xfs_file.c 44.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
24
#include "xfs_mount.h"
25 26
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
D
Dave Chinner 已提交
31
#include "xfs_bmap_util.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
33
#include "xfs_dir2.h"
D
Dave Chinner 已提交
34
#include "xfs_dir2_priv.h"
35
#include "xfs_ioctl.h"
36
#include "xfs_trace.h"
37
#include "xfs_log.h"
38
#include "xfs_icache.h"
39
#include "xfs_pnfs.h"
L
Linus Torvalds 已提交
40 41

#include <linux/dcache.h>
42
#include <linux/falloc.h>
43
#include <linux/pagevec.h>
44
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
45

46
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
		mutex_lock(&VFS_I(ip)->i_mutex);
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

82
/*
83 84 85 86 87
 * xfs_iozero clears the specified range supplied via the page cache (except in
 * the DAX case). Writes through the page cache will allocate blocks over holes,
 * though the callers usually map the holes first and avoid them. If a block is
 * not completely zeroed, then it will be read from disk before being partially
 * zeroed.
88
 *
89 90 91
 * In the DAX case, we can just directly write to the underlying pages. This
 * will not allocate blocks, but will avoid holes and unwritten extents and so
 * not do unnecessary work.
92
 */
93
int
94 95 96 97 98 99 100
xfs_iozero(
	struct xfs_inode	*ip,	/* inode			*/
	loff_t			pos,	/* offset in file		*/
	size_t			count)	/* size of data to zero		*/
{
	struct page		*page;
	struct address_space	*mapping;
101 102
	int			status = 0;

103 104 105 106 107 108 109 110 111 112 113

	mapping = VFS_I(ip)->i_mapping;
	do {
		unsigned offset, bytes;
		void *fsdata;

		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
		bytes = PAGE_CACHE_SIZE - offset;
		if (bytes > count)
			bytes = count;

114 115 116 117 118 119 120 121 122 123 124
		if (IS_DAX(VFS_I(ip))) {
			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
						     xfs_get_blocks_direct);
			if (status)
				break;
		} else {
			status = pagecache_write_begin(NULL, mapping, pos, bytes,
						AOP_FLAG_UNINTERRUPTIBLE,
						&page, &fsdata);
			if (status)
				break;
125

126
			zero_user(page, offset, bytes);
127

128 129 130 131 132
			status = pagecache_write_end(NULL, mapping, pos, bytes,
						bytes, page, fsdata);
			WARN_ON(status <= 0); /* can't return less than zero! */
			status = 0;
		}
133 134 135 136
		pos += bytes;
		count -= bytes;
	} while (count);

137
	return status;
138 139
}

140 141 142 143 144 145 146 147 148 149 150
int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
	if (error) {
151
		xfs_trans_cancel(tp);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
		ip->i_d.di_mode &= ~S_ISUID;
		if (ip->i_d.di_mode & S_IXGRP)
			ip->i_d.di_mode &= ~S_ISGID;
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
173
	return xfs_trans_commit(tp);
174 175
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
D
Dave Chinner 已提交
202
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
203 204
}

205 206 207
STATIC int
xfs_file_fsync(
	struct file		*file,
208 209
	loff_t			start,
	loff_t			end,
210 211
	int			datasync)
{
212 213
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
214
	struct xfs_mount	*mp = ip->i_mount;
215 216
	int			error = 0;
	int			log_flushed = 0;
217
	xfs_lsn_t		lsn = 0;
218

C
Christoph Hellwig 已提交
219
	trace_xfs_file_fsync(ip);
220

221 222 223 224
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

225
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
226
		return -EIO;
227 228 229

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

230 231 232 233 234 235 236 237 238 239 240 241 242 243
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

244
	/*
245 246 247 248 249 250 251 252 253 254 255
	 * All metadata updates are logged, which means that we just have to
	 * flush the log up to the latest LSN that touched the inode. If we have
	 * concurrent fsync/fdatasync() calls, we need them to all block on the
	 * log force before we clear the ili_fsync_fields field. This ensures
	 * that we don't get a racing sync operation that does not wait for the
	 * metadata to hit the journal before returning. If we race with
	 * clearing the ili_fsync_fields, then all that will happen is the log
	 * force will do nothing as the lsn will already be on disk. We can't
	 * race with setting ili_fsync_fields because that is done under
	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
	 * until after the ili_fsync_fields is cleared.
256 257
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
258 259
	if (xfs_ipincount(ip)) {
		if (!datasync ||
260
		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
261 262
			lsn = ip->i_itemp->ili_last_lsn;
	}
263

264
	if (lsn) {
265
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
266 267 268
		ip->i_itemp->ili_fsync_fields = 0;
	}
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
269

270 271 272 273 274 275 276 277 278 279 280 281
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
282

D
Dave Chinner 已提交
283
	return error;
284 285
}

286
STATIC ssize_t
A
Al Viro 已提交
287
xfs_file_read_iter(
288
	struct kiocb		*iocb,
A
Al Viro 已提交
289
	struct iov_iter		*to)
290 291 292
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
293 294
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
A
Al Viro 已提交
295
	size_t			size = iov_iter_count(to);
296
	ssize_t			ret = 0;
297
	int			ioflags = 0;
298
	xfs_fsize_t		n;
A
Al Viro 已提交
299
	loff_t			pos = iocb->ki_pos;
300

301
	XFS_STATS_INC(mp, xs_read_calls);
302

303
	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
D
Dave Chinner 已提交
304
		ioflags |= XFS_IO_ISDIRECT;
305
	if (file->f_mode & FMODE_NOCMTIME)
D
Dave Chinner 已提交
306
		ioflags |= XFS_IO_INVIS;
307

308
	if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
309 310 311
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
312 313
		/* DIO must be aligned to device logical sector size */
		if ((pos | size) & target->bt_logical_sectormask) {
D
Dave Chinner 已提交
314
			if (pos == i_size_read(inode))
315
				return 0;
E
Eric Sandeen 已提交
316
			return -EINVAL;
317 318 319
		}
	}

D
Dave Chinner 已提交
320
	n = mp->m_super->s_maxbytes - pos;
321
	if (n <= 0 || size == 0)
322 323 324 325 326 327 328 329
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

330
	/*
331 332 333 334 335 336 337 338
	 * Locking is a bit tricky here. If we take an exclusive lock for direct
	 * IO, we effectively serialise all new concurrent read IO to this file
	 * and block it behind IO that is currently in progress because IO in
	 * progress holds the IO lock shared. We only need to hold the lock
	 * exclusive to blow away the page cache, so only take lock exclusively
	 * if the page cache needs invalidation. This allows the normal direct
	 * IO case of no page cache pages to proceeed concurrently without
	 * serialisation.
339 340
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
D
Dave Chinner 已提交
341
	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
342
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
343 344
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

345 346 347 348 349 350 351 352 353 354 355
		/*
		 * The generic dio code only flushes the range of the particular
		 * I/O. Because we take an exclusive lock here, this whole
		 * sequence is considerably more expensive for us. This has a
		 * noticeable performance impact for any file with cached pages,
		 * even when outside of the range of the particular I/O.
		 *
		 * Hence, amortize the cost of the lock against a full file
		 * flush and reduce the chances of repeated iolock cycles going
		 * forward.
		 */
356
		if (inode->i_mapping->nrpages) {
357
			ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
358 359 360 361
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
362 363 364 365 366 367

			/*
			 * Invalidate whole pages. This can return an error if
			 * we fail to invalidate a page, but this should never
			 * happen on XFS. Warn if it does fail.
			 */
368
			ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
369 370
			WARN_ON_ONCE(ret);
			ret = 0;
371
		}
372
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
373
	}
374

D
Dave Chinner 已提交
375
	trace_xfs_file_read(ip, size, pos, ioflags);
376

A
Al Viro 已提交
377
	ret = generic_file_read_iter(iocb, to);
378
	if (ret > 0)
379
		XFS_STATS_ADD(mp, xs_read_bytes, ret);
380

381
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
382 383 384
	return ret;
}

385 386
STATIC ssize_t
xfs_file_splice_read(
387 388 389 390
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
391
	unsigned int		flags)
392
{
393 394
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
	int			ioflags = 0;
395 396
	ssize_t			ret;

397
	XFS_STATS_INC(ip->i_mount, xs_read_calls);
398 399

	if (infilp->f_mode & FMODE_NOCMTIME)
D
Dave Chinner 已提交
400
		ioflags |= XFS_IO_INVIS;
401

402 403 404 405 406
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);

407 408 409 410 411 412 413 414 415 416 417
	/*
	 * DAX inodes cannot ues the page cache for splice, so we have to push
	 * them through the VFS IO path. This means it goes through
	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
	 * cannot lock the splice operation at this level for DAX inodes.
	 */
	if (IS_DAX(VFS_I(ip))) {
		ret = default_file_splice_read(infilp, ppos, pipe, count,
					       flags);
		goto out;
	}
418

419 420
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
421
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
422 423 424
out:
	if (ret > 0)
		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
425 426 427 428
	return ret;
}

/*
429 430 431 432
 * This routine is called to handle zeroing any space in the last block of the
 * file that is beyond the EOF.  We do this since the size is being increased
 * without writing anything to that block and we don't want to read the
 * garbage on the disk.
433 434 435
 */
STATIC int				/* error (positive) */
xfs_zero_last_block(
436 437
	struct xfs_inode	*ip,
	xfs_fsize_t		offset,
438 439
	xfs_fsize_t		isize,
	bool			*did_zeroing)
440
{
441 442 443 444 445 446 447
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
	int			zero_len;
	int			nimaps = 1;
	int			error = 0;
	struct xfs_bmbt_irec	imap;
448

449
	xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
450
	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
451
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
452
	if (error)
453
		return error;
454

455
	ASSERT(nimaps > 0);
456

457 458 459 460
	/*
	 * If the block underlying isize is just a hole, then there
	 * is nothing to zero.
	 */
461
	if (imap.br_startblock == HOLESTARTBLOCK)
462 463 464 465 466
		return 0;

	zero_len = mp->m_sb.sb_blocksize - zero_offset;
	if (isize + zero_len > offset)
		zero_len = offset - isize;
467
	*did_zeroing = true;
468
	return xfs_iozero(ip, isize, zero_len);
469 470 471
}

/*
472 473 474 475 476 477 478 479 480
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
481 482 483
 */
int					/* error (positive) */
xfs_zero_eof(
484 485
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
486 487
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
488
{
489 490 491 492 493 494 495 496 497 498 499 500
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		start_zero_fsb;
	xfs_fileoff_t		end_zero_fsb;
	xfs_fileoff_t		zero_count_fsb;
	xfs_fileoff_t		last_fsb;
	xfs_fileoff_t		zero_off;
	xfs_fsize_t		zero_len;
	int			nimaps;
	int			error = 0;
	struct xfs_bmbt_irec	imap;

	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
501 502
	ASSERT(offset > isize);

503 504
	trace_xfs_zero_eof(ip, isize, offset - isize);

505 506
	/*
	 * First handle zeroing the block on which isize resides.
507
	 *
508 509
	 * We only zero a part of that block so it is handled specially.
	 */
510
	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
511
		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
512 513
		if (error)
			return error;
514 515 516
	}

	/*
517 518 519 520 521 522 523
	 * Calculate the range between the new size and the old where blocks
	 * needing to be zeroed may exist.
	 *
	 * To get the block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back to a block
	 * boundary.  We subtract 1 in case the size is exactly on a block
	 * boundary.
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
541 542

		xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
543 544
		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
					  &imap, &nimaps, 0);
545 546
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		if (error)
547
			return error;
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks we need to zero.
		 */
		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);

		if ((zero_off + zero_len) > offset)
			zero_len = offset - zero_off;

		error = xfs_iozero(ip, zero_off, zero_len);
568 569
		if (error)
			return error;
570

571
		*did_zeroing = true;
572 573 574 575 576 577 578
		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
	}

	return 0;
}

579 580 581
/*
 * Common pre-write limit and setup checks.
 *
582 583 584
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
585 586 587
 */
STATIC ssize_t
xfs_file_aio_write_checks(
588 589
	struct kiocb		*iocb,
	struct iov_iter		*from,
590 591
	int			*iolock)
{
592
	struct file		*file = iocb->ki_filp;
593 594
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
595
	ssize_t			error = 0;
596
	size_t			count = iov_iter_count(from);
597
	bool			drained_dio = false;
598

599
restart:
600 601
	error = generic_write_checks(iocb, from);
	if (error <= 0)
602 603
		return error;

604
	error = xfs_break_layouts(inode, iolock, true);
605 606 607
	if (error)
		return error;

608 609 610 611 612 613 614
	/* For changing security info in file_remove_privs() we need i_mutex */
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
		xfs_rw_iunlock(ip, *iolock);
		*iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, *iolock);
		goto restart;
	}
615 616 617
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
618
	 * write.  If zeroing is needed and we are currently holding the
619 620
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
621 622 623 624 625 626 627 628
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
629
	 */
630
	spin_lock(&ip->i_flags_lock);
631
	if (iocb->ki_pos > i_size_read(inode)) {
632 633
		bool	zero = false;

634
		spin_unlock(&ip->i_flags_lock);
635 636 637 638 639 640 641
		if (!drained_dio) {
			if (*iolock == XFS_IOLOCK_SHARED) {
				xfs_rw_iunlock(ip, *iolock);
				*iolock = XFS_IOLOCK_EXCL;
				xfs_rw_ilock(ip, *iolock);
				iov_iter_reexpand(from, count);
			}
642 643 644 645 646 647 648 649 650
			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
651
			drained_dio = true;
652 653
			goto restart;
		}
654
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
655 656
		if (error)
			return error;
657 658
	} else
		spin_unlock(&ip->i_flags_lock);
659

C
Christoph Hellwig 已提交
660 661 662 663 664 665
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
666 667 668 669 670
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
671

672 673 674 675 676
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
677 678 679
	if (!IS_NOSEC(inode))
		return file_remove_privs(file);
	return 0;
680 681
}

682 683 684 685
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
686
 * By separating it from the buffered write path we remove all the tricky to
687 688
 * follow locking changes and looping.
 *
689 690 691 692 693 694 695 696 697 698 699 700 701
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
702
 * hitting it with a big hammer (i.e. inode_dio_wait()).
703
 *
704 705 706 707 708 709
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
710
	struct iov_iter		*from)
711 712 713 714 715 716 717
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
718
	int			unaligned_io = 0;
719
	int			iolock;
720 721
	size_t			count = iov_iter_count(from);
	loff_t			pos = iocb->ki_pos;
722 723
	loff_t			end;
	struct iov_iter		data;
724 725 726
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

727
	/* DIO must be aligned to device logical sector size */
728
	if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
E
Eric Sandeen 已提交
729
		return -EINVAL;
730

731
	/* "unaligned" here means not aligned to a filesystem block */
732 733 734
	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
		unaligned_io = 1;

735 736 737 738 739 740 741 742
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
743
		iolock = XFS_IOLOCK_EXCL;
744
	else
745 746
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);
747 748 749 750 751 752

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
753 754 755 756
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
757
	}
758

759
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
760
	if (ret)
761
		goto out;
762 763
	count = iov_iter_count(from);
	pos = iocb->ki_pos;
764
	end = pos + count - 1;
765

766 767 768
	/*
	 * See xfs_file_read_iter() for why we do a full-file flush here.
	 */
769
	if (mapping->nrpages) {
770
		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
771
		if (ret)
772
			goto out;
773
		/*
774 775 776
		 * Invalidate whole pages. This can return an error if we fail
		 * to invalidate a page, but this should never happen on XFS.
		 * Warn if it does fail.
777
		 */
778
		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
779 780
		WARN_ON_ONCE(ret);
		ret = 0;
781 782
	}

783 784 785 786 787
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
788
		inode_dio_wait(inode);
789
	else if (iolock == XFS_IOLOCK_EXCL) {
790
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
791
		iolock = XFS_IOLOCK_SHARED;
792 793 794 795
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);

796
	data = *from;
797
	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
798 799 800 801 802 803 804 805 806 807 808 809 810

	/* see generic_file_direct_write() for why this is necessary */
	if (mapping->nrpages) {
		invalidate_inode_pages2_range(mapping,
					      pos >> PAGE_CACHE_SHIFT,
					      end >> PAGE_CACHE_SHIFT);
	}

	if (ret > 0) {
		pos += ret;
		iov_iter_advance(from, ret);
		iocb->ki_pos = pos;
	}
811 812 813
out:
	xfs_rw_iunlock(ip, iolock);

814 815 816 817 818
	/*
	 * No fallback to buffered IO on errors for XFS. DAX can result in
	 * partial writes, but direct IO will either complete fully or fail.
	 */
	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
819 820 821
	return ret;
}

822
STATIC ssize_t
823
xfs_file_buffered_aio_write(
824
	struct kiocb		*iocb,
825
	struct iov_iter		*from)
826 827 828 829
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
830
	struct xfs_inode	*ip = XFS_I(inode);
831 832
	ssize_t			ret;
	int			enospc = 0;
833
	int			iolock = XFS_IOLOCK_EXCL;
834

835
	xfs_rw_ilock(ip, iolock);
836

837
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
838
	if (ret)
839
		goto out;
840 841

	/* We can write back this queue in page reclaim */
842
	current->backing_dev_info = inode_to_bdi(inode);
843 844

write_retry:
845 846 847
	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
				      iocb->ki_pos, 0);
	ret = generic_perform_write(file, from, iocb->ki_pos);
848
	if (likely(ret >= 0))
849
		iocb->ki_pos += ret;
850

851
	/*
852 853 854 855 856 857 858
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
859
	 */
860 861 862 863 864 865 866
	if (ret == -EDQUOT && !enospc) {
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

867
		enospc = 1;
D
Dave Chinner 已提交
868
		xfs_flush_inodes(ip->i_mount);
869 870 871
		eofb.eof_scan_owner = ip->i_ino; /* for locking */
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
D
Dave Chinner 已提交
872
		goto write_retry;
873
	}
874

875
	current->backing_dev_info = NULL;
876 877
out:
	xfs_rw_iunlock(ip, iolock);
878 879 880 881
	return ret;
}

STATIC ssize_t
A
Al Viro 已提交
882
xfs_file_write_iter(
883
	struct kiocb		*iocb,
A
Al Viro 已提交
884
	struct iov_iter		*from)
885 886 887 888 889 890
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
A
Al Viro 已提交
891
	size_t			ocount = iov_iter_count(from);
892

893
	XFS_STATS_INC(ip->i_mount, xs_write_calls);
894 895 896 897

	if (ocount == 0)
		return 0;

A
Al Viro 已提交
898 899
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;
900

901
	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
A
Al Viro 已提交
902
		ret = xfs_file_dio_aio_write(iocb, from);
903
	else
A
Al Viro 已提交
904
		ret = xfs_file_buffered_aio_write(iocb, from);
905

906 907
	if (ret > 0) {
		ssize_t err;
908

909
		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
910

911
		/* Handle various SYNC-type writes */
912
		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
913 914
		if (err < 0)
			ret = err;
915
	}
916
	return ret;
917 918
}

919 920 921 922 923
#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
		 FALLOC_FL_INSERT_RANGE)

924 925
STATIC long
xfs_file_fallocate(
926 927 928 929
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
930
{
931 932 933
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
934
	enum xfs_prealloc_flags	flags = 0;
935
	uint			iolock = XFS_IOLOCK_EXCL;
936
	loff_t			new_size = 0;
937
	bool			do_file_insert = 0;
938

939 940
	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
941
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
942 943
		return -EOPNOTSUPP;

944
	xfs_ilock(ip, iolock);
945
	error = xfs_break_layouts(inode, &iolock, false);
946 947 948
	if (error)
		goto out_unlock;

949 950 951
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

952 953 954 955
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
956 957 958 959
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
D
Dave Chinner 已提交
960
			error = -EINVAL;
961 962 963
			goto out_unlock;
		}

964 965 966 967 968
		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
D
Dave Chinner 已提交
969
			error = -EINVAL;
970 971 972
			goto out_unlock;
		}

973 974 975 976 977
		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		new_size = i_size_read(inode) + len;
		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/* check the new inode size does not wrap through zero */
		if (new_size > inode->i_sb->s_maxbytes) {
			error = -EFBIG;
			goto out_unlock;
		}

		/* Offset should be less than i_size */
		if (offset >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = 1;
999
	} else {
1000 1001
		flags |= XFS_PREALLOC_SET;

1002 1003 1004
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
D
Dave Chinner 已提交
1005
			error = inode_newsize_ok(inode, new_size);
1006 1007 1008
			if (error)
				goto out_unlock;
		}
1009

1010 1011 1012 1013 1014
		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
		else
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
1015 1016 1017 1018
		if (error)
			goto out_unlock;
	}

1019
	if (file->f_flags & O_DSYNC)
1020 1021 1022
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
1023 1024 1025 1026 1027 1028 1029 1030 1031
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
1032
		error = xfs_setattr_size(ip, &iattr);
1033 1034
		if (error)
			goto out_unlock;
1035 1036
	}

1037 1038 1039 1040 1041 1042 1043 1044 1045
	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

1046
out_unlock:
1047
	xfs_iunlock(ip, iolock);
D
Dave Chinner 已提交
1048
	return error;
1049 1050 1051
}


L
Linus Torvalds 已提交
1052
STATIC int
1053
xfs_file_open(
L
Linus Torvalds 已提交
1054
	struct inode	*inode,
1055
	struct file	*file)
L
Linus Torvalds 已提交
1056
{
1057
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
1058
		return -EFBIG;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
1081
	mode = xfs_ilock_data_map_shared(ip);
1082
	if (ip->i_d.di_nextents > 0)
1083
		xfs_dir3_data_readahead(ip, 0, -1);
1084 1085
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
1086 1087 1088
}

STATIC int
1089
xfs_file_release(
L
Linus Torvalds 已提交
1090 1091 1092
	struct inode	*inode,
	struct file	*filp)
{
D
Dave Chinner 已提交
1093
	return xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
1094 1095 1096
}

STATIC int
1097
xfs_file_readdir(
A
Al Viro 已提交
1098 1099
	struct file	*file,
	struct dir_context *ctx)
L
Linus Torvalds 已提交
1100
{
A
Al Viro 已提交
1101
	struct inode	*inode = file_inode(file);
1102
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1115
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1116
	 */
E
Eric Sandeen 已提交
1117
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1118

1119
	return xfs_readdir(ip, ctx, bufsize);
L
Linus Torvalds 已提交
1120 1121
}

1122 1123
/*
 * This type is designed to indicate the type of offset we would like
1124
 * to search from page cache for xfs_seek_hole_data().
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
1181
 * type for xfs_seek_hole_data().
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

	index = startoff >> PAGE_CACHE_SHIFT;
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
	end = endoff >> PAGE_CACHE_SHIFT;
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1340
STATIC loff_t
1341
xfs_seek_hole_data(
1342
	struct file		*file,
1343 1344
	loff_t			start,
	int			whence)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fsize_t		isize;
	xfs_fileoff_t		fsbno;
	xfs_filblks_t		end;
	uint			lock;
	int			error;

1356 1357 1358
	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

1359
	lock = xfs_ilock_data_map_shared(ip);
1360 1361 1362

	isize = i_size_read(inode);
	if (start >= isize) {
D
Dave Chinner 已提交
1363
		error = -ENXIO;
1364 1365 1366 1367 1368 1369 1370
		goto out_unlock;
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1371
	fsbno = XFS_B_TO_FSBT(mp, start);
1372
	end = XFS_B_TO_FSB(mp, isize);
1373

1374 1375 1376 1377
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1378

1379 1380 1381 1382
		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
				       XFS_BMAPI_ENTIRE);
		if (error)
			goto out_unlock;
1383

1384 1385
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
D
Dave Chinner 已提交
1386
			error = -ENXIO;
1387 1388 1389 1390 1391 1392 1393
			goto out_unlock;
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
			/* Landed in the hole we wanted? */
			if (whence == SEEK_HOLE &&
			    map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/* Landed in the data extent we wanted? */
			if (whence == SEEK_DATA &&
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
			     (map[i].br_state == XFS_EXT_NORM &&
			      !isnullstartblock(map[i].br_startblock))))
1404 1405 1406
				goto out;

			/*
1407 1408
			 * Landed in an unwritten extent, try to search
			 * for hole or data from page cache.
1409 1410 1411
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
1412 1413
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
							&offset))
1414 1415 1416 1417 1418
					goto out;
			}
		}

		/*
1419 1420
		 * We only received one extent out of the two requested. This
		 * means we've hit EOF and didn't find what we are looking for.
1421
		 */
1422
		if (nmap == 1) {
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
			/*
			 * If we were looking for a hole, set offset to
			 * the end of the file (i.e., there is an implicit
			 * hole at the end of any file).
		 	 */
			if (whence == SEEK_HOLE) {
				offset = isize;
				break;
			}
			/*
			 * If we were looking for data, it's nowhere to be found
			 */
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1436
			error = -ENXIO;
1437 1438 1439
			goto out_unlock;
		}

1440 1441 1442 1443
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
1444
		 * if the next reading offset is not at or beyond EOF.
1445 1446 1447 1448
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
		if (start >= isize) {
1449 1450 1451 1452 1453
			if (whence == SEEK_HOLE) {
				offset = isize;
				break;
			}
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1454
			error = -ENXIO;
1455 1456
			goto out_unlock;
		}
1457 1458
	}

1459 1460
out:
	/*
1461
	 * If at this point we have found the hole we wanted, the returned
1462
	 * offset may be bigger than the file size as it may be aligned to
1463
	 * page boundary for unwritten extents.  We need to deal with this
1464 1465
	 * situation in particular.
	 */
1466 1467
	if (whence == SEEK_HOLE)
		offset = min_t(loff_t, offset, isize);
J
Jie Liu 已提交
1468
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1469 1470

out_unlock:
1471
	xfs_iunlock(ip, lock);
1472 1473

	if (error)
D
Dave Chinner 已提交
1474
		return error;
1475 1476 1477 1478 1479 1480 1481
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
1482
	int		whence)
1483
{
1484
	switch (whence) {
1485 1486 1487
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
1488
		return generic_file_llseek(file, offset, whence);
1489
	case SEEK_HOLE:
1490
	case SEEK_DATA:
1491
		return xfs_seek_hole_data(file, offset, whence);
1492 1493 1494 1495 1496
	default:
		return -EINVAL;
	}
}

1497 1498 1499 1500 1501
/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
1502
 *   sb_start_pagefault(vfs, freeze)
1503
 *     i_mmaplock (XFS - truncate serialisation)
1504 1505
 *       page_lock (MM)
 *         i_lock (XFS - extent map serialisation)
1506 1507
 */

1508 1509 1510 1511 1512
/*
 * mmap()d file has taken write protection fault and is being made writable. We
 * can set the page state up correctly for a writable page, which means we can
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 * mapping.
1513 1514
 */
STATIC int
1515
xfs_filemap_page_mkwrite(
1516 1517 1518
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1519
	struct inode		*inode = file_inode(vma->vm_file);
1520
	int			ret;
1521

1522
	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1523

1524
	sb_start_pagefault(inode->i_sb);
1525
	file_update_time(vma->vm_file);
1526
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1527

1528
	if (IS_DAX(inode)) {
1529
		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault, NULL);
1530
	} else {
1531
		ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1532 1533 1534 1535 1536 1537 1538
		ret = block_page_mkwrite_return(ret);
	}

	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);

	return ret;
1539 1540
}

1541
STATIC int
1542
xfs_filemap_fault(
1543 1544 1545
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1546
	struct inode		*inode = file_inode(vma->vm_file);
1547
	int			ret;
1548

1549
	trace_xfs_filemap_fault(XFS_I(inode));
1550

1551
	/* DAX can shortcut the normal fault path on write faults! */
1552
	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1553
		return xfs_filemap_page_mkwrite(vma, vmf);
1554

1555 1556 1557 1558 1559 1560 1561 1562
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	if (IS_DAX(inode)) {
		/*
		 * we do not want to trigger unwritten extent conversion on read
		 * faults - that is unnecessary overhead and would also require
		 * changes to xfs_get_blocks_direct() to map unwritten extent
		 * ioend for conversion on read-only mappings.
		 */
1563
		ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault, NULL);
1564 1565 1566
	} else
		ret = filemap_fault(vma, vmf);
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1567

1568 1569 1570
	return ret;
}

1571 1572 1573 1574 1575 1576 1577
/*
 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
 * both read and write faults. Hence we need to handle both cases. There is no
 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
 * handle both cases here. @flags carries the information on the type of fault
 * occuring.
 */
M
Matthew Wilcox 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
STATIC int
xfs_filemap_pmd_fault(
	struct vm_area_struct	*vma,
	unsigned long		addr,
	pmd_t			*pmd,
	unsigned int		flags)
{
	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret;

	if (!IS_DAX(inode))
		return VM_FAULT_FALLBACK;

	trace_xfs_filemap_pmd_fault(ip);

1594 1595 1596 1597 1598
	if (flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(inode->i_sb);
		file_update_time(vma->vm_file);
	}

M
Matthew Wilcox 已提交
1599
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1600
	ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault,
1601
			      NULL);
M
Matthew Wilcox 已提交
1602 1603
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);

1604 1605
	if (flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1606 1607 1608 1609

	return ret;
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
/*
 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
 * updates on write faults. In reality, it's need to serialise against
 * truncate similar to page_mkwrite. Hence we open-code dax_pfn_mkwrite()
 * here and cycle the XFS_MMAPLOCK_SHARED to ensure we serialise the fault
 * barrier in place.
 */
static int
xfs_filemap_pfn_mkwrite(
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{

	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret = VM_FAULT_NOPAGE;
	loff_t			size;

	trace_xfs_filemap_pfn_mkwrite(ip);

	sb_start_pagefault(inode->i_sb);
	file_update_time(vma->vm_file);

	/* check if the faulting page hasn't raced with truncate */
	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		ret = VM_FAULT_SIGBUS;
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1640
	return ret;
1641

M
Matthew Wilcox 已提交
1642 1643
}

1644 1645
static const struct vm_operations_struct xfs_file_vm_ops = {
	.fault		= xfs_filemap_fault,
M
Matthew Wilcox 已提交
1646
	.pmd_fault	= xfs_filemap_pmd_fault,
1647 1648
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= xfs_filemap_page_mkwrite,
1649
	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
};

STATIC int
xfs_file_mmap(
	struct file	*filp,
	struct vm_area_struct *vma)
{
	file_accessed(filp);
	vma->vm_ops = &xfs_file_vm_ops;
	if (IS_DAX(file_inode(filp)))
M
Matthew Wilcox 已提交
1660
		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1661
	return 0;
1662 1663
}

1664
const struct file_operations xfs_file_operations = {
1665
	.llseek		= xfs_file_llseek,
A
Al Viro 已提交
1666
	.read_iter	= xfs_file_read_iter,
A
Al Viro 已提交
1667
	.write_iter	= xfs_file_write_iter,
1668
	.splice_read	= xfs_file_splice_read,
A
Al Viro 已提交
1669
	.splice_write	= iter_file_splice_write,
1670
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1671
#ifdef CONFIG_COMPAT
1672
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1673
#endif
1674 1675 1676 1677
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1678
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1679 1680
};

1681
const struct file_operations xfs_dir_file_operations = {
1682
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1683
	.read		= generic_read_dir,
A
Al Viro 已提交
1684
	.iterate	= xfs_file_readdir,
1685
	.llseek		= generic_file_llseek,
1686
	.unlocked_ioctl	= xfs_file_ioctl,
1687
#ifdef CONFIG_COMPAT
1688
	.compat_ioctl	= xfs_file_compat_ioctl,
1689
#endif
1690
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1691
};