rcar-csi2.c 38.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// SPDX-License-Identifier: GPL-2.0
/*
 * Driver for Renesas R-Car MIPI CSI-2 Receiver
 *
 * Copyright (C) 2018 Renesas Electronics Corp.
 */

#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
17
#include <linux/reset.h>
18 19
#include <linux/sys_soc.h>

20
#include <media/mipi-csi2.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-mc.h>
#include <media/v4l2-subdev.h>

struct rcar_csi2;

/* Register offsets and bits */

/* Control Timing Select */
#define TREF_REG			0x00
#define TREF_TREF			BIT(0)

/* Software Reset */
#define SRST_REG			0x04
#define SRST_SRST			BIT(0)

/* PHY Operation Control */
#define PHYCNT_REG			0x08
#define PHYCNT_SHUTDOWNZ		BIT(17)
#define PHYCNT_RSTZ			BIT(16)
#define PHYCNT_ENABLECLK		BIT(4)
#define PHYCNT_ENABLE_3			BIT(3)
#define PHYCNT_ENABLE_2			BIT(2)
#define PHYCNT_ENABLE_1			BIT(1)
#define PHYCNT_ENABLE_0			BIT(0)

/* Checksum Control */
#define CHKSUM_REG			0x0c
#define CHKSUM_ECC_EN			BIT(1)
#define CHKSUM_CRC_EN			BIT(0)

/*
 * Channel Data Type Select
56 57
 * VCDT[0-15]:  Channel 0 VCDT[16-31]:  Channel 1
 * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
58 59 60 61 62 63 64 65 66 67 68 69 70 71
 */
#define VCDT_REG			0x10
#define VCDT2_REG			0x14
#define VCDT_VCDTN_EN			BIT(15)
#define VCDT_SEL_VC(n)			(((n) & 0x3) << 8)
#define VCDT_SEL_DTN_ON			BIT(6)
#define VCDT_SEL_DT(n)			(((n) & 0x3f) << 0)

/* Frame Data Type Select */
#define FRDT_REG			0x18

/* Field Detection Control */
#define FLD_REG				0x1c
#define FLD_FLD_NUM(n)			(((n) & 0xff) << 16)
72
#define FLD_DET_SEL(n)			(((n) & 0x3) << 4)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
#define FLD_FLD_EN4			BIT(3)
#define FLD_FLD_EN3			BIT(2)
#define FLD_FLD_EN2			BIT(1)
#define FLD_FLD_EN			BIT(0)

/* Automatic Standby Control */
#define ASTBY_REG			0x20

/* Long Data Type Setting 0 */
#define LNGDT0_REG			0x28

/* Long Data Type Setting 1 */
#define LNGDT1_REG			0x2c

/* Interrupt Enable */
#define INTEN_REG			0x30
89 90 91
#define INTEN_INT_AFIFO_OF		BIT(27)
#define INTEN_INT_ERRSOTHS		BIT(4)
#define INTEN_INT_ERRSOTSYNCHS		BIT(3)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

/* Interrupt Source Mask */
#define INTCLOSE_REG			0x34

/* Interrupt Status Monitor */
#define INTSTATE_REG			0x38
#define INTSTATE_INT_ULPS_START		BIT(7)
#define INTSTATE_INT_ULPS_END		BIT(6)

/* Interrupt Error Status Monitor */
#define INTERRSTATE_REG			0x3c

/* Short Packet Data */
#define SHPDAT_REG			0x40

/* Short Packet Count */
#define SHPCNT_REG			0x44

/* LINK Operation Control */
#define LINKCNT_REG			0x48
#define LINKCNT_MONITOR_EN		BIT(31)
#define LINKCNT_REG_MONI_PACT_EN	BIT(25)
#define LINKCNT_ICLK_NONSTOP		BIT(24)

/* Lane Swap */
#define LSWAP_REG			0x4c
#define LSWAP_L3SEL(n)			(((n) & 0x3) << 6)
#define LSWAP_L2SEL(n)			(((n) & 0x3) << 4)
#define LSWAP_L1SEL(n)			(((n) & 0x3) << 2)
#define LSWAP_L0SEL(n)			(((n) & 0x3) << 0)

/* PHY Test Interface Write Register */
#define PHTW_REG			0x50
#define PHTW_DWEN			BIT(24)
#define PHTW_TESTDIN_DATA(n)		(((n & 0xff)) << 16)
#define PHTW_CWEN			BIT(8)
#define PHTW_TESTDIN_CODE(n)		((n & 0xff))

130 131 132 133 134 135
#define PHYFRX_REG			0x64
#define PHYFRX_FORCERX_MODE_3		BIT(3)
#define PHYFRX_FORCERX_MODE_2		BIT(2)
#define PHYFRX_FORCERX_MODE_1		BIT(1)
#define PHYFRX_FORCERX_MODE_0		BIT(0)

136 137 138 139 140 141 142 143 144 145
struct phtw_value {
	u16 data;
	u16 code;
};

struct rcsi2_mbps_reg {
	u16 mbps;
	u16 reg;
};

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
static const struct rcsi2_mbps_reg phtw_mbps_v3u[] = {
	{ .mbps = 1500, .reg = 0xcc },
	{ .mbps = 1550, .reg = 0x1d },
	{ .mbps = 1600, .reg = 0x27 },
	{ .mbps = 1650, .reg = 0x30 },
	{ .mbps = 1700, .reg = 0x39 },
	{ .mbps = 1750, .reg = 0x42 },
	{ .mbps = 1800, .reg = 0x4b },
	{ .mbps = 1850, .reg = 0x55 },
	{ .mbps = 1900, .reg = 0x5e },
	{ .mbps = 1950, .reg = 0x67 },
	{ .mbps = 2000, .reg = 0x71 },
	{ .mbps = 2050, .reg = 0x79 },
	{ .mbps = 2100, .reg = 0x83 },
	{ .mbps = 2150, .reg = 0x8c },
	{ .mbps = 2200, .reg = 0x95 },
	{ .mbps = 2250, .reg = 0x9e },
	{ .mbps = 2300, .reg = 0xa7 },
	{ .mbps = 2350, .reg = 0xb0 },
	{ .mbps = 2400, .reg = 0xba },
	{ .mbps = 2450, .reg = 0xc3 },
	{ .mbps = 2500, .reg = 0xcc },
	{ /* sentinel */ },
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
	{ .mbps =   80, .reg = 0x86 },
	{ .mbps =   90, .reg = 0x86 },
	{ .mbps =  100, .reg = 0x87 },
	{ .mbps =  110, .reg = 0x87 },
	{ .mbps =  120, .reg = 0x88 },
	{ .mbps =  130, .reg = 0x88 },
	{ .mbps =  140, .reg = 0x89 },
	{ .mbps =  150, .reg = 0x89 },
	{ .mbps =  160, .reg = 0x8a },
	{ .mbps =  170, .reg = 0x8a },
	{ .mbps =  180, .reg = 0x8b },
	{ .mbps =  190, .reg = 0x8b },
	{ .mbps =  205, .reg = 0x8c },
	{ .mbps =  220, .reg = 0x8d },
	{ .mbps =  235, .reg = 0x8e },
	{ .mbps =  250, .reg = 0x8e },
	{ /* sentinel */ },
};

static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
	{ .mbps =   80, .reg = 0x00 },
	{ .mbps =   90, .reg = 0x20 },
	{ .mbps =  100, .reg = 0x40 },
	{ .mbps =  110, .reg = 0x02 },
	{ .mbps =  130, .reg = 0x22 },
	{ .mbps =  140, .reg = 0x42 },
	{ .mbps =  150, .reg = 0x04 },
	{ .mbps =  170, .reg = 0x24 },
	{ .mbps =  180, .reg = 0x44 },
	{ .mbps =  200, .reg = 0x06 },
	{ .mbps =  220, .reg = 0x26 },
	{ .mbps =  240, .reg = 0x46 },
	{ .mbps =  250, .reg = 0x08 },
	{ .mbps =  270, .reg = 0x28 },
	{ .mbps =  300, .reg = 0x0a },
	{ .mbps =  330, .reg = 0x2a },
	{ .mbps =  360, .reg = 0x4a },
	{ .mbps =  400, .reg = 0x0c },
	{ .mbps =  450, .reg = 0x2c },
	{ .mbps =  500, .reg = 0x0e },
	{ .mbps =  550, .reg = 0x2e },
	{ .mbps =  600, .reg = 0x10 },
	{ .mbps =  650, .reg = 0x30 },
	{ .mbps =  700, .reg = 0x12 },
	{ .mbps =  750, .reg = 0x32 },
	{ .mbps =  800, .reg = 0x52 },
	{ .mbps =  850, .reg = 0x72 },
	{ .mbps =  900, .reg = 0x14 },
	{ .mbps =  950, .reg = 0x34 },
	{ .mbps = 1000, .reg = 0x54 },
	{ .mbps = 1050, .reg = 0x74 },
223 224 225 226 227 228 229 230 231 232 233 234
	{ .mbps = 1125, .reg = 0x16 },
	{ /* sentinel */ },
};

/* PHY Test Interface Clear */
#define PHTC_REG			0x58
#define PHTC_TESTCLR			BIT(0)

/* PHY Frequency Control */
#define PHYPLL_REG			0x68
#define PHYPLL_HSFREQRANGE(n)		((n) << 16)

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static const struct rcsi2_mbps_reg hsfreqrange_v3u[] = {
	{ .mbps =   80, .reg = 0x00 },
	{ .mbps =   90, .reg = 0x10 },
	{ .mbps =  100, .reg = 0x20 },
	{ .mbps =  110, .reg = 0x30 },
	{ .mbps =  120, .reg = 0x01 },
	{ .mbps =  130, .reg = 0x11 },
	{ .mbps =  140, .reg = 0x21 },
	{ .mbps =  150, .reg = 0x31 },
	{ .mbps =  160, .reg = 0x02 },
	{ .mbps =  170, .reg = 0x12 },
	{ .mbps =  180, .reg = 0x22 },
	{ .mbps =  190, .reg = 0x32 },
	{ .mbps =  205, .reg = 0x03 },
	{ .mbps =  220, .reg = 0x13 },
	{ .mbps =  235, .reg = 0x23 },
	{ .mbps =  250, .reg = 0x33 },
	{ .mbps =  275, .reg = 0x04 },
	{ .mbps =  300, .reg = 0x14 },
	{ .mbps =  325, .reg = 0x25 },
	{ .mbps =  350, .reg = 0x35 },
	{ .mbps =  400, .reg = 0x05 },
	{ .mbps =  450, .reg = 0x16 },
	{ .mbps =  500, .reg = 0x26 },
	{ .mbps =  550, .reg = 0x37 },
	{ .mbps =  600, .reg = 0x07 },
	{ .mbps =  650, .reg = 0x18 },
	{ .mbps =  700, .reg = 0x28 },
	{ .mbps =  750, .reg = 0x39 },
	{ .mbps =  800, .reg = 0x09 },
	{ .mbps =  850, .reg = 0x19 },
	{ .mbps =  900, .reg = 0x29 },
	{ .mbps =  950, .reg = 0x3a },
	{ .mbps = 1000, .reg = 0x0a },
	{ .mbps = 1050, .reg = 0x1a },
	{ .mbps = 1100, .reg = 0x2a },
	{ .mbps = 1150, .reg = 0x3b },
	{ .mbps = 1200, .reg = 0x0b },
	{ .mbps = 1250, .reg = 0x1b },
	{ .mbps = 1300, .reg = 0x2b },
	{ .mbps = 1350, .reg = 0x3c },
	{ .mbps = 1400, .reg = 0x0c },
	{ .mbps = 1450, .reg = 0x1c },
	{ .mbps = 1500, .reg = 0x2c },
	{ .mbps = 1550, .reg = 0x3d },
	{ .mbps = 1600, .reg = 0x0d },
	{ .mbps = 1650, .reg = 0x1d },
	{ .mbps = 1700, .reg = 0x2e },
	{ .mbps = 1750, .reg = 0x3e },
	{ .mbps = 1800, .reg = 0x0e },
	{ .mbps = 1850, .reg = 0x1e },
	{ .mbps = 1900, .reg = 0x2f },
	{ .mbps = 1950, .reg = 0x3f },
	{ .mbps = 2000, .reg = 0x0f },
	{ .mbps = 2050, .reg = 0x40 },
	{ .mbps = 2100, .reg = 0x41 },
	{ .mbps = 2150, .reg = 0x42 },
	{ .mbps = 2200, .reg = 0x43 },
	{ .mbps = 2300, .reg = 0x45 },
	{ .mbps = 2350, .reg = 0x46 },
	{ .mbps = 2400, .reg = 0x47 },
	{ .mbps = 2450, .reg = 0x48 },
	{ .mbps = 2500, .reg = 0x49 },
	{ /* sentinel */ },
};

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
	{ .mbps =   80, .reg = 0x00 },
	{ .mbps =   90, .reg = 0x10 },
	{ .mbps =  100, .reg = 0x20 },
	{ .mbps =  110, .reg = 0x30 },
	{ .mbps =  120, .reg = 0x01 },
	{ .mbps =  130, .reg = 0x11 },
	{ .mbps =  140, .reg = 0x21 },
	{ .mbps =  150, .reg = 0x31 },
	{ .mbps =  160, .reg = 0x02 },
	{ .mbps =  170, .reg = 0x12 },
	{ .mbps =  180, .reg = 0x22 },
	{ .mbps =  190, .reg = 0x32 },
	{ .mbps =  205, .reg = 0x03 },
	{ .mbps =  220, .reg = 0x13 },
	{ .mbps =  235, .reg = 0x23 },
	{ .mbps =  250, .reg = 0x33 },
	{ .mbps =  275, .reg = 0x04 },
	{ .mbps =  300, .reg = 0x14 },
	{ .mbps =  325, .reg = 0x25 },
	{ .mbps =  350, .reg = 0x35 },
	{ .mbps =  400, .reg = 0x05 },
	{ .mbps =  450, .reg = 0x16 },
	{ .mbps =  500, .reg = 0x26 },
	{ .mbps =  550, .reg = 0x37 },
	{ .mbps =  600, .reg = 0x07 },
	{ .mbps =  650, .reg = 0x18 },
	{ .mbps =  700, .reg = 0x28 },
	{ .mbps =  750, .reg = 0x39 },
	{ .mbps =  800, .reg = 0x09 },
	{ .mbps =  850, .reg = 0x19 },
	{ .mbps =  900, .reg = 0x29 },
	{ .mbps =  950, .reg = 0x3a },
	{ .mbps = 1000, .reg = 0x0a },
	{ .mbps = 1050, .reg = 0x1a },
	{ .mbps = 1100, .reg = 0x2a },
	{ .mbps = 1150, .reg = 0x3b },
	{ .mbps = 1200, .reg = 0x0b },
	{ .mbps = 1250, .reg = 0x1b },
	{ .mbps = 1300, .reg = 0x2b },
	{ .mbps = 1350, .reg = 0x3c },
	{ .mbps = 1400, .reg = 0x0c },
	{ .mbps = 1450, .reg = 0x1c },
	{ .mbps = 1500, .reg = 0x2c },
	{ /* sentinel */ },
};

static const struct rcsi2_mbps_reg hsfreqrange_m3w_h3es1[] = {
	{ .mbps =   80,	.reg = 0x00 },
	{ .mbps =   90,	.reg = 0x10 },
	{ .mbps =  100,	.reg = 0x20 },
	{ .mbps =  110,	.reg = 0x30 },
	{ .mbps =  120,	.reg = 0x01 },
	{ .mbps =  130,	.reg = 0x11 },
	{ .mbps =  140,	.reg = 0x21 },
	{ .mbps =  150,	.reg = 0x31 },
	{ .mbps =  160,	.reg = 0x02 },
	{ .mbps =  170,	.reg = 0x12 },
	{ .mbps =  180,	.reg = 0x22 },
	{ .mbps =  190,	.reg = 0x32 },
	{ .mbps =  205,	.reg = 0x03 },
	{ .mbps =  220,	.reg = 0x13 },
	{ .mbps =  235,	.reg = 0x23 },
	{ .mbps =  250,	.reg = 0x33 },
	{ .mbps =  275,	.reg = 0x04 },
	{ .mbps =  300,	.reg = 0x14 },
	{ .mbps =  325,	.reg = 0x05 },
	{ .mbps =  350,	.reg = 0x15 },
	{ .mbps =  400,	.reg = 0x25 },
	{ .mbps =  450,	.reg = 0x06 },
	{ .mbps =  500,	.reg = 0x16 },
	{ .mbps =  550,	.reg = 0x07 },
	{ .mbps =  600,	.reg = 0x17 },
	{ .mbps =  650,	.reg = 0x08 },
	{ .mbps =  700,	.reg = 0x18 },
	{ .mbps =  750,	.reg = 0x09 },
	{ .mbps =  800,	.reg = 0x19 },
	{ .mbps =  850,	.reg = 0x29 },
	{ .mbps =  900,	.reg = 0x39 },
	{ .mbps =  950,	.reg = 0x0a },
	{ .mbps = 1000,	.reg = 0x1a },
	{ .mbps = 1050,	.reg = 0x2a },
	{ .mbps = 1100,	.reg = 0x3a },
	{ .mbps = 1150,	.reg = 0x0b },
	{ .mbps = 1200,	.reg = 0x1b },
	{ .mbps = 1250,	.reg = 0x2b },
	{ .mbps = 1300,	.reg = 0x3b },
	{ .mbps = 1350,	.reg = 0x0c },
	{ .mbps = 1400,	.reg = 0x1c },
	{ .mbps = 1450,	.reg = 0x2c },
	{ .mbps = 1500,	.reg = 0x3c },
	{ /* sentinel */ },
};

/* PHY ESC Error Monitor */
#define PHEERM_REG			0x74

/* PHY Clock Lane Monitor */
#define PHCLM_REG			0x78
#define PHCLM_STOPSTATECKL		BIT(0)

/* PHY Data Lane Monitor */
#define PHDLM_REG			0x7c

/* CSI0CLK Frequency Configuration Preset Register */
#define CSI0CLKFCPR_REG			0x260
#define CSI0CLKFREQRANGE(n)		((n & 0x3f) << 16)

struct rcar_csi2_format {
	u32 code;
	unsigned int datatype;
	unsigned int bpp;
};

static const struct rcar_csi2_format rcar_csi2_formats[] = {
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	{
		.code = MEDIA_BUS_FMT_RGB888_1X24,
		.datatype = MIPI_CSI2_DT_RGB888,
		.bpp = 24,
	}, {
		.code = MEDIA_BUS_FMT_UYVY8_1X16,
		.datatype = MIPI_CSI2_DT_YUV422_8B,
		.bpp = 16,
	}, {
		.code = MEDIA_BUS_FMT_YUYV8_1X16,
		.datatype = MIPI_CSI2_DT_YUV422_8B,
		.bpp = 16,
	}, {
		.code = MEDIA_BUS_FMT_UYVY8_2X8,
		.datatype = MIPI_CSI2_DT_YUV422_8B,
		.bpp = 16,
	}, {
		.code = MEDIA_BUS_FMT_YUYV10_2X10,
		.datatype = MIPI_CSI2_DT_YUV422_8B,
		.bpp = 20,
	}, {
		.code = MEDIA_BUS_FMT_Y10_1X10,
		.datatype = MIPI_CSI2_DT_RAW10,
		.bpp = 10,
	}, {
		.code = MEDIA_BUS_FMT_SBGGR8_1X8,
		.datatype = MIPI_CSI2_DT_RAW8,
		.bpp = 8,
	}, {
		.code = MEDIA_BUS_FMT_SGBRG8_1X8,
		.datatype = MIPI_CSI2_DT_RAW8,
		.bpp = 8,
	}, {
		.code = MEDIA_BUS_FMT_SGRBG8_1X8,
		.datatype = MIPI_CSI2_DT_RAW8,
		.bpp = 8,
	}, {
		.code = MEDIA_BUS_FMT_SRGGB8_1X8,
		.datatype = MIPI_CSI2_DT_RAW8,
		.bpp = 8,
	}, {
		.code = MEDIA_BUS_FMT_Y8_1X8,
		.datatype = MIPI_CSI2_DT_RAW8,
		.bpp = 8,
	},
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
};

static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
		if (rcar_csi2_formats[i].code == code)
			return &rcar_csi2_formats[i];

	return NULL;
}

enum rcar_csi2_pads {
	RCAR_CSI2_SINK,
	RCAR_CSI2_SOURCE_VC0,
	RCAR_CSI2_SOURCE_VC1,
	RCAR_CSI2_SOURCE_VC2,
	RCAR_CSI2_SOURCE_VC3,
	NR_OF_RCAR_CSI2_PAD,
};

struct rcar_csi2_info {
	int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
485
	int (*phy_post_init)(struct rcar_csi2 *priv);
486 487
	const struct rcsi2_mbps_reg *hsfreqrange;
	unsigned int csi0clkfreqrange;
488
	unsigned int num_channels;
489
	bool clear_ulps;
490
	bool use_isp;
491 492 493 494 495 496
};

struct rcar_csi2 {
	struct device *dev;
	void __iomem *base;
	const struct rcar_csi2_info *info;
497
	struct reset_control *rstc;
498 499 500 501 502 503

	struct v4l2_subdev subdev;
	struct media_pad pads[NR_OF_RCAR_CSI2_PAD];

	struct v4l2_async_notifier notifier;
	struct v4l2_subdev *remote;
504
	unsigned int remote_pad;
505

506 507
	int channel_vc[4];

508
	struct mutex lock; /* Protects mf and stream_count. */
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	struct v4l2_mbus_framefmt mf;
	int stream_count;

	unsigned short lanes;
	unsigned char lane_swap[4];
};

static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
{
	return container_of(sd, struct rcar_csi2, subdev);
}

static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
{
	return container_of(n, struct rcar_csi2, notifier);
}

static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
{
	return ioread32(priv->base + reg);
}

static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
{
	iowrite32(data, priv->base + reg);
}

536
static void rcsi2_enter_standby(struct rcar_csi2 *priv)
537
{
538 539 540
	rcsi2_write(priv, PHYCNT_REG, 0);
	rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
	reset_control_assert(priv->rstc);
541
	usleep_range(100, 150);
542 543 544
	pm_runtime_put(priv->dev);
}

545
static int rcsi2_exit_standby(struct rcar_csi2 *priv)
546
{
547 548 549 550 551 552
	int ret;

	ret = pm_runtime_resume_and_get(priv->dev);
	if (ret < 0)
		return ret;

553
	reset_control_deassert(priv->rstc);
554 555

	return 0;
556 557
}

558 559
static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
				unsigned int lanes)
560 561 562 563 564
{
	unsigned int timeout;

	/* Wait for the clock and data lanes to enter LP-11 state. */
	for (timeout = 0; timeout <= 20; timeout++) {
565
		const u32 lane_mask = (1 << lanes) - 1;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

		if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL)  &&
		    (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
			return 0;

		usleep_range(1000, 2000);
	}

	dev_err(priv->dev, "Timeout waiting for LP-11 state\n");

	return -ETIMEDOUT;
}

static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
{
	const struct rcsi2_mbps_reg *hsfreq;
582
	const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
583

584 585 586 587
	if (mbps < priv->info->hsfreqrange->mbps)
		dev_warn(priv->dev, "%u Mbps less than min PHY speed %u Mbps",
			 mbps, priv->info->hsfreqrange->mbps);

588
	for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
589 590
		if (hsfreq->mbps >= mbps)
			break;
591 592
		hsfreq_prev = hsfreq;
	}
593 594 595 596 597 598

	if (!hsfreq->mbps) {
		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
		return -ERANGE;
	}

599 600 601 602
	if (hsfreq_prev &&
	    ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
		hsfreq = hsfreq_prev;

603 604 605 606 607
	rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));

	return 0;
}

608 609
static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
			   unsigned int lanes)
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
{
	struct v4l2_subdev *source;
	struct v4l2_ctrl *ctrl;
	u64 mbps;

	if (!priv->remote)
		return -ENODEV;

	source = priv->remote;

	/* Read the pixel rate control from remote. */
	ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
	if (!ctrl) {
		dev_err(priv->dev, "no pixel rate control in subdev %s\n",
			source->name);
		return -EINVAL;
	}

	/*
	 * Calculate the phypll in mbps.
	 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
	 * bps = link_freq * 2
	 */
	mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
634
	do_div(mbps, lanes * 1000000);
635 636 637 638

	return mbps;
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
				  unsigned int *lanes)
{
	struct v4l2_mbus_config mbus_config = { 0 };
	int ret;

	*lanes = priv->lanes;

	ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
			       priv->remote_pad, &mbus_config);
	if (ret == -ENOIOCTLCMD) {
		dev_dbg(priv->dev, "No remote mbus configuration available\n");
		return 0;
	}

	if (ret) {
		dev_err(priv->dev, "Failed to get remote mbus configuration\n");
		return ret;
	}

	if (mbus_config.type != V4L2_MBUS_CSI2_DPHY) {
		dev_err(priv->dev, "Unsupported media bus type %u\n",
			mbus_config.type);
		return -EINVAL;
	}

665
	if (mbus_config.bus.mipi_csi2.num_data_lanes > priv->lanes) {
666 667
		dev_err(priv->dev,
			"Unsupported mbus config: too many data lanes %u\n",
668
			mbus_config.bus.mipi_csi2.num_data_lanes);
669 670 671
		return -EINVAL;
	}

672
	*lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
673 674 675 676

	return 0;
}

677
static int rcsi2_start_receiver(struct rcar_csi2 *priv)
678 679
{
	const struct rcar_csi2_format *format;
680
	u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
681
	unsigned int lanes;
682 683 684 685 686 687 688 689 690
	unsigned int i;
	int mbps, ret;

	dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
		priv->mf.width, priv->mf.height,
		priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');

	/* Code is validated in set_fmt. */
	format = rcsi2_code_to_fmt(priv->mf.code);
691 692
	if (!format)
		return -EINVAL;
693 694

	/*
695 696
	 * Enable all supported CSI-2 channels with virtual channel and
	 * data type matching.
697 698 699 700 701
	 *
	 * NOTE: It's not possible to get individual datatype for each
	 *       source virtual channel. Once this is possible in V4L2
	 *       it should be used here.
	 */
702
	for (i = 0; i < priv->info->num_channels; i++) {
703 704
		u32 vcdt_part;

705 706 707 708 709
		if (priv->channel_vc[i] < 0)
			continue;

		vcdt_part = VCDT_SEL_VC(priv->channel_vc[i]) | VCDT_VCDTN_EN |
			VCDT_SEL_DTN_ON | VCDT_SEL_DT(format->datatype);
710 711 712 713 714 715 716 717

		/* Store in correct reg and offset. */
		if (i < 2)
			vcdt |= vcdt_part << ((i % 2) * 16);
		else
			vcdt2 |= vcdt_part << ((i % 2) * 16);
	}

718 719 720 721 722 723 724 725 726 727
	if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
		fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
			| FLD_FLD_EN;

		if (priv->mf.height == 240)
			fld |= FLD_FLD_NUM(0);
		else
			fld |= FLD_FLD_NUM(1);
	}

728 729 730 731 732 733 734 735
	/*
	 * Get the number of active data lanes inspecting the remote mbus
	 * configuration.
	 */
	ret = rcsi2_get_active_lanes(priv, &lanes);
	if (ret)
		return ret;

736
	phycnt = PHYCNT_ENABLECLK;
737
	phycnt |= (1 << lanes) - 1;
738

739
	mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
740 741 742
	if (mbps < 0)
		return mbps;

743 744 745 746
	/* Enable interrupts. */
	rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
		    | INTEN_INT_ERRSOTSYNCHS);

747 748 749 750 751
	/* Init */
	rcsi2_write(priv, TREF_REG, TREF_TREF);
	rcsi2_write(priv, PHTC_REG, 0);

	/* Configure */
752 753 754 755 756 757
	if (!priv->info->use_isp) {
		rcsi2_write(priv, VCDT_REG, vcdt);
		if (vcdt2)
			rcsi2_write(priv, VCDT2_REG, vcdt2);
	}

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	/* Lanes are zero indexed. */
	rcsi2_write(priv, LSWAP_REG,
		    LSWAP_L0SEL(priv->lane_swap[0] - 1) |
		    LSWAP_L1SEL(priv->lane_swap[1] - 1) |
		    LSWAP_L2SEL(priv->lane_swap[2] - 1) |
		    LSWAP_L3SEL(priv->lane_swap[3] - 1));

	/* Start */
	if (priv->info->init_phtw) {
		ret = priv->info->init_phtw(priv, mbps);
		if (ret)
			return ret;
	}

	if (priv->info->hsfreqrange) {
		ret = rcsi2_set_phypll(priv, mbps);
		if (ret)
			return ret;
	}

	if (priv->info->csi0clkfreqrange)
		rcsi2_write(priv, CSI0CLKFCPR_REG,
			    CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));

782 783 784 785 786
	if (priv->info->use_isp)
		rcsi2_write(priv, PHYFRX_REG,
			    PHYFRX_FORCERX_MODE_3 | PHYFRX_FORCERX_MODE_2 |
			    PHYFRX_FORCERX_MODE_1 | PHYFRX_FORCERX_MODE_0);

787 788 789
	rcsi2_write(priv, PHYCNT_REG, phycnt);
	rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
		    LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
790
	rcsi2_write(priv, FLD_REG, fld);
791 792 793
	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);

794
	ret = rcsi2_wait_phy_start(priv, lanes);
795 796 797
	if (ret)
		return ret;

798 799 800
	if (priv->info->use_isp)
		rcsi2_write(priv, PHYFRX_REG, 0);

801 802 803
	/* Run post PHY start initialization, if needed. */
	if (priv->info->phy_post_init) {
		ret = priv->info->phy_post_init(priv);
804 805 806 807
		if (ret)
			return ret;
	}

808 809 810 811 812 813 814 815
	/* Clear Ultra Low Power interrupt. */
	if (priv->info->clear_ulps)
		rcsi2_write(priv, INTSTATE_REG,
			    INTSTATE_INT_ULPS_START |
			    INTSTATE_INT_ULPS_END);
	return 0;
}

816
static int rcsi2_start(struct rcar_csi2 *priv)
817
{
818
	int ret;
819

820 821 822
	ret = rcsi2_exit_standby(priv);
	if (ret < 0)
		return ret;
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	ret = rcsi2_start_receiver(priv);
	if (ret) {
		rcsi2_enter_standby(priv);
		return ret;
	}

	ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
	if (ret) {
		rcsi2_enter_standby(priv);
		return ret;
	}

	return 0;
}

static void rcsi2_stop(struct rcar_csi2 *priv)
{
	rcsi2_enter_standby(priv);
	v4l2_subdev_call(priv->remote, video, s_stream, 0);
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
}

static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
{
	struct rcar_csi2 *priv = sd_to_csi2(sd);
	int ret = 0;

	mutex_lock(&priv->lock);

	if (!priv->remote) {
		ret = -ENODEV;
		goto out;
	}

	if (enable && priv->stream_count == 0) {
		ret = rcsi2_start(priv);
859
		if (ret)
860 861 862 863 864 865 866 867 868 869 870 871 872
			goto out;
	} else if (!enable && priv->stream_count == 1) {
		rcsi2_stop(priv);
	}

	priv->stream_count += enable ? 1 : -1;
out:
	mutex_unlock(&priv->lock);

	return ret;
}

static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
873
				struct v4l2_subdev_state *sd_state,
874 875 876 877 878
				struct v4l2_subdev_format *format)
{
	struct rcar_csi2 *priv = sd_to_csi2(sd);
	struct v4l2_mbus_framefmt *framefmt;

879 880
	mutex_lock(&priv->lock);

881
	if (!rcsi2_code_to_fmt(format->format.code))
882
		format->format.code = rcar_csi2_formats[0].code;
883 884 885 886

	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
		priv->mf = format->format;
	} else {
887
		framefmt = v4l2_subdev_get_try_format(sd, sd_state, 0);
888 889 890
		*framefmt = format->format;
	}

891 892
	mutex_unlock(&priv->lock);

893 894 895 896
	return 0;
}

static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
897
				struct v4l2_subdev_state *sd_state,
898 899 900 901
				struct v4l2_subdev_format *format)
{
	struct rcar_csi2 *priv = sd_to_csi2(sd);

902 903
	mutex_lock(&priv->lock);

904 905 906
	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
		format->format = priv->mf;
	else
907
		format->format = *v4l2_subdev_get_try_format(sd, sd_state, 0);
908

909 910
	mutex_unlock(&priv->lock);

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	return 0;
}

static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
	.s_stream = rcsi2_s_stream,
};

static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
	.set_fmt = rcsi2_set_pad_format,
	.get_fmt = rcsi2_get_pad_format,
};

static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
	.video	= &rcar_csi2_video_ops,
	.pad	= &rcar_csi2_pad_ops,
};

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static irqreturn_t rcsi2_irq(int irq, void *data)
{
	struct rcar_csi2 *priv = data;
	u32 status, err_status;

	status = rcsi2_read(priv, INTSTATE_REG);
	err_status = rcsi2_read(priv, INTERRSTATE_REG);

	if (!status)
		return IRQ_HANDLED;

	rcsi2_write(priv, INTSTATE_REG, status);

	if (!err_status)
		return IRQ_HANDLED;

	rcsi2_write(priv, INTERRSTATE_REG, err_status);

	dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");

	return IRQ_WAKE_THREAD;
}

static irqreturn_t rcsi2_irq_thread(int irq, void *data)
{
	struct rcar_csi2 *priv = data;

	mutex_lock(&priv->lock);
	rcsi2_stop(priv);
	usleep_range(1000, 2000);
	if (rcsi2_start(priv))
		dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
	mutex_unlock(&priv->lock);

	return IRQ_HANDLED;
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
/* -----------------------------------------------------------------------------
 * Async handling and registration of subdevices and links.
 */

static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
			      struct v4l2_subdev *subdev,
			      struct v4l2_async_subdev *asd)
{
	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
	int pad;

	pad = media_entity_get_fwnode_pad(&subdev->entity, asd->match.fwnode,
					  MEDIA_PAD_FL_SOURCE);
	if (pad < 0) {
		dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
		return pad;
	}

	priv->remote = subdev;
984
	priv->remote_pad = pad;
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

	dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);

	return media_create_pad_link(&subdev->entity, pad,
				     &priv->subdev.entity, 0,
				     MEDIA_LNK_FL_ENABLED |
				     MEDIA_LNK_FL_IMMUTABLE);
}

static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
				struct v4l2_subdev *subdev,
				struct v4l2_async_subdev *asd)
{
	struct rcar_csi2 *priv = notifier_to_csi2(notifier);

	priv->remote = NULL;

	dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
}

static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
	.bound = rcsi2_notify_bound,
	.unbind = rcsi2_notify_unbind,
};

static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
			    struct v4l2_fwnode_endpoint *vep)
{
	unsigned int i;

	/* Only port 0 endpoint 0 is valid. */
	if (vep->base.port || vep->base.id)
		return -ENOTCONN;

1019
	if (vep->bus_type != V4L2_MBUS_CSI2_DPHY) {
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
		return -EINVAL;
	}

	priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
	if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
		dev_err(priv->dev, "Unsupported number of data-lanes: %u\n",
			priv->lanes);
		return -EINVAL;
	}

	for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
		priv->lane_swap[i] = i < priv->lanes ?
			vep->bus.mipi_csi2.data_lanes[i] : i;

		/* Check for valid lane number. */
		if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
			dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
			return -EINVAL;
		}
	}

	return 0;
}

static int rcsi2_parse_dt(struct rcar_csi2 *priv)
{
1047 1048
	struct v4l2_async_subdev *asd;
	struct fwnode_handle *fwnode;
1049
	struct fwnode_handle *ep;
1050 1051 1052
	struct v4l2_fwnode_endpoint v4l2_ep = {
		.bus_type = V4L2_MBUS_CSI2_DPHY
	};
1053 1054
	int ret;

1055
	ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0);
1056 1057 1058 1059 1060
	if (!ep) {
		dev_err(priv->dev, "Not connected to subdevice\n");
		return -EINVAL;
	}

1061
	ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
1062 1063
	if (ret) {
		dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
1064
		fwnode_handle_put(ep);
1065 1066 1067 1068 1069
		return -EINVAL;
	}

	ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
	if (ret) {
1070
		fwnode_handle_put(ep);
1071 1072 1073
		return ret;
	}

1074 1075
	fwnode = fwnode_graph_get_remote_endpoint(ep);
	fwnode_handle_put(ep);
1076

1077
	dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
1078

1079
	v4l2_async_nf_init(&priv->notifier);
1080 1081
	priv->notifier.ops = &rcar_csi2_notify_ops;

1082 1083
	asd = v4l2_async_nf_add_fwnode(&priv->notifier, fwnode,
				       struct v4l2_async_subdev);
1084 1085 1086
	fwnode_handle_put(fwnode);
	if (IS_ERR(asd))
		return PTR_ERR(asd);
1087

1088
	ret = v4l2_async_subdev_nf_register(&priv->subdev, &priv->notifier);
1089
	if (ret)
1090
		v4l2_async_nf_cleanup(&priv->notifier);
1091 1092

	return ret;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
}

/* -----------------------------------------------------------------------------
 * PHTW initialization sequences.
 *
 * NOTE: Magic values are from the datasheet and lack documentation.
 */

static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
{
	unsigned int timeout;

	rcsi2_write(priv, PHTW_REG,
		    PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
		    PHTW_CWEN | PHTW_TESTDIN_CODE(code));

	/* Wait for DWEN and CWEN to be cleared by hardware. */
	for (timeout = 0; timeout <= 20; timeout++) {
		if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
			return 0;

		usleep_range(1000, 2000);
	}

	dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");

	return -ETIMEDOUT;
}

static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
				  const struct phtw_value *values)
{
	const struct phtw_value *value;
	int ret;

	for (value = values; value->data || value->code; value++) {
		ret = rcsi2_phtw_write(priv, value->data, value->code);
		if (ret)
			return ret;
	}

	return 0;
}

static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
				 const struct rcsi2_mbps_reg *values, u16 code)
{
	const struct rcsi2_mbps_reg *value;
1141
	const struct rcsi2_mbps_reg *prev_value = NULL;
1142

1143
	for (value = values; value->mbps; value++) {
1144 1145
		if (value->mbps >= mbps)
			break;
1146 1147 1148 1149 1150 1151
		prev_value = value;
	}

	if (prev_value &&
	    ((mbps - prev_value->mbps) <= (value->mbps - mbps)))
		value = prev_value;
1152 1153 1154 1155 1156 1157 1158 1159 1160

	if (!value->mbps) {
		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
		return -ERANGE;
	}

	return rcsi2_phtw_write(priv, value->reg, code);
}

1161 1162
static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
					unsigned int mbps)
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
{
	static const struct phtw_value step1[] = {
		{ .data = 0xcc, .code = 0xe2 },
		{ .data = 0x01, .code = 0xe3 },
		{ .data = 0x11, .code = 0xe4 },
		{ .data = 0x01, .code = 0xe5 },
		{ .data = 0x10, .code = 0x04 },
		{ /* sentinel */ },
	};

	static const struct phtw_value step2[] = {
		{ .data = 0x38, .code = 0x08 },
		{ .data = 0x01, .code = 0x00 },
		{ .data = 0x4b, .code = 0xac },
		{ .data = 0x03, .code = 0x00 },
		{ .data = 0x80, .code = 0x07 },
		{ /* sentinel */ },
	};

	int ret;

	ret = rcsi2_phtw_write_array(priv, step1);
	if (ret)
		return ret;

1188
	if (mbps != 0 && mbps <= 250) {
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		ret = rcsi2_phtw_write(priv, 0x39, 0x05);
		if (ret)
			return ret;

		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
					    0xf1);
		if (ret)
			return ret;
	}

	return rcsi2_phtw_write_array(priv, step2);
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
{
	return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
}

static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
{
	return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
}

1212
static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1213 1214 1215 1216
{
	return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
}

1217
static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1218 1219
{
	static const struct phtw_value step1[] = {
1220 1221 1222 1223 1224
		{ .data = 0xee, .code = 0x34 },
		{ .data = 0xee, .code = 0x44 },
		{ .data = 0xee, .code = 0x54 },
		{ .data = 0xee, .code = 0x84 },
		{ .data = 0xee, .code = 0x94 },
1225 1226 1227 1228 1229 1230
		{ /* sentinel */ },
	};

	return rcsi2_phtw_write_array(priv, step1);
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
static int rcsi2_init_phtw_v3u(struct rcar_csi2 *priv,
			       unsigned int mbps)
{
	/* In case of 1500Mbps or less */
	static const struct phtw_value step1[] = {
		{ .data = 0xcc, .code = 0xe2 },
		{ /* sentinel */ },
	};

	static const struct phtw_value step2[] = {
		{ .data = 0x01, .code = 0xe3 },
		{ .data = 0x11, .code = 0xe4 },
		{ .data = 0x01, .code = 0xe5 },
		{ /* sentinel */ },
	};

	/* In case of 1500Mbps or less */
	static const struct phtw_value step3[] = {
		{ .data = 0x38, .code = 0x08 },
		{ /* sentinel */ },
	};

	static const struct phtw_value step4[] = {
		{ .data = 0x01, .code = 0x00 },
		{ .data = 0x4b, .code = 0xac },
		{ .data = 0x03, .code = 0x00 },
		{ .data = 0x80, .code = 0x07 },
		{ /* sentinel */ },
	};

	int ret;

	if (mbps != 0 && mbps <= 1500)
		ret = rcsi2_phtw_write_array(priv, step1);
	else
		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3u, 0xe2);
	if (ret)
		return ret;

	ret = rcsi2_phtw_write_array(priv, step2);
	if (ret)
		return ret;

	if (mbps != 0 && mbps <= 1500) {
		ret = rcsi2_phtw_write_array(priv, step3);
		if (ret)
			return ret;
	}

	ret = rcsi2_phtw_write_array(priv, step4);
	if (ret)
		return ret;

	return ret;
}

1287 1288 1289 1290
/* -----------------------------------------------------------------------------
 * Platform Device Driver.
 */

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static int rcsi2_link_setup(struct media_entity *entity,
			    const struct media_pad *local,
			    const struct media_pad *remote, u32 flags)
{
	struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
	struct rcar_csi2 *priv = sd_to_csi2(sd);
	struct video_device *vdev;
	int channel, vc;
	u32 id;

	if (!is_media_entity_v4l2_video_device(remote->entity)) {
		dev_err(priv->dev, "Remote is not a video device\n");
		return -EINVAL;
	}

	vdev = media_entity_to_video_device(remote->entity);

	if (of_property_read_u32(vdev->dev_parent->of_node, "renesas,id", &id)) {
		dev_err(priv->dev, "No renesas,id, can't configure routing\n");
		return -EINVAL;
	}

	channel = id % 4;

	if (flags & MEDIA_LNK_FL_ENABLED) {
		if (media_entity_remote_pad(local)) {
			dev_dbg(priv->dev,
				"Each VC can only be routed to one output channel\n");
			return -EINVAL;
		}

		vc = local->index - 1;

		dev_dbg(priv->dev, "Route VC%d to VIN%u on output channel %d\n",
			vc, id, channel);
	} else {
		vc = -1;
	}

	priv->channel_vc[channel] = vc;

	return 0;
}

1335
static const struct media_entity_operations rcar_csi2_entity_ops = {
1336
	.link_setup = rcsi2_link_setup,
1337 1338 1339 1340 1341 1342
	.link_validate = v4l2_subdev_link_validate,
};

static int rcsi2_probe_resources(struct rcar_csi2 *priv,
				 struct platform_device *pdev)
{
1343
	int irq, ret;
1344

1345
	priv->base = devm_platform_ioremap_resource(pdev, 0);
1346 1347 1348 1349 1350 1351 1352
	if (IS_ERR(priv->base))
		return PTR_ERR(priv->base);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

1353 1354 1355 1356 1357 1358
	ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
					rcsi2_irq_thread, IRQF_SHARED,
					KBUILD_MODNAME, priv);
	if (ret)
		return ret;

1359 1360
	priv->rstc = devm_reset_control_get(&pdev->dev, NULL);

1361
	return PTR_ERR_OR_ZERO(priv->rstc);
1362 1363 1364 1365 1366 1367
}

static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
	.csi0clkfreqrange = 0x20,
1368
	.num_channels = 4,
1369 1370 1371 1372 1373
	.clear_ulps = true,
};

static const struct rcar_csi2_info rcar_csi2_info_r8a7795es1 = {
	.hsfreqrange = hsfreqrange_m3w_h3es1,
1374
	.num_channels = 4,
1375 1376
};

1377 1378 1379 1380 1381 1382 1383 1384
static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
	.init_phtw = rcsi2_init_phtw_h3es2,
	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
	.csi0clkfreqrange = 0x20,
	.num_channels = 4,
	.clear_ulps = true,
};

1385 1386
static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
	.hsfreqrange = hsfreqrange_m3w_h3es1,
1387
	.num_channels = 4,
1388 1389
};

1390 1391 1392 1393 1394
static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
	.hsfreqrange = hsfreqrange_m3w_h3es1,
	.num_channels = 4,
};

1395 1396 1397 1398
static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
	.csi0clkfreqrange = 0x20,
1399
	.num_channels = 4,
1400 1401 1402 1403 1404
	.clear_ulps = true,
};

static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
	.init_phtw = rcsi2_init_phtw_v3m_e3,
1405
	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1406
	.num_channels = 4,
1407 1408
};

1409 1410 1411 1412 1413 1414 1415
static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
	.csi0clkfreqrange = 0x20,
	.clear_ulps = true,
};

1416 1417
static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
	.init_phtw = rcsi2_init_phtw_v3m_e3,
1418
	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1419
	.num_channels = 2,
1420 1421
};

1422 1423 1424 1425 1426 1427 1428 1429
static const struct rcar_csi2_info rcar_csi2_info_r8a779a0 = {
	.init_phtw = rcsi2_init_phtw_v3u,
	.hsfreqrange = hsfreqrange_v3u,
	.csi0clkfreqrange = 0x20,
	.clear_ulps = true,
	.use_isp = true,
};

1430
static const struct of_device_id rcar_csi2_of_table[] = {
1431 1432 1433 1434
	{
		.compatible = "renesas,r8a774a1-csi2",
		.data = &rcar_csi2_info_r8a7796,
	},
1435 1436 1437 1438
	{
		.compatible = "renesas,r8a774b1-csi2",
		.data = &rcar_csi2_info_r8a77965,
	},
1439 1440 1441 1442
	{
		.compatible = "renesas,r8a774c0-csi2",
		.data = &rcar_csi2_info_r8a77990,
	},
1443 1444 1445 1446
	{
		.compatible = "renesas,r8a774e1-csi2",
		.data = &rcar_csi2_info_r8a7795,
	},
1447 1448 1449 1450 1451 1452 1453 1454
	{
		.compatible = "renesas,r8a7795-csi2",
		.data = &rcar_csi2_info_r8a7795,
	},
	{
		.compatible = "renesas,r8a7796-csi2",
		.data = &rcar_csi2_info_r8a7796,
	},
1455 1456 1457 1458
	{
		.compatible = "renesas,r8a77961-csi2",
		.data = &rcar_csi2_info_r8a77961,
	},
1459 1460 1461 1462 1463 1464 1465 1466
	{
		.compatible = "renesas,r8a77965-csi2",
		.data = &rcar_csi2_info_r8a77965,
	},
	{
		.compatible = "renesas,r8a77970-csi2",
		.data = &rcar_csi2_info_r8a77970,
	},
1467 1468 1469 1470
	{
		.compatible = "renesas,r8a77980-csi2",
		.data = &rcar_csi2_info_r8a77980,
	},
1471 1472 1473 1474
	{
		.compatible = "renesas,r8a77990-csi2",
		.data = &rcar_csi2_info_r8a77990,
	},
1475 1476 1477 1478
	{
		.compatible = "renesas,r8a779a0-csi2",
		.data = &rcar_csi2_info_r8a779a0,
	},
1479 1480 1481 1482
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);

1483
static const struct soc_device_attribute r8a7795[] = {
1484 1485 1486 1487
	{
		.soc_id = "r8a7795", .revision = "ES1.*",
		.data = &rcar_csi2_info_r8a7795es1,
	},
1488 1489 1490 1491
	{
		.soc_id = "r8a7795", .revision = "ES2.*",
		.data = &rcar_csi2_info_r8a7795es2,
	},
1492
	{ /* sentinel */ }
1493 1494 1495 1496 1497 1498
};

static int rcsi2_probe(struct platform_device *pdev)
{
	const struct soc_device_attribute *attr;
	struct rcar_csi2 *priv;
1499
	unsigned int i, num_pads;
1500 1501 1502 1503 1504 1505 1506 1507 1508
	int ret;

	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->info = of_device_get_match_data(&pdev->dev);

	/*
1509 1510
	 * The different ES versions of r8a7795 (H3) behave differently but
	 * share the same compatible string.
1511
	 */
1512
	attr = soc_device_match(r8a7795);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	if (attr)
		priv->info = attr->data;

	priv->dev = &pdev->dev;

	mutex_init(&priv->lock);
	priv->stream_count = 0;

	ret = rcsi2_probe_resources(priv, pdev);
	if (ret) {
		dev_err(priv->dev, "Failed to get resources\n");
1524
		goto error_mutex;
1525 1526 1527 1528 1529 1530
	}

	platform_set_drvdata(pdev, priv);

	ret = rcsi2_parse_dt(priv);
	if (ret)
1531
		goto error_mutex;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	priv->subdev.owner = THIS_MODULE;
	priv->subdev.dev = &pdev->dev;
	v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
	v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
	snprintf(priv->subdev.name, V4L2_SUBDEV_NAME_SIZE, "%s %s",
		 KBUILD_MODNAME, dev_name(&pdev->dev));
	priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;

	priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
	priv->subdev.entity.ops = &rcar_csi2_entity_ops;

1544 1545
	num_pads = priv->info->use_isp ? 2 : NR_OF_RCAR_CSI2_PAD;

1546
	priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1547
	for (i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++)
1548 1549
		priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;

1550
	ret = media_entity_pads_init(&priv->subdev.entity, num_pads,
1551 1552
				     priv->pads);
	if (ret)
1553
		goto error_async;
1554

1555 1556 1557
	for (i = 0; i < ARRAY_SIZE(priv->channel_vc); i++)
		priv->channel_vc[i] = -1;

1558 1559 1560 1561
	pm_runtime_enable(&pdev->dev);

	ret = v4l2_async_register_subdev(&priv->subdev);
	if (ret < 0)
1562
		goto error_async;
1563 1564 1565 1566 1567

	dev_info(priv->dev, "%d lanes found\n", priv->lanes);

	return 0;

1568
error_async:
1569 1570
	v4l2_async_nf_unregister(&priv->notifier);
	v4l2_async_nf_cleanup(&priv->notifier);
1571 1572
error_mutex:
	mutex_destroy(&priv->lock);
1573 1574 1575 1576 1577 1578 1579 1580

	return ret;
}

static int rcsi2_remove(struct platform_device *pdev)
{
	struct rcar_csi2 *priv = platform_get_drvdata(pdev);

1581 1582
	v4l2_async_nf_unregister(&priv->notifier);
	v4l2_async_nf_cleanup(&priv->notifier);
1583 1584 1585 1586
	v4l2_async_unregister_subdev(&priv->subdev);

	pm_runtime_disable(&pdev->dev);

1587 1588
	mutex_destroy(&priv->lock);

1589 1590 1591 1592 1593 1594 1595 1596
	return 0;
}

static struct platform_driver rcar_csi2_pdrv = {
	.remove	= rcsi2_remove,
	.probe	= rcsi2_probe,
	.driver	= {
		.name	= "rcar-csi2",
1597
		.suppress_bind_attrs = true,
1598 1599 1600 1601 1602 1603 1604 1605 1606
		.of_match_table	= rcar_csi2_of_table,
	},
};

module_platform_driver(rcar_csi2_pdrv);

MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
MODULE_LICENSE("GPL");