode->crtc_clock;
1487
		int htotal = adjusted_mode->crtc_htotal;
1488
		int hdisplay = crtc->config->pipe_src_w;
1489
		int cpp = fb->format->cpp[0];
1490 1491 1492
		unsigned long line_time_us;
		int entries;

1493
		line_time_us = max(htotal * 1000 / clock, 1);
1494 1495 1496

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1497
			cpp * hdisplay;
1498 1499 1500 1501 1502 1503 1504 1505 1506
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1507
			cpp * crtc->base.cursor->state->crtc_w;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1519
		cxsr_enabled = true;
1520
	} else {
1521
		cxsr_enabled = false;
1522
		/* Turn off self refresh if both pipes are enabled */
1523
		intel_set_memory_cxsr(dev_priv, false);
1524 1525 1526 1527 1528 1529
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1530 1531 1532 1533 1534 1535
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1536
	/* update cursor SR watermark */
1537
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1538 1539 1540

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1541 1542
}

1543 1544
#undef FW_WM

1545
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1546
{
1547
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1548 1549 1550 1551 1552 1553
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1554
	struct intel_crtc *crtc, *enabled = NULL;
1555

1556
	if (IS_I945GM(dev_priv))
1557
		wm_info = &i945_wm_info;
1558
	else if (!IS_GEN2(dev_priv))
1559 1560
		wm_info = &i915_wm_info;
	else
1561
		wm_info = &i830_a_wm_info;
1562

1563
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1564
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1565 1566 1567 1568 1569 1570 1571
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1572
		if (IS_GEN2(dev_priv))
1573
			cpp = 4;
1574
		else
1575
			cpp = fb->format->cpp[0];
1576

1577
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1578
					       wm_info, fifo_size, cpp,
1579
					       pessimal_latency_ns);
1580
		enabled = crtc;
1581
	} else {
1582
		planea_wm = fifo_size - wm_info->guard_size;
1583 1584 1585 1586
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1587
	if (IS_GEN2(dev_priv))
1588
		wm_info = &i830_bc_wm_info;
1589

1590
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1591
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1592 1593 1594 1595 1596 1597 1598
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1599
		if (IS_GEN2(dev_priv))
1600
			cpp = 4;
1601
		else
1602
			cpp = fb->format->cpp[0];
1603

1604
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1605
					       wm_info, fifo_size, cpp,
1606
					       pessimal_latency_ns);
1607 1608 1609 1610
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1611
	} else {
1612
		planeb_wm = fifo_size - wm_info->guard_size;
1613 1614 1615
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1616 1617 1618

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1619
	if (IS_I915GM(dev_priv) && enabled) {
1620
		struct drm_i915_gem_object *obj;
1621

1622
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1623 1624

		/* self-refresh seems busted with untiled */
1625
		if (!i915_gem_object_is_tiled(obj))
1626 1627 1628
			enabled = NULL;
	}

1629 1630 1631 1632 1633 1634
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1635
	intel_set_memory_cxsr(dev_priv, false);
1636 1637

	/* Calc sr entries for one plane configs */
1638
	if (HAS_FW_BLC(dev_priv) && enabled) {
1639 1640
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1641 1642 1643 1644
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1645
		int clock = adjusted_mode->crtc_clock;
1646
		int htotal = adjusted_mode->crtc_htotal;
1647 1648
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1649 1650 1651
		unsigned long line_time_us;
		int entries;

1652
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1653
			cpp = 4;
1654
		else
1655
			cpp = fb->format->cpp[0];
1656

1657
		line_time_us = max(htotal * 1000 / clock, 1);
1658 1659 1660

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1661
			cpp * hdisplay;
1662 1663 1664 1665 1666 1667
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1668
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1669 1670
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1671
		else
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1688 1689
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1690 1691
}

1692
static void i845_update_wm(struct intel_crtc *unused_crtc)
1693
{
1694
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1695
	struct intel_crtc *crtc;
1696
	const struct drm_display_mode *adjusted_mode;
1697 1698 1699
	uint32_t fwater_lo;
	int planea_wm;

1700
	crtc = single_enabled_crtc(dev_priv);
1701 1702 1703
	if (crtc == NULL)
		return;

1704
	adjusted_mode = &crtc->config->base.adjusted_mode;
1705
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1706
				       &i845_wm_info,
1707
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1708
				       4, pessimal_latency_ns);
1709 1710 1711 1712 1713 1714 1715 1716
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1717
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1718
{
1719
	uint32_t pixel_rate;
1720

1721
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1722 1723 1724 1725

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1726
	if (pipe_config->pch_pfit.enabled) {
1727
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1728 1729 1730 1731
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1732 1733 1734 1735 1736 1737 1738 1739

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1740 1741 1742
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1743 1744 1745 1746 1747 1748 1749
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1750
/* latency must be in 0.1us units. */
1751
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1752 1753 1754
{
	uint64_t ret;

1755 1756 1757
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1758
	ret = (uint64_t) pixel_rate * cpp * latency;
1759 1760 1761 1762 1763
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1764
/* latency must be in 0.1us units. */
1765
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1766
			       uint32_t horiz_pixels, uint8_t cpp,
1767 1768 1769 1770
			       uint32_t latency)
{
	uint32_t ret;

1771 1772
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1773 1774
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1775

1776
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1777
	ret = (ret + 1) * horiz_pixels * cpp;
1778 1779 1780 1781
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1782
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1783
			   uint8_t cpp)
1784
{
1785 1786 1787 1788 1789 1790
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1791
	if (WARN_ON(!cpp))
1792 1793 1794 1795
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1796
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1797 1798
}

1799
struct ilk_wm_maximums {
1800 1801 1802 1803 1804 1805
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1806 1807 1808 1809
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1810
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1811
				   const struct intel_plane_state *pstate,
1812 1813
				   uint32_t mem_value,
				   bool is_lp)
1814
{
1815
	uint32_t method1, method2;
1816
	int cpp;
1817

1818
	if (!cstate->base.active || !pstate->base.visible)
1819 1820
		return 0;

1821
	cpp = pstate->base.fb->format->cpp[0];
1822

1823
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
1824 1825 1826 1827

	if (!is_lp)
		return method1;

1828
	method2 = ilk_wm_method2(cstate->pixel_rate,
1829
				 cstate->base.adjusted_mode.crtc_htotal,
1830
				 drm_rect_width(&pstate->base.dst),
1831
				 cpp, mem_value);
1832 1833

	return min(method1, method2);
1834 1835
}

1836 1837 1838 1839
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1840
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1841
				   const struct intel_plane_state *pstate,
1842 1843 1844
				   uint32_t mem_value)
{
	uint32_t method1, method2;
1845
	int cpp;
1846

1847
	if (!cstate->base.active || !pstate->base.visible)
1848 1849
		return 0;

1850
	cpp = pstate->base.fb->format->cpp[0];
1851

1852 1853
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
1854
				 cstate->base.adjusted_mode.crtc_htotal,
1855
				 drm_rect_width(&pstate->base.dst),
1856
				 cpp, mem_value);
1857 1858 1859
	return min(method1, method2);
}

1860 1861 1862 1863
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1864
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1865
				   const struct intel_plane_state *pstate,
1866 1867
				   uint32_t mem_value)
{
1868 1869 1870 1871 1872 1873
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1874
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1875

1876
	if (!cstate->base.active)
1877 1878
		return 0;

1879
	return ilk_wm_method2(cstate->pixel_rate,
1880
			      cstate->base.adjusted_mode.crtc_htotal,
1881
			      width, cpp, mem_value);
1882 1883
}

1884
/* Only for WM_LP. */
1885
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1886
				   const struct intel_plane_state *pstate,
1887
				   uint32_t pri_val)
1888
{
1889
	int cpp;
1890

1891
	if (!cstate->base.active || !pstate->base.visible)
1892 1893
		return 0;

1894
	cpp = pstate->base.fb->format->cpp[0];
1895

1896
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1897 1898
}

1899 1900
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1901
{
1902
	if (INTEL_GEN(dev_priv) >= 8)
1903
		return 3072;
1904
	else if (INTEL_GEN(dev_priv) >= 7)
1905 1906 1907 1908 1909
		return 768;
	else
		return 512;
}

1910 1911 1912
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1913
{
1914
	if (INTEL_GEN(dev_priv) >= 8)
1915 1916
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1917
	else if (INTEL_GEN(dev_priv) >= 7)
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1928 1929
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1930
{
1931
	if (INTEL_GEN(dev_priv) >= 7)
1932 1933 1934 1935 1936
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1937
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1938
{
1939
	if (INTEL_GEN(dev_priv) >= 8)
1940 1941 1942 1943 1944
		return 31;
	else
		return 15;
}

1945 1946 1947
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1948
				     const struct intel_wm_config *config,
1949 1950 1951
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1952 1953
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1954 1955

	/* if sprites aren't enabled, sprites get nothing */
1956
	if (is_sprite && !config->sprites_enabled)
1957 1958 1959
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1960
	if (level == 0 || config->num_pipes_active > 1) {
1961
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1962 1963 1964 1965 1966 1967

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1968
		if (INTEL_GEN(dev_priv) <= 6)
1969 1970 1971
			fifo_size /= 2;
	}

1972
	if (config->sprites_enabled) {
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1984
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1985 1986 1987 1988
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1989 1990
				      int level,
				      const struct intel_wm_config *config)
1991 1992
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1993
	if (level > 0 && config->num_pipes_active > 1)
1994 1995 1996
		return 64;

	/* otherwise just report max that registers can hold */
1997
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1998 1999
}

2000
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2001 2002 2003
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2004
				    struct ilk_wm_maximums *max)
2005
{
2006 2007 2008
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2009
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2010 2011
}

2012
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2013 2014 2015
					int level,
					struct ilk_wm_maximums *max)
{
2016 2017 2018 2019
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2020 2021
}

2022
static bool ilk_validate_wm_level(int level,
2023
				  const struct ilk_wm_maximums *max,
2024
				  struct intel_wm_level *result)
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2063
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2064
				 const struct intel_crtc *intel_crtc,
2065
				 int level,
2066
				 struct intel_crtc_state *cstate,
2067 2068 2069
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2070
				 struct intel_wm_level *result)
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2095 2096 2097
	result->enable = true;
}

2098
static uint32_t
2099
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2100
{
2101 2102
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2103 2104
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2105
	u32 linetime, ips_linetime;
2106

2107 2108 2109 2110
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2111
	if (WARN_ON(intel_state->cdclk == 0))
2112
		return 0;
2113

2114 2115 2116
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2117 2118 2119
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2120
					 intel_state->cdclk);
2121

2122 2123
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2124 2125
}

2126 2127
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2128
{
2129
	if (IS_GEN9(dev_priv)) {
2130
		uint32_t val;
2131
		int ret, i;
2132
		int level, max_level = ilk_wm_max_level(dev_priv);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2188
		/*
2189
		 * WaWmMemoryReadLatency:skl,glk
2190
		 *
2191
		 * punit doesn't take into account the read latency so we need
2192 2193
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2194
		 */
2195 2196 2197 2198 2199
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2200
				wm[level] += 2;
2201
			}
2202 2203
		}

2204
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2205 2206 2207 2208 2209
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2210 2211 2212 2213
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2214
	} else if (INTEL_GEN(dev_priv) >= 6) {
2215 2216 2217 2218 2219 2220
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2221
	} else if (INTEL_GEN(dev_priv) >= 5) {
2222 2223 2224 2225 2226 2227
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2228 2229 2230
	}
}

2231 2232
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2233 2234
{
	/* ILK sprite LP0 latency is 1300 ns */
2235
	if (IS_GEN5(dev_priv))
2236 2237 2238
		wm[0] = 13;
}

2239 2240
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2241 2242
{
	/* ILK cursor LP0 latency is 1300 ns */
2243
	if (IS_GEN5(dev_priv))
2244 2245 2246
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2247
	if (IS_IVYBRIDGE(dev_priv))
2248 2249 2250
		wm[3] *= 2;
}

2251
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2252 2253
{
	/* how many WM levels are we expecting */
2254
	if (INTEL_GEN(dev_priv) >= 9)
2255
		return 7;
2256
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2257
		return 4;
2258
	else if (INTEL_GEN(dev_priv) >= 6)
2259
		return 3;
2260
	else
2261 2262
		return 2;
}
2263

2264
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2265
				   const char *name,
2266
				   const uint16_t wm[8])
2267
{
2268
	int level, max_level = ilk_wm_max_level(dev_priv);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2279 2280 2281 2282
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2283
		if (IS_GEN9(dev_priv))
2284 2285
			latency *= 10;
		else if (level > 0)
2286 2287 2288 2289 2290 2291 2292 2293
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2294 2295 2296
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2297
	int level, max_level = ilk_wm_max_level(dev_priv);
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2309
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2325 2326 2327
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2328 2329
}

2330
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2331
{
2332
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2333 2334 2335 2336 2337 2338

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2339
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2340
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2341

2342 2343 2344
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2345

2346
	if (IS_GEN6(dev_priv))
2347
		snb_wm_latency_quirk(dev_priv);
2348 2349
}

2350
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2351
{
2352
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2353
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2354 2355
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2379
/* Compute new watermarks for the pipe */
2380
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2381
{
2382 2383
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2384
	struct intel_pipe_wm *pipe_wm;
2385
	struct drm_device *dev = state->dev;
2386
	const struct drm_i915_private *dev_priv = to_i915(dev);
2387
	struct intel_plane *intel_plane;
2388
	struct intel_plane_state *pristate = NULL;
2389
	struct intel_plane_state *sprstate = NULL;
2390
	struct intel_plane_state *curstate = NULL;
2391
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2392
	struct ilk_wm_maximums max;
2393

2394
	pipe_wm = &cstate->wm.ilk.optimal;
2395

2396
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2397 2398 2399 2400 2401 2402
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2403 2404

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2405
			pristate = ps;
2406
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2407
			sprstate = ps;
2408
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2409
			curstate = ps;
2410 2411
	}

2412
	pipe_wm->pipe_enabled = cstate->base.active;
2413
	if (sprstate) {
2414 2415 2416 2417
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2418 2419
	}

2420 2421
	usable_level = max_level;

2422
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2423
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2424
		usable_level = 1;
2425 2426

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2427
	if (pipe_wm->sprites_scaled)
2428
		usable_level = 0;
2429

2430
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2431 2432 2433 2434
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2435

2436
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2437
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2438

2439
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2440
		return -EINVAL;
2441

2442
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2443 2444

	for (level = 1; level <= max_level; level++) {
2445
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2446

2447
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2448
				     pristate, sprstate, curstate, wm);
2449 2450 2451 2452 2453 2454

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2455 2456 2457 2458 2459 2460
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2461
			usable_level = level;
2462 2463
	}

2464
	return 0;
2465 2466
}

2467 2468 2469 2470 2471 2472 2473 2474 2475
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2476
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2477
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2478
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2479 2480 2481 2482 2483 2484

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2485
	*a = newstate->wm.ilk.optimal;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2514
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2515 2516 2517 2518 2519
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2520 2521 2522 2523 2524 2525 2526 2527 2528
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2529 2530
	ret_wm->enable = true;

2531
	for_each_intel_crtc(dev, intel_crtc) {
2532
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2533 2534 2535 2536
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2537

2538 2539 2540 2541 2542
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2543
		if (!wm->enable)
2544
			ret_wm->enable = false;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2557
			 const struct intel_wm_config *config,
2558
			 const struct ilk_wm_maximums *max,
2559 2560
			 struct intel_pipe_wm *merged)
{
2561
	struct drm_i915_private *dev_priv = to_i915(dev);
2562
	int level, max_level = ilk_wm_max_level(dev_priv);
2563
	int last_enabled_level = max_level;
2564

2565
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2566
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2567
	    config->num_pipes_active > 1)
2568
		last_enabled_level = 0;
2569

2570
	/* ILK: FBC WM must be disabled always */
2571
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2572 2573 2574 2575 2576 2577 2578

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2579 2580 2581 2582 2583
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2584 2585 2586 2587 2588 2589

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2590 2591
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2592 2593 2594
			wm->fbc_val = 0;
		}
	}
2595 2596 2597 2598 2599 2600 2601

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2602
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2603
	    intel_fbc_is_active(dev_priv)) {
2604 2605 2606 2607 2608 2609
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2610 2611
}

2612 2613 2614 2615 2616 2617
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2618 2619 2620
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2621
	struct drm_i915_private *dev_priv = to_i915(dev);
2622

2623
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2624 2625 2626 2627 2628
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2629
static void ilk_compute_wm_results(struct drm_device *dev,
2630
				   const struct intel_pipe_wm *merged,
2631
				   enum intel_ddb_partitioning partitioning,
2632
				   struct ilk_wm_values *results)
2633
{
2634
	struct drm_i915_private *dev_priv = to_i915(dev);
2635 2636
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2637

2638
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2639
	results->partitioning = partitioning;
2640

2641
	/* LP1+ register values */
2642
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2643
		const struct intel_wm_level *r;
2644

2645
		level = ilk_wm_lp_to_level(wm_lp, merged);
2646

2647
		r = &merged->wm[level];
2648

2649 2650 2651 2652 2653
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2654
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2655 2656 2657
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2658 2659 2660
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2661
		if (INTEL_GEN(dev_priv) >= 8)
2662 2663 2664 2665 2666 2667
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2668 2669 2670 2671
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2672
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2673 2674 2675 2676
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2677
	}
2678

2679
	/* LP0 register values */
2680
	for_each_intel_crtc(dev, intel_crtc) {
2681
		enum pipe pipe = intel_crtc->pipe;
2682 2683
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2684 2685 2686 2687

		if (WARN_ON(!r->enable))
			continue;

2688
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2689

2690 2691 2692 2693
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2694 2695 2696
	}
}

2697 2698
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2699
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2700 2701
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2702
{
2703
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2704
	int level1 = 0, level2 = 0;
2705

2706 2707 2708 2709 2710
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2711 2712
	}

2713 2714
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2715 2716 2717
			return r2;
		else
			return r1;
2718
	} else if (level1 > level2) {
2719 2720 2721 2722 2723 2724
		return r1;
	} else {
		return r2;
	}
}

2725 2726 2727 2728 2729 2730 2731 2732
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2733
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2734 2735
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2736 2737 2738 2739 2740
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2741
	for_each_pipe(dev_priv, pipe) {
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2785 2786
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2787
{
2788
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2789
	bool changed = false;
2790

2791 2792 2793
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2794
		changed = true;
2795 2796 2797 2798
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2799
		changed = true;
2800 2801 2802 2803
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2804
		changed = true;
2805
	}
2806

2807 2808 2809 2810
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2811

2812 2813 2814 2815 2816 2817 2818
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2819 2820
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2821
{
2822
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2823 2824 2825
	unsigned int dirty;
	uint32_t val;

2826
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2827 2828 2829 2830 2831
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2832
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2833
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2834
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2835
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2836
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2837 2838
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2839
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2840
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2841
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2842
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2843
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2844 2845
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2846
	if (dirty & WM_DIRTY_DDB) {
2847
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2862 2863
	}

2864
	if (dirty & WM_DIRTY_FBC) {
2865 2866 2867 2868 2869 2870 2871 2872
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2873 2874 2875 2876
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2877
	if (INTEL_GEN(dev_priv) >= 7) {
2878 2879 2880 2881 2882
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2883

2884
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2885
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2886
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2887
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2888
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2889
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2890 2891

	dev_priv->wm.hw = *results;
2892 2893
}

2894
bool ilk_disable_lp_wm(struct drm_device *dev)
2895
{
2896
	struct drm_i915_private *dev_priv = to_i915(dev);
2897 2898 2899 2900

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2901
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2902

2903 2904 2905 2906 2907 2908 2909 2910
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

2911
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
2912 2913 2914 2915 2916
		return true;

	return false;
}

2917 2918 2919
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2920 2921 2922 2923 2924 2925 2926 2927
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2928 2929
}

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2942
intel_enable_sagv(struct drm_i915_private *dev_priv)
2943 2944 2945
{
	int ret;

2946 2947 2948 2949
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2965
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2966
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2967
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2968 2969 2970 2971 2972 2973
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2974
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2975 2976 2977 2978
	return 0;
}

int
2979
intel_disable_sagv(struct drm_i915_private *dev_priv)
2980
{
2981
	int ret;
2982

2983 2984 2985 2986
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2987 2988 2989 2990 2991 2992
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2993 2994 2995 2996
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
2997 2998 2999 3000 3001 3002
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3003
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3004
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3005
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3006
		return 0;
3007 3008 3009
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3010 3011
	}

3012
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3013 3014 3015
	return 0;
}

3016
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3017 3018 3019 3020
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3021 3022
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3023
	struct intel_crtc_state *cstate;
3024
	enum pipe pipe;
3025
	int level, latency;
3026

3027 3028 3029
	if (!intel_has_sagv(dev_priv))
		return false;

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3043
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3044
	cstate = to_intel_crtc_state(crtc->base.state);
3045

3046
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3047 3048
		return false;

3049
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3050 3051
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3052

3053
		/* Skip this plane if it's not enabled */
3054
		if (!wm->wm[0].plane_en)
3055 3056 3057
			continue;

		/* Find the highest enabled wm level for this plane */
3058
		for (level = ilk_wm_max_level(dev_priv);
3059
		     !wm->wm[level].plane_en; --level)
3060 3061
		     { }

3062 3063 3064
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3065
		    plane->base.state->fb->modifier ==
3066 3067 3068
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3069 3070 3071 3072 3073
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3074
		if (latency < SKL_SAGV_BLOCK_TIME)
3075 3076 3077 3078 3079 3080
			return false;
	}

	return true;
}

3081 3082
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3083
				   const struct intel_crtc_state *cstate,
3084 3085
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3086
{
3087 3088 3089
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3090
	struct drm_crtc *for_crtc = cstate->base.crtc;
3091 3092
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3093

3094
	if (WARN_ON(!state) || !cstate->base.active) {
3095 3096
		alloc->start = 0;
		alloc->end = 0;
3097
		*num_active = hweight32(dev_priv->active_crtcs);
3098 3099 3100
		return;
	}

3101 3102 3103 3104 3105
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3106 3107
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3108 3109 3110

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3111
	/*
3112 3113 3114 3115 3116 3117
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3118
	 */
3119
	if (!intel_state->active_pipe_changes) {
3120 3121 3122 3123 3124
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3125
		return;
3126
	}
3127 3128 3129 3130 3131 3132

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3133 3134
}

3135
static unsigned int skl_cursor_allocation(int num_active)
3136
{
3137
	if (num_active == 1)
3138 3139 3140 3141 3142
		return 32;

	return 8;
}

3143 3144 3145 3146
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3147 3148
	if (entry->end)
		entry->end += 1;
3149 3150
}

3151 3152
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3153
{
3154
	struct intel_crtc *crtc;
3155

3156 3157
	memset(ddb, 0, sizeof(*ddb));

3158
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3159
		enum intel_display_power_domain power_domain;
3160 3161
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3162 3163 3164

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3165 3166
			continue;

3167 3168 3169 3170 3171 3172 3173
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3174

3175 3176
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3177 3178

		intel_display_power_put(dev_priv, power_domain);
3179 3180 3181
	}
}

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3204
	if (WARN_ON(!pstate->base.visible))
3205 3206 3207
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3208 3209 3210 3211
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3212
	if (drm_rotation_90_or_270(pstate->base.rotation))
3213 3214 3215 3216 3217 3218 3219 3220 3221
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3222
static unsigned int
3223 3224 3225
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3226
{
3227
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3228
	uint32_t down_scale_amount, data_rate;
3229
	uint32_t width = 0, height = 0;
3230 3231
	struct drm_framebuffer *fb;
	u32 format;
3232

3233
	if (!intel_pstate->base.visible)
3234
		return 0;
3235 3236

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3237
	format = fb->format->format;
3238

3239 3240 3241 3242
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3243

3244 3245
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3246

3247
	if (drm_rotation_90_or_270(pstate->rotation))
3248
		swap(width, height);
3249 3250

	/* for planar format */
3251
	if (format == DRM_FORMAT_NV12) {
3252
		if (y)  /* y-plane data rate */
3253
			data_rate = width * height *
3254
				fb->format->cpp[0];
3255
		else    /* uv-plane data rate */
3256
			data_rate = (width / 2) * (height / 2) *
3257
				fb->format->cpp[1];
3258 3259
	} else {
		/* for packed formats */
3260
		data_rate = width * height * fb->format->cpp[0];
3261 3262
	}

3263 3264 3265
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3266 3267 3268 3269 3270 3271 3272 3273
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3274 3275 3276
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3277
{
3278 3279
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3280 3281
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3282
	unsigned int total_data_rate = 0;
3283 3284 3285

	if (WARN_ON(!state))
		return 0;
3286

3287
	/* Calculate and cache data rate for each plane */
3288
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3289 3290
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3291 3292 3293 3294

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3295
		plane_data_rate[plane_id] = rate;
3296 3297

		total_data_rate += rate;
3298 3299 3300 3301

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3302
		plane_y_data_rate[plane_id] = rate;
3303

3304
		total_data_rate += rate;
3305 3306 3307 3308 3309
	}

	return total_data_rate;
}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
3324
	if (y && fb->format->format != DRM_FORMAT_NV12)
3325 3326 3327
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3328 3329
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3330 3331
		return 8;

3332 3333
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3334

3335
	if (drm_rotation_90_or_270(pstate->rotation))
3336 3337 3338
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
3339
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3340 3341 3342 3343
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
3344
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3345
		plane_bpp = fb->format->cpp[1];
3346
	else
3347
		plane_bpp = fb->format->cpp[0];
3348

3349
	if (drm_rotation_90_or_270(pstate->rotation)) {
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3373 3374 3375 3376 3377 3378 3379 3380
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3381
		enum plane_id plane_id = to_intel_plane(plane)->id;
3382

3383
		if (plane_id == PLANE_CURSOR)
3384 3385 3386 3387 3388
			continue;

		if (!pstate->visible)
			continue;

3389 3390
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3391 3392 3393 3394 3395
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3396
static int
3397
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3398 3399
		      struct skl_ddb_allocation *ddb /* out */)
{
3400
	struct drm_atomic_state *state = cstate->base.state;
3401
	struct drm_crtc *crtc = cstate->base.crtc;
3402 3403 3404
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3405
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3406
	uint16_t alloc_size, start;
3407 3408
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3409
	unsigned int total_data_rate;
3410
	enum plane_id plane_id;
3411
	int num_active;
3412 3413
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3414

3415 3416 3417 3418
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3419 3420 3421
	if (WARN_ON(!state))
		return 0;

3422
	if (!cstate->base.active) {
3423
		alloc->start = alloc->end = 0;
3424 3425 3426
		return 0;
	}

3427
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3428
	alloc_size = skl_ddb_entry_size(alloc);
3429 3430
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3431
		return 0;
3432 3433
	}

3434
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3435

3436 3437 3438 3439 3440
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3441

3442 3443 3444
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3445 3446
	}

3447 3448 3449
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3450
	/*
3451 3452
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3453 3454 3455
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3456 3457 3458
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3459
	if (total_data_rate == 0)
3460
		return 0;
3461

3462
	start = alloc->start;
3463
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3464 3465
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3466

3467
		if (plane_id == PLANE_CURSOR)
3468 3469
			continue;

3470
		data_rate = plane_data_rate[plane_id];
3471 3472

		/*
3473
		 * allocation for (packed formats) or (uv-plane part of planar format):
3474 3475 3476
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3477
		plane_blocks = minimum[plane_id];
3478 3479
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3480

3481 3482
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3483 3484
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3485
		}
3486 3487

		start += plane_blocks;
3488 3489 3490 3491

		/*
		 * allocation for y_plane part of planar format:
		 */
3492
		y_data_rate = plane_y_data_rate[plane_id];
3493

3494
		y_plane_blocks = y_minimum[plane_id];
3495 3496
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3497

3498
		if (y_data_rate) {
3499 3500
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3501
		}
3502 3503

		start += y_plane_blocks;
3504 3505
	}

3506
	return 0;
3507 3508
}

3509 3510
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3511
 * for the read latency) and cpp should always be <= 8, so that
3512 3513 3514
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3515 3516
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
3517
{
3518 3519
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
3520 3521

	if (latency == 0)
3522
		return FP_16_16_MAX;
3523

3524 3525
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3526 3527 3528
	return ret;
}

3529 3530 3531 3532
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
3533
{
3534
	uint32_t wm_intermediate_val;
3535
	uint_fixed_16_16_t ret;
3536 3537

	if (latency == 0)
3538
		return FP_16_16_MAX;
3539 3540

	wm_intermediate_val = latency * pixel_rate;
3541 3542 3543
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3544 3545 3546
	return ret;
}

3547 3548 3549 3550 3551 3552 3553 3554
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3555
	if (WARN_ON(!pstate->base.visible))
3556 3557 3558 3559 3560 3561
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3562
	adjusted_pixel_rate = cstate->pixel_rate;
3563 3564 3565 3566 3567 3568 3569 3570
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3571 3572 3573 3574 3575 3576 3577 3578
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3579
{
3580 3581
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3582
	uint32_t latency = dev_priv->wm.skl_latency[level];
3583 3584 3585 3586 3587
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
3588
	uint32_t res_blocks, res_lines;
3589
	uint8_t cpp;
3590
	uint32_t width = 0, height = 0;
3591
	uint32_t plane_pixel_rate;
3592 3593
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
3594 3595 3596
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3597
	bool y_tiled, x_tiled;
3598

3599
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3600 3601 3602
		*enabled = false;
		return 0;
	}
3603

3604 3605 3606 3607
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

3608 3609 3610 3611
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

3612
	if (apply_memory_bw_wa && x_tiled)
3613 3614
		latency += 15;

3615 3616
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3617

3618
	if (drm_rotation_90_or_270(pstate->rotation))
3619 3620
		swap(width, height);

3621
	cpp = fb->format->cpp[0];
3622 3623
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3624
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
3625
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3626 3627
			fb->format->cpp[1] :
			fb->format->cpp[0];
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3639 3640 3641
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3642 3643 3644 3645 3646
		}
	} else {
		y_min_scanlines = 4;
	}

3647 3648 3649
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3650
	plane_bytes_per_line = width * cpp;
3651
	if (y_tiled) {
3652 3653
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
3654
		plane_blocks_per_line =
3655
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3656
	} else if (x_tiled) {
3657 3658
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3659
	} else {
3660 3661
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3662 3663
	}

3664 3665
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3666
				 cstate->base.adjusted_mode.crtc_htotal,
3667
				 latency,
3668
				 plane_blocks_per_line);
3669

3670 3671
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
3672

3673
	if (y_tiled) {
3674
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
3675
	} else {
3676 3677 3678
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
3679 3680 3681
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
3682 3683 3684
		else
			selected_result = method1;
	}
3685

3686 3687 3688
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
3689

3690
	if (level >= 1 && level <= 7) {
3691
		if (y_tiled) {
3692
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3693
			res_lines += y_min_scanlines;
3694
		} else {
3695
			res_blocks++;
3696
		}
3697
	}
3698

3699 3700
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3701 3702 3703 3704 3705 3706 3707 3708

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3709 3710
			struct drm_plane *plane = pstate->plane;

3711
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3712 3713
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3714 3715 3716
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3717
	}
3718 3719 3720

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3721
	*enabled = true;
3722

3723
	return 0;
3724 3725
}

3726 3727 3728 3729
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3730
		     struct intel_plane *intel_plane,
3731 3732
		     int level,
		     struct skl_wm_level *result)
3733
{
3734
	struct drm_atomic_state *state = cstate->base.state;
3735
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3736 3737
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3738
	uint16_t ddb_blocks;
3739
	enum pipe pipe = intel_crtc->pipe;
3740
	int ret;
L
Lyude 已提交
3741 3742 3743 3744 3745

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3746

3747
	/*
L
Lyude 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3757
	 */
L
Lyude 已提交
3758 3759
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3760

L
Lyude 已提交
3761
	WARN_ON(!intel_pstate->base.fb);
3762

3763
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3764

L
Lyude 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3775 3776

	return 0;
3777 3778
}

3779
static uint32_t
3780
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3781
{
M
Mahesh Kumar 已提交
3782 3783
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
3784
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
3785
	uint32_t linetime_wm;
3786

3787
	if (!cstate->base.active)
3788 3789
		return 0;

3790
	pixel_rate = cstate->pixel_rate;
3791 3792

	if (WARN_ON(pixel_rate == 0))
3793
		return 0;
3794

M
Mahesh Kumar 已提交
3795 3796 3797 3798 3799 3800 3801 3802
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
3803 3804
}

3805
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3806
				      struct skl_wm_level *trans_wm /* out */)
3807
{
3808
	if (!cstate->base.active)
3809
		return;
3810 3811

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3812
	trans_wm->plane_en = false;
3813 3814
}

3815 3816 3817
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3818
{
3819
	struct drm_device *dev = cstate->base.crtc->dev;
3820
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3821 3822
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3823
	int level, max_level = ilk_wm_max_level(dev_priv);
3824
	int ret;
3825

L
Lyude 已提交
3826 3827 3828 3829 3830 3831 3832 3833 3834
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3835
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3845
	}
3846
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3847

3848
	return 0;
3849 3850
}

3851 3852
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3853 3854 3855 3856 3857 3858 3859 3860
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3876 3877 3878
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
3879
			       enum plane_id plane_id)
3880 3881 3882 3883
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3884
	int level, max_level = ilk_wm_max_level(dev_priv);
3885 3886 3887
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3888
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3889
				   &wm->wm[level]);
3890
	}
3891
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3892
			   &wm->trans_wm);
3893

3894 3895 3896 3897
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
3898 3899
}

3900 3901 3902
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3903 3904 3905 3906
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3907
	int level, max_level = ilk_wm_max_level(dev_priv);
3908 3909 3910
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3911 3912
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3913
	}
3914
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3915

3916
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3917
			    &ddb->plane[pipe][PLANE_CURSOR]);
3918 3919
}

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3934 3935
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3936
{
3937
	return a->start < b->end && b->start < a->end;
3938 3939
}

3940 3941 3942
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3943
{
3944
	int i;
3945

3946 3947 3948
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3949
			return true;
3950

3951
	return false;
3952 3953
}

3954
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3955
			      const struct skl_pipe_wm *old_pipe_wm,
3956
			      struct skl_pipe_wm *pipe_wm, /* out */
3957
			      struct skl_ddb_allocation *ddb, /* out */
3958
			      bool *changed /* out */)
3959
{
3960
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3961
	int ret;
3962

3963 3964 3965
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3966

3967
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3968 3969 3970
		*changed = false;
	else
		*changed = true;
3971

3972
	return 0;
3973 3974
}

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3988
static int
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4005
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4006
		enum plane_id plane_id = to_intel_plane(plane)->id;
4007

4008 4009 4010 4011
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4022 4023 4024 4025 4026 4027 4028
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4029
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4030
	uint32_t realloc_pipes = pipes_modified(state);
4031 4032 4033 4034 4035 4036 4037 4038
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4039 4040 4041 4042 4043 4044
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4045 4046
		intel_state->active_pipe_changes = ~0;

4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4070
	if (intel_state->active_pipe_changes) {
4071
		realloc_pipes = ~0;
4072 4073
		intel_state->wm_results.dirty_pipes = ~0;
	}
4074

4075 4076 4077 4078 4079 4080
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4081 4082 4083 4084 4085 4086 4087
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4088
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4089 4090
		if (ret)
			return ret;
4091

4092
		ret = skl_ddb_add_affected_planes(cstate);
4093 4094
		if (ret)
			return ret;
4095 4096 4097 4098 4099
	}

	return 0;
}

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4123
	int i;
4124 4125

	for_each_crtc_in_state(state, crtc, cstate, i) {
4126 4127
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4128

4129
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4130
			enum plane_id plane_id = intel_plane->id;
4131 4132
			const struct skl_ddb_entry *old, *new;

4133 4134
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4135 4136 4137 4138

			if (skl_ddb_entry_equal(old, new))
				continue;

4139 4140 4141 4142 4143
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4144 4145 4146 4147
		}
	}
}

4148 4149 4150 4151 4152
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4153 4154 4155
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4156
	bool changed = false;
4157
	int ret, i;
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4172 4173 4174
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4175 4176 4177 4178
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4192 4193
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4194 4195

		pipe_wm = &intel_cstate->wm.skl.optimal;
4196 4197
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4211 4212
	skl_print_wm_changes(state);

4213 4214 4215
	return 0;
}

4216 4217 4218 4219 4220 4221
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4222
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4223
	enum pipe pipe = crtc->pipe;
4224
	enum plane_id plane_id;
4225 4226 4227

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4228 4229

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4230

4231 4232 4233 4234 4235 4236 4237 4238
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4239 4240
}

4241 4242
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4243
{
4244
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4245
	struct drm_device *dev = intel_crtc->base.dev;
4246
	struct drm_i915_private *dev_priv = to_i915(dev);
4247
	struct skl_wm_values *results = &state->wm_results;
4248
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4249
	enum pipe pipe = intel_crtc->pipe;
4250

4251
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4252 4253
		return;

4254
	mutex_lock(&dev_priv->wm.wm_mutex);
4255

4256 4257
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4258 4259

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4260 4261

	mutex_unlock(&dev_priv->wm.wm_mutex);
4262 4263
}

4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4282
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4283
{
4284
	struct drm_device *dev = &dev_priv->drm;
4285
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4286
	struct ilk_wm_maximums max;
4287
	struct intel_wm_config config = {};
4288
	struct ilk_wm_values results = {};
4289
	enum intel_ddb_partitioning partitioning;
4290

4291 4292 4293 4294
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4295 4296

	/* 5/6 split only in single pipe config on IVB+ */
4297
	if (INTEL_GEN(dev_priv) >= 7 &&
4298 4299 4300
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4301

4302
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4303
	} else {
4304
		best_lp_wm = &lp_wm_1_2;
4305 4306
	}

4307
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4308
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4309

4310
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4311

4312
	ilk_write_wm_values(dev_priv, &results);
4313 4314
}

4315 4316
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4317
{
4318 4319
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4320

4321
	mutex_lock(&dev_priv->wm.wm_mutex);
4322
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4323 4324 4325
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4326

4327 4328
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4329 4330 4331
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4332

4333 4334
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4335
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4336 4337 4338
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4339 4340
}

4341 4342
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4343
{
4344 4345 4346 4347
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4348 4349
}

4350 4351
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4352
{
4353
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4354 4355
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4356 4357
	int level, max_level;
	enum plane_id plane_id;
4358
	uint32_t val;
4359

4360
	max_level = ilk_wm_max_level(dev_priv);
4361

4362 4363
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4364

4365
		for (level = 0; level <= max_level; level++) {
4366 4367
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4368 4369
			else
				val = I915_READ(CUR_WM(pipe, level));
4370

4371
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4372 4373
		}

4374 4375
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4376 4377 4378 4379
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4380 4381
	}

4382 4383
	if (!intel_crtc->active)
		return;
4384

4385
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4386 4387 4388 4389
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4390
	struct drm_i915_private *dev_priv = to_i915(dev);
4391
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4392
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4393
	struct drm_crtc *crtc;
4394 4395
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4396

4397
	skl_ddb_get_hw_state(dev_priv, ddb);
4398 4399 4400 4401 4402 4403
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4404
		if (intel_crtc->active)
4405 4406
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4407

4408 4409 4410 4411 4412 4413 4414
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4415 4416
}

4417 4418 4419
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4420
	struct drm_i915_private *dev_priv = to_i915(dev);
4421
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4422
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4423
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4424
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4425
	enum pipe pipe = intel_crtc->pipe;
4426
	static const i915_reg_t wm0_pipe_reg[] = {
4427 4428 4429 4430 4431 4432
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4433
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4434
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4435

4436 4437
	memset(active, 0, sizeof(*active));

4438
	active->pipe_enabled = intel_crtc->active;
4439 4440

	if (active->pipe_enabled) {
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4455
		int level, max_level = ilk_wm_max_level(dev_priv);
4456 4457 4458 4459 4460 4461 4462 4463 4464

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4465 4466

	intel_crtc->wm.active.ilk = *active;
4467 4468
}

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4483
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4484
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4485
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4486
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4487
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4488
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4489
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4490 4491 4492 4493 4494
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4495 4496 4497
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4498 4499

	tmp = I915_READ(DSPFW2);
4500 4501 4502
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4503 4504 4505 4506 4507 4508

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4509 4510
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4511 4512

		tmp = I915_READ(DSPFW8_CHV);
4513 4514
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4515 4516

		tmp = I915_READ(DSPFW9_CHV);
4517 4518
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4519 4520 4521

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4522 4523 4524 4525 4526 4527 4528 4529 4530
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4531 4532
	} else {
		tmp = I915_READ(DSPFW7);
4533 4534
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4535 4536 4537

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4538 4539 4540 4541 4542 4543
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

4560 4561
	for_each_intel_plane(dev, plane)
		plane->wm.fifo_size = vlv_get_fifo_size(plane);
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4573 4574 4575 4576 4577 4578 4579 4580 4581
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4582
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4596 4597 4598 4599 4600 4601

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4602 4603 4604 4605 4606
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4607 4608 4609 4610 4611

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4612 4613
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4614
	struct drm_i915_private *dev_priv = to_i915(dev);
4615
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4616 4617
	struct drm_crtc *crtc;

4618
	for_each_crtc(dev, crtc)
4619 4620 4621 4622 4623 4624 4625
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4626
	if (INTEL_GEN(dev_priv) >= 7) {
4627 4628 4629
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4630

4631
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4632 4633
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4634
	else if (IS_IVYBRIDGE(dev_priv))
4635 4636
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4637 4638 4639 4640 4641

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4674
void intel_update_watermarks(struct intel_crtc *crtc)
4675
{
4676
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4677 4678

	if (dev_priv->display.update_wm)
4679
		dev_priv->display.update_wm(crtc);
4680 4681
}

4682
/*
4683 4684 4685 4686 4687 4688 4689 4690
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4691
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4692 4693 4694
{
	u16 rgvswctl;

4695 4696
	assert_spin_locked(&mchdev_lock);

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4714
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4715
{
4716
	u32 rgvmodectl;
4717 4718
	u8 fmax, fmin, fstart, vstart;

4719 4720
	spin_lock_irq(&mchdev_lock);

4721 4722
	rgvmodectl = I915_READ(MEMMODECTL);

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4743
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4744 4745
		PXVFREQ_PX_SHIFT;

4746 4747
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4748

4749 4750 4751
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4768
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4769
		DRM_ERROR("stuck trying to change perf mode\n");
4770
	mdelay(1);
4771

4772
	ironlake_set_drps(dev_priv, fstart);
4773

4774 4775
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4776
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4777
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4778
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4779 4780

	spin_unlock_irq(&mchdev_lock);
4781 4782
}

4783
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4784
{
4785 4786 4787 4788 4789
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4790 4791 4792 4793 4794 4795 4796 4797 4798

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4799
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4800
	mdelay(1);
4801 4802
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4803
	mdelay(1);
4804

4805
	spin_unlock_irq(&mchdev_lock);
4806 4807
}

4808 4809 4810 4811 4812
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4813
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4814
{
4815
	u32 limits;
4816

4817 4818 4819 4820 4821 4822
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4823
	if (IS_GEN9(dev_priv)) {
4824 4825 4826 4827 4828 4829 4830 4831
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4832 4833 4834 4835

	return limits;
}

4836 4837 4838
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4839 4840
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4841 4842 4843 4844

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4845 4846
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4847 4848 4849 4850
			new_power = BETWEEN;
		break;

	case BETWEEN:
4851 4852
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4853
			new_power = LOW_POWER;
4854 4855
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4856 4857 4858 4859
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4860 4861
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4862 4863 4864 4865
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4866
	if (val <= dev_priv->rps.min_freq_softlimit)
4867
		new_power = LOW_POWER;
4868
	if (val >= dev_priv->rps.max_freq_softlimit)
4869 4870 4871 4872 4873 4874 4875 4876
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4877 4878
		ei_up = 16000;
		threshold_up = 95;
4879 4880

		/* Downclock if less than 85% busy over 32ms */
4881 4882
		ei_down = 32000;
		threshold_down = 85;
4883 4884 4885 4886
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4887 4888
		ei_up = 13000;
		threshold_up = 90;
4889 4890

		/* Downclock if less than 75% busy over 32ms */
4891 4892
		ei_down = 32000;
		threshold_down = 75;
4893 4894 4895 4896
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4897 4898
		ei_up = 10000;
		threshold_up = 85;
4899 4900

		/* Downclock if less than 60% busy over 32ms */
4901 4902
		ei_down = 32000;
		threshold_down = 60;
4903 4904 4905
		break;
	}

4906
	I915_WRITE(GEN6_RP_UP_EI,
4907
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4908
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4909 4910
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4911 4912

	I915_WRITE(GEN6_RP_DOWN_EI,
4913
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4914
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4925

4926
	dev_priv->rps.power = new_power;
4927 4928
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4929 4930 4931
	dev_priv->rps.last_adj = 0;
}

4932 4933 4934 4935 4936
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4937
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4938
	if (val < dev_priv->rps.max_freq_softlimit)
4939
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4940

4941 4942
	mask &= dev_priv->pm_rps_events;

4943
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4944 4945
}

4946 4947 4948
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4949
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4950
{
4951
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4952 4953
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4954

C
Chris Wilson 已提交
4955 4956 4957 4958 4959
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4960

4961
		if (IS_GEN9(dev_priv))
4962 4963
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4964
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4965 4966 4967 4968 4969 4970 4971
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4972
	}
4973 4974 4975 4976

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4977
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4978
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4979

4980 4981
	POSTING_READ(GEN6_RPNSWREQ);

4982
	dev_priv->rps.cur_freq = val;
4983
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4984 4985

	return 0;
4986 4987
}

4988
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4989
{
4990 4991
	int err;

4992
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4993 4994
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4995

4996
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4997 4998 4999
		      "Odd GPU freq value\n"))
		val &= ~1;

5000 5001
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5002
	if (val != dev_priv->rps.cur_freq) {
5003 5004 5005 5006
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

5007 5008 5009
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
5010 5011 5012

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5013 5014

	return 0;
5015 5016
}

5017
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5018 5019
 *
 * * If Gfx is Idle, then
5020 5021 5022
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5023 5024 5025
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5026
	u32 val = dev_priv->rps.idle_freq;
5027
	int err;
5028

5029
	if (dev_priv->rps.cur_freq <= val)
5030 5031
		return;

5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5044
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5045
	err = valleyview_set_rps(dev_priv, val);
5046
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5047 5048 5049

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
5050 5051
}

5052 5053 5054 5055 5056 5057 5058 5059
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5060

5061 5062
		gen6_enable_rps_interrupts(dev_priv);

5063
		/* Ensure we start at the user's desired frequency */
5064 5065 5066 5067 5068
		if (intel_set_rps(dev_priv,
				  clamp(dev_priv->rps.cur_freq,
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5069 5070 5071 5072
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5073 5074
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5075 5076 5077 5078 5079 5080 5081
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5082
	mutex_lock(&dev_priv->rps.hw_lock);
5083
	if (dev_priv->rps.enabled) {
5084
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5085
			vlv_set_rps_idle(dev_priv);
5086
		else
5087
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5088
		dev_priv->rps.last_adj = 0;
5089 5090
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5091
	}
5092
	mutex_unlock(&dev_priv->rps.hw_lock);
5093

5094
	spin_lock(&dev_priv->rps.client_lock);
5095 5096
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5097
	spin_unlock(&dev_priv->rps.client_lock);
5098 5099
}

5100
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5101 5102
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5103
{
5104 5105 5106
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5107
	if (!(dev_priv->gt.awake &&
5108
	      dev_priv->rps.enabled &&
5109
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5110
		return;
5111

5112 5113 5114
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5115
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5116 5117
		rps = NULL;

5118 5119 5120 5121 5122
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5123
			schedule_work(&dev_priv->rps.work);
5124 5125
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5126

5127 5128 5129
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5130 5131
		} else
			dev_priv->rps.boosts++;
5132
	}
5133
	spin_unlock(&dev_priv->rps.client_lock);
5134 5135
}

5136
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5137
{
5138 5139
	int err;

5140
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5141
		err = valleyview_set_rps(dev_priv, val);
5142
	else
5143 5144 5145
		err = gen6_set_rps(dev_priv, val);

	return err;
5146 5147
}

5148
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5149 5150
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5151
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5152 5153
}

5154
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5155 5156 5157 5158
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5159
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5160 5161
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5162
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5163
	I915_WRITE(GEN6_RP_CONTROL, 0);
5164 5165
}

5166
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5167 5168 5169 5170
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5171
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5172
{
5173 5174
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5175
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5176

5177
	I915_WRITE(GEN6_RC_CONTROL, 0);
5178

5179
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5180 5181
}

5182
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5183
{
5184
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5185 5186 5187 5188 5189
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5190
	if (HAS_RC6p(dev_priv))
5191 5192 5193 5194 5195
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5196 5197

	else
5198 5199
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5200 5201
}

5202
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5203
{
5204
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5205 5206
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5218 5219

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5220
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5221 5222 5223 5224 5225 5226 5227 5228
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5229 5230 5231
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5232
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5233 5234 5235 5236 5237 5238 5239
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5240
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5241 5242 5243
		enable_rc6 = false;
	}

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5258 5259 5260 5261 5262 5263
		enable_rc6 = false;
	}

	return enable_rc6;
}

5264
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5265
{
5266
	/* No RC6 before Ironlake and code is gone for ilk. */
5267
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5268 5269
		return 0;

5270 5271 5272
	if (!enable_rc6)
		return 0;

5273
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5274 5275 5276 5277
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5278
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5279 5280 5281
	if (enable_rc6 >= 0) {
		int mask;

5282
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5283 5284 5285 5286 5287 5288
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5289 5290 5291
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5292 5293 5294

		return enable_rc6 & mask;
	}
5295

5296
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5297
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5298 5299

	return INTEL_RC6_ENABLE;
5300 5301
}

5302
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5303 5304
{
	/* All of these values are in units of 50MHz */
5305

5306
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5307
	if (IS_GEN9_LP(dev_priv)) {
5308
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5309 5310 5311 5312
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5313
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5314 5315 5316 5317
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5318
	/* hw_max = RP0 until we check for overclocking */
5319
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5320

5321
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5322
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5323
	    IS_GEN9_BC(dev_priv)) {
5324 5325 5326 5327 5328
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5329
			dev_priv->rps.efficient_freq =
5330 5331 5332 5333
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5334 5335
	}

5336
	if (IS_GEN9_BC(dev_priv)) {
5337
		/* Store the frequency values in 16.66 MHZ units, which is
5338 5339
		 * the natural hardware unit for SKL
		 */
5340 5341 5342 5343 5344 5345
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5346 5347
}

5348
static void reset_rps(struct drm_i915_private *dev_priv,
5349
		      int (*set)(struct drm_i915_private *, u8))
5350 5351 5352 5353 5354 5355 5356
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

5357 5358
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
5359 5360
}

J
Jesse Barnes 已提交
5361
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5362
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5363 5364 5365
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5366 5367 5368 5369 5370 5371 5372 5373
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5374 5375
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5376 5377 5378
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5379
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5380 5381 5382 5383

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5384
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5385
{
5386
	struct intel_engine_cs *engine;
5387
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5388 5389 5390 5391 5392 5393 5394
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5395
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5396 5397 5398 5399 5400

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5401 5402

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5403
	if (IS_SKYLAKE(dev_priv))
5404 5405 5406
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5407 5408
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5409
	for_each_engine(engine, dev_priv, id)
5410
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5411

5412
	if (HAS_GUC(dev_priv))
5413 5414
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5415 5416
	I915_WRITE(GEN6_RC_SLEEP, 0);

5417 5418 5419 5420
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5421
	/* 3a: Enable RC6 */
5422
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5423
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5424
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5425 5426 5427
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
5428

5429 5430
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5431
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5432
	 */
5433
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5434 5435 5436 5437
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5438

5439
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5440 5441
}

5442
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5443
{
5444
	struct intel_engine_cs *engine;
5445
	enum intel_engine_id id;
5446
	uint32_t rc6_mask = 0;
5447 5448 5449 5450 5451 5452

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5453
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5454 5455 5456 5457 5458 5459 5460 5461

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5462
	for_each_engine(engine, dev_priv, id)
5463
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5464
	I915_WRITE(GEN6_RC_SLEEP, 0);
5465
	if (IS_BROADWELL(dev_priv))
5466 5467 5468
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5469 5470

	/* 3: Enable RC6 */
5471
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5472
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5473 5474
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5475 5476 5477 5478 5479 5480 5481
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5482 5483

	/* 4 Program defaults and thresholds for RPS*/
5484 5485 5486 5487
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5502 5503

	/* 5: Enable RPS */
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5514
	reset_rps(dev_priv, gen6_set_rps);
5515

5516
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5517 5518
}

5519
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5520
{
5521
	struct intel_engine_cs *engine;
5522
	enum intel_engine_id id;
5523
	u32 rc6vids, rc6_mask = 0;
5524 5525
	u32 gtfifodbg;
	int rc6_mode;
5526
	int ret;
5527

5528
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5529

5530 5531 5532 5533 5534 5535 5536 5537 5538
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5539 5540
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5541 5542 5543 5544
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5545
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5556
	for_each_engine(engine, dev_priv, id)
5557
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5558 5559 5560

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5561
	if (IS_IVYBRIDGE(dev_priv))
5562 5563 5564
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5565
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5566 5567
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5568
	/* Check if we are enabling RC6 */
5569
	rc6_mode = intel_enable_rc6();
5570 5571 5572
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5573
	/* We don't use those on Haswell */
5574
	if (!IS_HASWELL(dev_priv)) {
5575 5576
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5577

5578 5579 5580
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5581

5582
	intel_print_rc6_info(dev_priv, rc6_mask);
5583 5584 5585 5586 5587 5588

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5589 5590
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5591 5592
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5593
	reset_rps(dev_priv, gen6_set_rps);
5594

5595 5596
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5597
	if (IS_GEN6(dev_priv) && ret) {
5598
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5599
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5600 5601 5602 5603 5604 5605 5606 5607 5608
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5609
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5610 5611
}

5612
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5613 5614
{
	int min_freq = 15;
5615 5616
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5617
	unsigned int max_gpu_freq, min_gpu_freq;
5618
	int scaling_factor = 180;
5619
	struct cpufreq_policy *policy;
5620

5621
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5622

5623 5624 5625 5626 5627 5628 5629 5630 5631
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5632
		max_ia_freq = tsc_khz;
5633
	}
5634 5635 5636 5637

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5638
	min_ring_freq = I915_READ(DCLK) & 0xf;
5639 5640
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5641

5642
	if (IS_GEN9_BC(dev_priv)) {
5643 5644 5645 5646 5647 5648 5649 5650
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5651 5652 5653 5654 5655
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5656 5657
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5658 5659
		unsigned int ia_freq = 0, ring_freq = 0;

5660
		if (IS_GEN9_BC(dev_priv)) {
5661 5662 5663 5664 5665
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5666
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5667 5668
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5669
		} else if (IS_HASWELL(dev_priv)) {
5670
			ring_freq = mult_frac(gpu_freq, 5, 4);
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5687

B
Ben Widawsky 已提交
5688 5689
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5690 5691 5692
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5693 5694 5695
	}
}

5696
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5697 5698 5699
{
	u32 val, rp0;

5700
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5701

5702
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5717
	}
5718 5719 5720

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5734 5735 5736 5737
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5738 5739 5740
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5741 5742 5743
	return rp1;
}

5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5755
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5756 5757 5758
{
	u32 val, rp0;

5759
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5772
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5773
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5774
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5775 5776 5777 5778 5779
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5780
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5781
{
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5793 5794
}

5795 5796 5797 5798 5799 5800 5801 5802 5803
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5804 5805 5806 5807 5808 5809 5810 5811 5812

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5813
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5814
{
5815
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5816
	unsigned long pctx_paddr, paddr;
5817 5818 5819 5820 5821
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5822
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5823
		paddr = (dev_priv->mm.stolen_base +
5824
			 (ggtt->stolen_size - pctx_size));
5825 5826 5827 5828

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5829 5830

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5831 5832
}

5833
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5846
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5847
								      pcbr_offset,
5848
								      I915_GTT_OFFSET_NONE,
5849 5850 5851 5852
								      pctx_size);
		goto out;
	}

5853 5854
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5855 5856 5857 5858 5859 5860 5861 5862
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5863
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5864 5865
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5866
		goto out;
5867 5868 5869 5870 5871 5872
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5873
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5874 5875 5876
	dev_priv->vlv_pctx = pctx;
}

5877
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5878 5879 5880 5881
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5882
	i915_gem_object_put(dev_priv->vlv_pctx);
5883 5884 5885
	dev_priv->vlv_pctx = NULL;
}

5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5897
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5898
{
5899
	u32 val;
5900

5901
	valleyview_setup_pctx(dev_priv);
5902

5903 5904
	vlv_init_gpll_ref_freq(dev_priv);

5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5918
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5919

5920 5921 5922
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5923
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5924 5925 5926 5927
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5928
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5929 5930
			 dev_priv->rps.efficient_freq);

5931 5932
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5933
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5934 5935
			 dev_priv->rps.rp1_freq);

5936 5937
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5938
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5939 5940 5941
			 dev_priv->rps.min_freq);
}

5942
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5943
{
5944
	u32 val;
5945

5946
	cherryview_setup_pctx(dev_priv);
5947

5948 5949
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5950
	mutex_lock(&dev_priv->sb_lock);
5951
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5952
	mutex_unlock(&dev_priv->sb_lock);
5953

5954 5955 5956 5957
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5958
	default:
5959 5960 5961
		dev_priv->mem_freq = 1600;
		break;
	}
5962
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5963

5964 5965 5966
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5967
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5968 5969 5970 5971
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5972
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5973 5974
			 dev_priv->rps.efficient_freq);

5975 5976
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5977
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5978 5979
			 dev_priv->rps.rp1_freq);

5980 5981
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5982
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5983
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5984 5985
			 dev_priv->rps.min_freq);

5986 5987 5988 5989 5990
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5991 5992
}

5993
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5994
{
5995
	valleyview_cleanup_pctx(dev_priv);
5996 5997
}

5998
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5999
{
6000
	struct intel_engine_cs *engine;
6001
	enum intel_engine_id id;
6002
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6003 6004 6005

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6006 6007
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6018
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6019

6020 6021 6022
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6023 6024 6025 6026 6027
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6028
	for_each_engine(engine, dev_priv, id)
6029
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6030 6031
	I915_WRITE(GEN6_RC_SLEEP, 0);

6032 6033
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6045 6046
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6047
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6048 6049 6050

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6051
	/* 4 Program defaults and thresholds for RPS*/
6052
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6063
		   GEN6_RP_MEDIA_IS_GFX |
6064 6065 6066 6067
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6068 6069 6070 6071 6072 6073
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6074 6075
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6076 6077 6078
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6079
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6080 6081
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6082
	reset_rps(dev_priv, valleyview_set_rps);
6083

6084
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6085 6086
}

6087
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6088
{
6089
	struct intel_engine_cs *engine;
6090
	enum intel_engine_id id;
6091
	u32 gtfifodbg, val, rc6_mode = 0;
6092 6093 6094

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6095 6096
	valleyview_check_pctx(dev_priv);

6097 6098
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6099 6100
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6101 6102 6103
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6104
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6105
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6106

6107 6108 6109
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6110
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6130
	for_each_engine(engine, dev_priv, id)
6131
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6132

6133
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6134 6135

	/* allows RC6 residency counter to work */
6136
	I915_WRITE(VLV_COUNTER_CONTROL,
6137 6138
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6139 6140
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6141

6142
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6143
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6144

6145
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6146

6147
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6148

D
Deepak S 已提交
6149 6150 6151 6152 6153 6154
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6155
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6156

6157 6158 6159
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6160
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6161 6162
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6163
	reset_rps(dev_priv, valleyview_set_rps);
6164

6165
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6166 6167
}

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6197
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6198 6199 6200 6201 6202 6203
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6204 6205
	assert_spin_locked(&mchdev_lock);

6206
	diff1 = now - dev_priv->ips.last_time1;
6207 6208 6209 6210 6211 6212 6213

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6214
		return dev_priv->ips.chipset_power;
6215 6216 6217 6218 6219 6220 6221 6222

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6223 6224
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6225 6226
		diff += total_count;
	} else {
6227
		diff = total_count - dev_priv->ips.last_count1;
6228 6229 6230
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6231 6232
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6243 6244
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6245

6246
	dev_priv->ips.chipset_power = ret;
6247 6248 6249 6250

	return ret;
}

6251 6252 6253 6254
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6255
	if (INTEL_INFO(dev_priv)->gen != 5)
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6294
{
6295 6296 6297
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6298
	if (INTEL_INFO(dev_priv)->is_mobile)
6299 6300 6301
		return vm > 0 ? vm : 0;

	return vd;
6302 6303
}

6304
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6305
{
6306
	u64 now, diff, diffms;
6307 6308
	u32 count;

6309
	assert_spin_locked(&mchdev_lock);
6310

6311 6312 6313
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6314 6315 6316 6317 6318 6319 6320

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6321 6322
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6323 6324
		diff += count;
	} else {
6325
		diff = count - dev_priv->ips.last_count2;
6326 6327
	}

6328 6329
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6330 6331 6332 6333

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6334
	dev_priv->ips.gfx_power = diff;
6335 6336
}

6337 6338
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6339
	if (INTEL_INFO(dev_priv)->gen != 5)
6340 6341
		return;

6342
	spin_lock_irq(&mchdev_lock);
6343 6344 6345

	__i915_update_gfx_val(dev_priv);

6346
	spin_unlock_irq(&mchdev_lock);
6347 6348
}

6349
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6350 6351 6352 6353
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6354 6355
	assert_spin_locked(&mchdev_lock);

6356
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6376
	corr2 = (corr * dev_priv->ips.corr);
6377 6378 6379 6380

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6381
	__i915_update_gfx_val(dev_priv);
6382

6383
	return dev_priv->ips.gfx_power + state2;
6384 6385
}

6386 6387 6388 6389
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6390
	if (INTEL_INFO(dev_priv)->gen != 5)
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6413
	spin_lock_irq(&mchdev_lock);
6414 6415 6416 6417
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6418 6419
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6420 6421 6422 6423

	ret = chipset_val + graphics_val;

out_unlock:
6424
	spin_unlock_irq(&mchdev_lock);
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6440
	spin_lock_irq(&mchdev_lock);
6441 6442 6443 6444 6445 6446
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6447 6448
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6449 6450

out_unlock:
6451
	spin_unlock_irq(&mchdev_lock);
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6468
	spin_lock_irq(&mchdev_lock);
6469 6470 6471 6472 6473 6474
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6475 6476
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6477 6478

out_unlock:
6479
	spin_unlock_irq(&mchdev_lock);
6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6494
	spin_lock_irq(&mchdev_lock);
6495 6496
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6497
	spin_unlock_irq(&mchdev_lock);
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6514
	spin_lock_irq(&mchdev_lock);
6515 6516 6517 6518 6519 6520
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6521
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6522

6523
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6524 6525 6526
		ret = false;

out_unlock:
6527
	spin_unlock_irq(&mchdev_lock);
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6555 6556
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6557
	spin_lock_irq(&mchdev_lock);
6558
	i915_mch_dev = dev_priv;
6559
	spin_unlock_irq(&mchdev_lock);
6560 6561 6562 6563 6564 6565

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6566
	spin_lock_irq(&mchdev_lock);
6567
	i915_mch_dev = NULL;
6568
	spin_unlock_irq(&mchdev_lock);
6569
}
6570

6571
static void intel_init_emon(struct drm_i915_private *dev_priv)
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6588
		I915_WRITE(PEW(i), 0);
6589
	for (i = 0; i < 3; i++)
6590
		I915_WRITE(DEW(i), 0);
6591 6592 6593

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6594
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6615
		I915_WRITE(PXW(i), val);
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6631
		I915_WRITE(PXWL(i), 0);
6632 6633 6634 6635 6636 6637

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6638
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6639 6640
}

6641
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6642
{
6643 6644 6645 6646 6647 6648 6649 6650
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6651

6652
	mutex_lock(&dev_priv->drm.struct_mutex);
6653 6654 6655
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6656 6657 6658 6659
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6660
	else if (INTEL_GEN(dev_priv) >= 6)
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6690 6691 6692
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6693
	mutex_unlock(&dev_priv->rps.hw_lock);
6694
	mutex_unlock(&dev_priv->drm.struct_mutex);
6695 6696

	intel_autoenable_gt_powersave(dev_priv);
6697 6698
}

6699
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6700
{
6701
	if (IS_VALLEYVIEW(dev_priv))
6702
		valleyview_cleanup_gt_powersave(dev_priv);
6703 6704 6705

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6706 6707
}

6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6727 6728 6729 6730
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6731 6732

	gen6_reset_rps_interrupts(dev_priv);
6733 6734
}

6735
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6736
{
6737 6738
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6739

6740
	mutex_lock(&dev_priv->rps.hw_lock);
6741

6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6753
	}
6754 6755 6756

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6757 6758
}

6759
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6760
{
6761 6762 6763
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6764 6765
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6766

6767 6768 6769
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6770

6771
	mutex_lock(&dev_priv->rps.hw_lock);
6772 6773 6774 6775 6776

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6777
	} else if (INTEL_GEN(dev_priv) >= 9) {
6778 6779
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
6780
		if (IS_GEN9_BC(dev_priv))
6781
			gen6_update_ring_freq(dev_priv);
6782 6783
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6784
		gen6_update_ring_freq(dev_priv);
6785
	} else if (INTEL_GEN(dev_priv) >= 6) {
6786
		gen6_enable_rps(dev_priv);
6787
		gen6_update_ring_freq(dev_priv);
6788 6789 6790
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6791
	}
6792 6793 6794 6795 6796 6797 6798

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6799
	dev_priv->rps.enabled = true;
6800 6801
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6802

6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6813
	rcs = dev_priv->engine[RCS];
6814
	if (rcs->last_retired_context)
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6866
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6867 6868 6869 6870 6871 6872 6873 6874 6875
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6876
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6877
{
6878
	enum pipe pipe;
6879

6880
	for_each_pipe(dev_priv, pipe) {
6881 6882 6883
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6884 6885 6886

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6887 6888 6889
	}
}

6890
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6902
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6903
{
6904
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6905

6906 6907 6908 6909
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6910 6911 6912
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6930
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6931 6932 6933
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6934

6935
	ilk_init_lp_watermarks(dev_priv);
6936 6937 6938 6939 6940 6941 6942 6943

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6944
	if (IS_IRONLAKE_M(dev_priv)) {
6945
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6946 6947 6948 6949 6950 6951 6952 6953
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6954 6955
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6956 6957 6958 6959 6960 6961
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6962

6963
	/* WaDisableRenderCachePipelinedFlush:ilk */
6964 6965
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6966

6967 6968 6969
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6970
	g4x_disable_trickle_feed(dev_priv);
6971

6972
	ibx_init_clock_gating(dev_priv);
6973 6974
}

6975
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6976 6977
{
	int pipe;
6978
	uint32_t val;
6979 6980 6981 6982 6983 6984

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6985 6986 6987
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6988 6989
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6990 6991 6992
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6993
	for_each_pipe(dev_priv, pipe) {
6994 6995 6996
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6997
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6998
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6999 7000 7001
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7002 7003
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7004
	/* WADP0ClockGatingDisable */
7005
	for_each_pipe(dev_priv, pipe) {
7006 7007 7008
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7009 7010
}

7011
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7012 7013 7014 7015
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7016 7017 7018
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7019 7020
}

7021
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7022
{
7023
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7024

7025
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7026 7027 7028 7029 7030

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7031
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7032 7033 7034
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7035 7036 7037
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7038 7039 7040
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7041 7042 7043 7044
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7045 7046
	 */
	I915_WRITE(GEN6_GT_MODE,
7047
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7048

7049
	ilk_init_lp_watermarks(dev_priv);
7050 7051

	I915_WRITE(CACHE_MODE_0,
7052
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7068
	 *
7069 7070
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7071 7072 7073 7074 7075
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7076
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7077 7078
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7079

7080 7081 7082 7083 7084 7085 7086 7087
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7088 7089 7090 7091 7092 7093 7094 7095
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7096 7097
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7098 7099 7100 7101 7102 7103 7104
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7105 7106 7107 7108
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7109

7110
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7111

7112
	cpt_init_clock_gating(dev_priv);
7113

7114
	gen6_check_mch_setup(dev_priv);
7115 7116 7117 7118 7119 7120
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7121
	/*
7122
	 * WaVSThreadDispatchOverride:ivb,vlv
7123 7124 7125 7126
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7127 7128 7129 7130 7131 7132 7133 7134
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7135
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7136 7137 7138 7139 7140
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7141
	if (HAS_PCH_LPT_LP(dev_priv))
7142 7143 7144
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7145 7146

	/* WADPOClockGatingDisable:hsw */
7147 7148
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7149
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7150 7151
}

7152
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7153
{
7154
	if (HAS_PCH_LPT_LP(dev_priv)) {
7155 7156 7157 7158 7159 7160 7161
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7185
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7186
{
7187
	gen9_init_clock_gating(dev_priv);
7188 7189 7190 7191 7192

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7193 7194 7195 7196 7197

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7198 7199 7200 7201

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7202 7203
}

7204
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7205
{
7206
	gen9_init_clock_gating(dev_priv);
7207 7208 7209 7210

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7211 7212 7213 7214

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7215 7216
}

7217
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7218
{
7219
	enum pipe pipe;
B
Ben Widawsky 已提交
7220

7221
	ilk_init_lp_watermarks(dev_priv);
7222

7223
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7224
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7225

7226
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7227 7228 7229
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7230
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7231
	for_each_pipe(dev_priv, pipe) {
7232
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7233
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7234
			   BDW_DPRS_MASK_VBLANK_SRD);
7235
	}
7236

7237 7238 7239 7240 7241
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7242

7243 7244
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7245 7246 7247 7248

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7249

7250 7251
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7252

7253 7254 7255 7256 7257 7258 7259
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7260 7261 7262 7263
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7264
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7265 7266
}

7267
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7268
{
7269
	ilk_init_lp_watermarks(dev_priv);
7270

7271 7272 7273 7274 7275
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7276
	/* This is required by WaCatErrorRejectionIssue:hsw */
7277 7278 7279 7280
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7281 7282 7283
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7284

7285 7286 7287
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7288 7289 7290 7291
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7292
	/* WaDisable4x2SubspanOptimization:hsw */
7293 7294
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7295

7296 7297 7298
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7299 7300 7301 7302
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7303 7304
	 */
	I915_WRITE(GEN7_GT_MODE,
7305
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7306

7307 7308 7309 7310
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7311
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7312 7313
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7314 7315 7316
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7317

7318
	lpt_init_clock_gating(dev_priv);
7319 7320
}

7321
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7322
{
7323
	uint32_t snpcr;
7324

7325
	ilk_init_lp_watermarks(dev_priv);
7326

7327
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7328

7329
	/* WaDisableEarlyCull:ivb */
7330 7331 7332
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7333
	/* WaDisableBackToBackFlipFix:ivb */
7334 7335 7336 7337
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7338
	/* WaDisablePSDDualDispatchEnable:ivb */
7339
	if (IS_IVB_GT1(dev_priv))
7340 7341 7342
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7343 7344 7345
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7346
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7347 7348 7349
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7350
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7351 7352 7353
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7354
		   GEN7_WA_L3_CHICKEN_MODE);
7355
	if (IS_IVB_GT1(dev_priv))
7356 7357
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7358 7359 7360 7361
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7362 7363
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7364
	}
7365

7366
	/* WaForceL3Serialization:ivb */
7367 7368 7369
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7370
	/*
7371
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7372
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7373 7374
	 */
	I915_WRITE(GEN6_UCGCTL2,
7375
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7376

7377
	/* This is required by WaCatErrorRejectionIssue:ivb */
7378 7379 7380 7381
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7382
	g4x_disable_trickle_feed(dev_priv);
7383 7384

	gen7_setup_fixed_func_scheduler(dev_priv);
7385

7386 7387 7388 7389 7390
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7391

7392
	/* WaDisable4x2SubspanOptimization:ivb */
7393 7394
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7395

7396 7397 7398
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7399 7400 7401 7402
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7403 7404
	 */
	I915_WRITE(GEN7_GT_MODE,
7405
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7406

7407 7408 7409 7410
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7411

7412
	if (!HAS_PCH_NOP(dev_priv))
7413
		cpt_init_clock_gating(dev_priv);
7414

7415
	gen6_check_mch_setup(dev_priv);
7416 7417
}

7418
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7419
{
7420
	/* WaDisableEarlyCull:vlv */
7421 7422 7423
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7424
	/* WaDisableBackToBackFlipFix:vlv */
7425 7426 7427 7428
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7429
	/* WaPsdDispatchEnable:vlv */
7430
	/* WaDisablePSDDualDispatchEnable:vlv */
7431
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7432 7433
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7434

7435 7436 7437
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7438
	/* WaForceL3Serialization:vlv */
7439 7440 7441
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7442
	/* WaDisableDopClockGating:vlv */
7443 7444 7445
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7446
	/* This is required by WaCatErrorRejectionIssue:vlv */
7447 7448 7449 7450
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7451 7452
	gen7_setup_fixed_func_scheduler(dev_priv);

7453
	/*
7454
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7455
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7456 7457
	 */
	I915_WRITE(GEN6_UCGCTL2,
7458
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7459

7460 7461 7462 7463 7464
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7465

7466 7467 7468 7469
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7470 7471
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7472

7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7484 7485 7486 7487 7488 7489
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7490
	/*
7491
	 * WaDisableVLVClockGating_VBIIssue:vlv
7492 7493 7494
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7495
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7496 7497
}

7498
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7499
{
7500 7501 7502 7503 7504
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7505 7506 7507 7508

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7509 7510 7511 7512

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7513 7514 7515 7516

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7517

7518 7519 7520 7521 7522 7523 7524
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7525 7526 7527 7528 7529
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7530 7531
}

7532
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7544
	if (IS_GM45(dev_priv))
7545 7546
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7547 7548 7549 7550

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7551

7552 7553 7554
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7555
	g4x_disable_trickle_feed(dev_priv);
7556 7557
}

7558
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7559 7560 7561 7562 7563 7564
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7565 7566
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7567 7568 7569

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7570 7571
}

7572
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7573 7574 7575 7576 7577 7578 7579
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7580 7581
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7582 7583 7584

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7585 7586
}

7587
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7588 7589 7590 7591 7592 7593
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7594

7595
	if (IS_PINEVIEW(dev_priv))
7596
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7597 7598 7599

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7600 7601

	/* interrupts should cause a wake up from C3 */
7602
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7603 7604 7605

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7606 7607 7608

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7609 7610
}

7611
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7612 7613
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7614 7615 7616 7617

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7618 7619 7620

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7621 7622
}

7623
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7624
{
7625 7626 7627
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7628 7629
}

7630
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7631
{
7632
	dev_priv->display.init_clock_gating(dev_priv);
7633 7634
}

7635
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7636
{
7637 7638
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7639 7640
}

7641
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7658
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7659
	else if (IS_KABYLAKE(dev_priv))
7660
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7661
	else if (IS_BROXTON(dev_priv))
7662
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7663 7664
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7681
	else if (IS_I965GM(dev_priv))
7682
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7683
	else if (IS_I965G(dev_priv))
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7697
/* Set up chip specific power management-related functions */
7698
void intel_init_pm(struct drm_i915_private *dev_priv)
7699
{
7700
	intel_fbc_init(dev_priv);
7701

7702
	/* For cxsr */
7703
	if (IS_PINEVIEW(dev_priv))
7704
		i915_pineview_get_mem_freq(dev_priv);
7705
	else if (IS_GEN5(dev_priv))
7706
		i915_ironlake_get_mem_freq(dev_priv);
7707

7708
	/* For FIFO watermark updates */
7709
	if (INTEL_GEN(dev_priv) >= 9) {
7710
		skl_setup_wm_latency(dev_priv);
7711
		dev_priv->display.initial_watermarks = skl_initial_wm;
7712
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7713
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7714
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7715
		ilk_setup_wm_latency(dev_priv);
7716

7717
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7718
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7719
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7720
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7721
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7722 7723 7724 7725 7726 7727
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7728 7729 7730 7731
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7732
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7733
		vlv_setup_wm_latency(dev_priv);
7734
		dev_priv->display.update_wm = vlv_update_wm;
7735
	} else if (IS_PINEVIEW(dev_priv)) {
7736
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7737 7738 7739 7740 7741 7742 7743 7744 7745
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7746
			intel_set_memory_cxsr(dev_priv, false);
7747 7748 7749
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7750
	} else if (IS_G4X(dev_priv)) {
7751
		dev_priv->display.update_wm = g4x_update_wm;
7752
	} else if (IS_GEN4(dev_priv)) {
7753
		dev_priv->display.update_wm = i965_update_wm;
7754
	} else if (IS_GEN3(dev_priv)) {
7755 7756
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7757
	} else if (IS_GEN2(dev_priv)) {
7758
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7759
			dev_priv->display.update_wm = i845_update_wm;
7760
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7761 7762
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7763
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7764 7765 7766
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7767 7768 7769
	}
}

7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7782
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7814
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7815
{
7816 7817
	int status;

7818
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7819

7820 7821 7822 7823 7824 7825
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7826 7827 7828 7829
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7830 7831 7832
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7833

7834 7835 7836
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7837 7838 7839 7840
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7841 7842
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7843

7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7855 7856 7857
	return 0;
}

7858
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7859
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7860
{
7861 7862
	int status;

7863
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7864

7865 7866 7867 7868 7869 7870
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7871 7872 7873 7874
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7875
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7876
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7877
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7878

7879 7880 7881
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7882 7883 7884 7885
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7886
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7887

7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7899 7900
	return 0;
}
7901

7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
 * reports an error or an overall timeout of @timeout_base_ms+10 ms expires.
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
 * for @timeout_base_ms and if this times out for another 10 ms with
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
	 * requests. Increase the timeout from @timeout_base_ms to 10ms to
	 * account for interrupts that could reduce the number of these
	 * requests.
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
	ret = wait_for_atomic(COND, 10);
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

7977 7978
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7979 7980 7981 7982 7983
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7984 7985
}

7986
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7987
{
7988
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7989 7990
}

7991
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7992
{
7993 7994 7995 7996 7997
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7998 7999
}

8000
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8001
{
8002
	/* CHV needs even values */
8003
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8004 8005
}

8006
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8007
{
8008
	if (IS_GEN9(dev_priv))
8009 8010
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8011
	else if (IS_CHERRYVIEW(dev_priv))
8012
		return chv_gpu_freq(dev_priv, val);
8013
	else if (IS_VALLEYVIEW(dev_priv))
8014 8015 8016
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8017 8018
}

8019 8020
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8021
	if (IS_GEN9(dev_priv))
8022 8023
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8024
	else if (IS_CHERRYVIEW(dev_priv))
8025
		return chv_freq_opcode(dev_priv, val);
8026
	else if (IS_VALLEYVIEW(dev_priv))
8027 8028
		return byt_freq_opcode(dev_priv, val);
	else
8029
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8030
}
8031

8032 8033
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8034
	struct drm_i915_gem_request *req;
8035 8036 8037 8038 8039
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8040
	struct drm_i915_gem_request *req = boost->req;
8041

8042
	if (!i915_gem_request_completed(req))
8043
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8044

8045
	i915_gem_request_put(req);
8046 8047 8048
	kfree(boost);
}

8049
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8050 8051 8052
{
	struct request_boost *boost;

8053
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8054 8055
		return;

8056
	if (i915_gem_request_completed(req))
8057 8058
		return;

8059 8060 8061 8062
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8063
	boost->req = i915_gem_request_get(req);
8064 8065

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8066
	queue_work(req->i915->wq, &boost->work);
8067 8068
}

8069
void intel_pm_setup(struct drm_i915_private *dev_priv)
8070
{
D
Daniel Vetter 已提交
8071
	mutex_init(&dev_priv->rps.hw_lock);
8072
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8073

8074 8075
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8076
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8077

8078
	dev_priv->pm.suspended = false;
8079
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8080
}