rcar-csi2.c 37.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// SPDX-License-Identifier: GPL-2.0
/*
 * Driver for Renesas R-Car MIPI CSI-2 Receiver
 *
 * Copyright (C) 2018 Renesas Electronics Corp.
 */

#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
17
#include <linux/reset.h>
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#include <linux/sys_soc.h>

#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-mc.h>
#include <media/v4l2-subdev.h>

struct rcar_csi2;

/* Register offsets and bits */

/* Control Timing Select */
#define TREF_REG			0x00
#define TREF_TREF			BIT(0)

/* Software Reset */
#define SRST_REG			0x04
#define SRST_SRST			BIT(0)

/* PHY Operation Control */
#define PHYCNT_REG			0x08
#define PHYCNT_SHUTDOWNZ		BIT(17)
#define PHYCNT_RSTZ			BIT(16)
#define PHYCNT_ENABLECLK		BIT(4)
#define PHYCNT_ENABLE_3			BIT(3)
#define PHYCNT_ENABLE_2			BIT(2)
#define PHYCNT_ENABLE_1			BIT(1)
#define PHYCNT_ENABLE_0			BIT(0)

/* Checksum Control */
#define CHKSUM_REG			0x0c
#define CHKSUM_ECC_EN			BIT(1)
#define CHKSUM_CRC_EN			BIT(0)

/*
 * Channel Data Type Select
55 56
 * VCDT[0-15]:  Channel 0 VCDT[16-31]:  Channel 1
 * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
57 58 59 60 61 62 63 64 65 66 67 68 69 70
 */
#define VCDT_REG			0x10
#define VCDT2_REG			0x14
#define VCDT_VCDTN_EN			BIT(15)
#define VCDT_SEL_VC(n)			(((n) & 0x3) << 8)
#define VCDT_SEL_DTN_ON			BIT(6)
#define VCDT_SEL_DT(n)			(((n) & 0x3f) << 0)

/* Frame Data Type Select */
#define FRDT_REG			0x18

/* Field Detection Control */
#define FLD_REG				0x1c
#define FLD_FLD_NUM(n)			(((n) & 0xff) << 16)
71
#define FLD_DET_SEL(n)			(((n) & 0x3) << 4)
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#define FLD_FLD_EN4			BIT(3)
#define FLD_FLD_EN3			BIT(2)
#define FLD_FLD_EN2			BIT(1)
#define FLD_FLD_EN			BIT(0)

/* Automatic Standby Control */
#define ASTBY_REG			0x20

/* Long Data Type Setting 0 */
#define LNGDT0_REG			0x28

/* Long Data Type Setting 1 */
#define LNGDT1_REG			0x2c

/* Interrupt Enable */
#define INTEN_REG			0x30
88 89 90
#define INTEN_INT_AFIFO_OF		BIT(27)
#define INTEN_INT_ERRSOTHS		BIT(4)
#define INTEN_INT_ERRSOTSYNCHS		BIT(3)
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

/* Interrupt Source Mask */
#define INTCLOSE_REG			0x34

/* Interrupt Status Monitor */
#define INTSTATE_REG			0x38
#define INTSTATE_INT_ULPS_START		BIT(7)
#define INTSTATE_INT_ULPS_END		BIT(6)

/* Interrupt Error Status Monitor */
#define INTERRSTATE_REG			0x3c

/* Short Packet Data */
#define SHPDAT_REG			0x40

/* Short Packet Count */
#define SHPCNT_REG			0x44

/* LINK Operation Control */
#define LINKCNT_REG			0x48
#define LINKCNT_MONITOR_EN		BIT(31)
#define LINKCNT_REG_MONI_PACT_EN	BIT(25)
#define LINKCNT_ICLK_NONSTOP		BIT(24)

/* Lane Swap */
#define LSWAP_REG			0x4c
#define LSWAP_L3SEL(n)			(((n) & 0x3) << 6)
#define LSWAP_L2SEL(n)			(((n) & 0x3) << 4)
#define LSWAP_L1SEL(n)			(((n) & 0x3) << 2)
#define LSWAP_L0SEL(n)			(((n) & 0x3) << 0)

/* PHY Test Interface Write Register */
#define PHTW_REG			0x50
#define PHTW_DWEN			BIT(24)
#define PHTW_TESTDIN_DATA(n)		(((n & 0xff)) << 16)
#define PHTW_CWEN			BIT(8)
#define PHTW_TESTDIN_CODE(n)		((n & 0xff))

129 130 131 132 133 134
#define PHYFRX_REG			0x64
#define PHYFRX_FORCERX_MODE_3		BIT(3)
#define PHYFRX_FORCERX_MODE_2		BIT(2)
#define PHYFRX_FORCERX_MODE_1		BIT(1)
#define PHYFRX_FORCERX_MODE_0		BIT(0)

135 136 137 138 139 140 141 142 143 144
struct phtw_value {
	u16 data;
	u16 code;
};

struct rcsi2_mbps_reg {
	u16 mbps;
	u16 reg;
};

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
static const struct rcsi2_mbps_reg phtw_mbps_v3u[] = {
	{ .mbps = 1500, .reg = 0xcc },
	{ .mbps = 1550, .reg = 0x1d },
	{ .mbps = 1600, .reg = 0x27 },
	{ .mbps = 1650, .reg = 0x30 },
	{ .mbps = 1700, .reg = 0x39 },
	{ .mbps = 1750, .reg = 0x42 },
	{ .mbps = 1800, .reg = 0x4b },
	{ .mbps = 1850, .reg = 0x55 },
	{ .mbps = 1900, .reg = 0x5e },
	{ .mbps = 1950, .reg = 0x67 },
	{ .mbps = 2000, .reg = 0x71 },
	{ .mbps = 2050, .reg = 0x79 },
	{ .mbps = 2100, .reg = 0x83 },
	{ .mbps = 2150, .reg = 0x8c },
	{ .mbps = 2200, .reg = 0x95 },
	{ .mbps = 2250, .reg = 0x9e },
	{ .mbps = 2300, .reg = 0xa7 },
	{ .mbps = 2350, .reg = 0xb0 },
	{ .mbps = 2400, .reg = 0xba },
	{ .mbps = 2450, .reg = 0xc3 },
	{ .mbps = 2500, .reg = 0xcc },
	{ /* sentinel */ },
};

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
	{ .mbps =   80, .reg = 0x86 },
	{ .mbps =   90, .reg = 0x86 },
	{ .mbps =  100, .reg = 0x87 },
	{ .mbps =  110, .reg = 0x87 },
	{ .mbps =  120, .reg = 0x88 },
	{ .mbps =  130, .reg = 0x88 },
	{ .mbps =  140, .reg = 0x89 },
	{ .mbps =  150, .reg = 0x89 },
	{ .mbps =  160, .reg = 0x8a },
	{ .mbps =  170, .reg = 0x8a },
	{ .mbps =  180, .reg = 0x8b },
	{ .mbps =  190, .reg = 0x8b },
	{ .mbps =  205, .reg = 0x8c },
	{ .mbps =  220, .reg = 0x8d },
	{ .mbps =  235, .reg = 0x8e },
	{ .mbps =  250, .reg = 0x8e },
	{ /* sentinel */ },
};

static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	{ .mbps =   80, .reg = 0x00 },
	{ .mbps =   90, .reg = 0x20 },
	{ .mbps =  100, .reg = 0x40 },
	{ .mbps =  110, .reg = 0x02 },
	{ .mbps =  130, .reg = 0x22 },
	{ .mbps =  140, .reg = 0x42 },
	{ .mbps =  150, .reg = 0x04 },
	{ .mbps =  170, .reg = 0x24 },
	{ .mbps =  180, .reg = 0x44 },
	{ .mbps =  200, .reg = 0x06 },
	{ .mbps =  220, .reg = 0x26 },
	{ .mbps =  240, .reg = 0x46 },
	{ .mbps =  250, .reg = 0x08 },
	{ .mbps =  270, .reg = 0x28 },
	{ .mbps =  300, .reg = 0x0a },
	{ .mbps =  330, .reg = 0x2a },
	{ .mbps =  360, .reg = 0x4a },
	{ .mbps =  400, .reg = 0x0c },
	{ .mbps =  450, .reg = 0x2c },
	{ .mbps =  500, .reg = 0x0e },
	{ .mbps =  550, .reg = 0x2e },
	{ .mbps =  600, .reg = 0x10 },
	{ .mbps =  650, .reg = 0x30 },
	{ .mbps =  700, .reg = 0x12 },
	{ .mbps =  750, .reg = 0x32 },
	{ .mbps =  800, .reg = 0x52 },
	{ .mbps =  850, .reg = 0x72 },
	{ .mbps =  900, .reg = 0x14 },
	{ .mbps =  950, .reg = 0x34 },
	{ .mbps = 1000, .reg = 0x54 },
	{ .mbps = 1050, .reg = 0x74 },
222 223 224 225 226 227 228 229 230 231 232 233
	{ .mbps = 1125, .reg = 0x16 },
	{ /* sentinel */ },
};

/* PHY Test Interface Clear */
#define PHTC_REG			0x58
#define PHTC_TESTCLR			BIT(0)

/* PHY Frequency Control */
#define PHYPLL_REG			0x68
#define PHYPLL_HSFREQRANGE(n)		((n) << 16)

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static const struct rcsi2_mbps_reg hsfreqrange_v3u[] = {
	{ .mbps =   80, .reg = 0x00 },
	{ .mbps =   90, .reg = 0x10 },
	{ .mbps =  100, .reg = 0x20 },
	{ .mbps =  110, .reg = 0x30 },
	{ .mbps =  120, .reg = 0x01 },
	{ .mbps =  130, .reg = 0x11 },
	{ .mbps =  140, .reg = 0x21 },
	{ .mbps =  150, .reg = 0x31 },
	{ .mbps =  160, .reg = 0x02 },
	{ .mbps =  170, .reg = 0x12 },
	{ .mbps =  180, .reg = 0x22 },
	{ .mbps =  190, .reg = 0x32 },
	{ .mbps =  205, .reg = 0x03 },
	{ .mbps =  220, .reg = 0x13 },
	{ .mbps =  235, .reg = 0x23 },
	{ .mbps =  250, .reg = 0x33 },
	{ .mbps =  275, .reg = 0x04 },
	{ .mbps =  300, .reg = 0x14 },
	{ .mbps =  325, .reg = 0x25 },
	{ .mbps =  350, .reg = 0x35 },
	{ .mbps =  400, .reg = 0x05 },
	{ .mbps =  450, .reg = 0x16 },
	{ .mbps =  500, .reg = 0x26 },
	{ .mbps =  550, .reg = 0x37 },
	{ .mbps =  600, .reg = 0x07 },
	{ .mbps =  650, .reg = 0x18 },
	{ .mbps =  700, .reg = 0x28 },
	{ .mbps =  750, .reg = 0x39 },
	{ .mbps =  800, .reg = 0x09 },
	{ .mbps =  850, .reg = 0x19 },
	{ .mbps =  900, .reg = 0x29 },
	{ .mbps =  950, .reg = 0x3a },
	{ .mbps = 1000, .reg = 0x0a },
	{ .mbps = 1050, .reg = 0x1a },
	{ .mbps = 1100, .reg = 0x2a },
	{ .mbps = 1150, .reg = 0x3b },
	{ .mbps = 1200, .reg = 0x0b },
	{ .mbps = 1250, .reg = 0x1b },
	{ .mbps = 1300, .reg = 0x2b },
	{ .mbps = 1350, .reg = 0x3c },
	{ .mbps = 1400, .reg = 0x0c },
	{ .mbps = 1450, .reg = 0x1c },
	{ .mbps = 1500, .reg = 0x2c },
	{ .mbps = 1550, .reg = 0x3d },
	{ .mbps = 1600, .reg = 0x0d },
	{ .mbps = 1650, .reg = 0x1d },
	{ .mbps = 1700, .reg = 0x2e },
	{ .mbps = 1750, .reg = 0x3e },
	{ .mbps = 1800, .reg = 0x0e },
	{ .mbps = 1850, .reg = 0x1e },
	{ .mbps = 1900, .reg = 0x2f },
	{ .mbps = 1950, .reg = 0x3f },
	{ .mbps = 2000, .reg = 0x0f },
	{ .mbps = 2050, .reg = 0x40 },
	{ .mbps = 2100, .reg = 0x41 },
	{ .mbps = 2150, .reg = 0x42 },
	{ .mbps = 2200, .reg = 0x43 },
	{ .mbps = 2300, .reg = 0x45 },
	{ .mbps = 2350, .reg = 0x46 },
	{ .mbps = 2400, .reg = 0x47 },
	{ .mbps = 2450, .reg = 0x48 },
	{ .mbps = 2500, .reg = 0x49 },
	{ /* sentinel */ },
};

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
	{ .mbps =   80, .reg = 0x00 },
	{ .mbps =   90, .reg = 0x10 },
	{ .mbps =  100, .reg = 0x20 },
	{ .mbps =  110, .reg = 0x30 },
	{ .mbps =  120, .reg = 0x01 },
	{ .mbps =  130, .reg = 0x11 },
	{ .mbps =  140, .reg = 0x21 },
	{ .mbps =  150, .reg = 0x31 },
	{ .mbps =  160, .reg = 0x02 },
	{ .mbps =  170, .reg = 0x12 },
	{ .mbps =  180, .reg = 0x22 },
	{ .mbps =  190, .reg = 0x32 },
	{ .mbps =  205, .reg = 0x03 },
	{ .mbps =  220, .reg = 0x13 },
	{ .mbps =  235, .reg = 0x23 },
	{ .mbps =  250, .reg = 0x33 },
	{ .mbps =  275, .reg = 0x04 },
	{ .mbps =  300, .reg = 0x14 },
	{ .mbps =  325, .reg = 0x25 },
	{ .mbps =  350, .reg = 0x35 },
	{ .mbps =  400, .reg = 0x05 },
	{ .mbps =  450, .reg = 0x16 },
	{ .mbps =  500, .reg = 0x26 },
	{ .mbps =  550, .reg = 0x37 },
	{ .mbps =  600, .reg = 0x07 },
	{ .mbps =  650, .reg = 0x18 },
	{ .mbps =  700, .reg = 0x28 },
	{ .mbps =  750, .reg = 0x39 },
	{ .mbps =  800, .reg = 0x09 },
	{ .mbps =  850, .reg = 0x19 },
	{ .mbps =  900, .reg = 0x29 },
	{ .mbps =  950, .reg = 0x3a },
	{ .mbps = 1000, .reg = 0x0a },
	{ .mbps = 1050, .reg = 0x1a },
	{ .mbps = 1100, .reg = 0x2a },
	{ .mbps = 1150, .reg = 0x3b },
	{ .mbps = 1200, .reg = 0x0b },
	{ .mbps = 1250, .reg = 0x1b },
	{ .mbps = 1300, .reg = 0x2b },
	{ .mbps = 1350, .reg = 0x3c },
	{ .mbps = 1400, .reg = 0x0c },
	{ .mbps = 1450, .reg = 0x1c },
	{ .mbps = 1500, .reg = 0x2c },
	{ /* sentinel */ },
};

static const struct rcsi2_mbps_reg hsfreqrange_m3w_h3es1[] = {
	{ .mbps =   80,	.reg = 0x00 },
	{ .mbps =   90,	.reg = 0x10 },
	{ .mbps =  100,	.reg = 0x20 },
	{ .mbps =  110,	.reg = 0x30 },
	{ .mbps =  120,	.reg = 0x01 },
	{ .mbps =  130,	.reg = 0x11 },
	{ .mbps =  140,	.reg = 0x21 },
	{ .mbps =  150,	.reg = 0x31 },
	{ .mbps =  160,	.reg = 0x02 },
	{ .mbps =  170,	.reg = 0x12 },
	{ .mbps =  180,	.reg = 0x22 },
	{ .mbps =  190,	.reg = 0x32 },
	{ .mbps =  205,	.reg = 0x03 },
	{ .mbps =  220,	.reg = 0x13 },
	{ .mbps =  235,	.reg = 0x23 },
	{ .mbps =  250,	.reg = 0x33 },
	{ .mbps =  275,	.reg = 0x04 },
	{ .mbps =  300,	.reg = 0x14 },
	{ .mbps =  325,	.reg = 0x05 },
	{ .mbps =  350,	.reg = 0x15 },
	{ .mbps =  400,	.reg = 0x25 },
	{ .mbps =  450,	.reg = 0x06 },
	{ .mbps =  500,	.reg = 0x16 },
	{ .mbps =  550,	.reg = 0x07 },
	{ .mbps =  600,	.reg = 0x17 },
	{ .mbps =  650,	.reg = 0x08 },
	{ .mbps =  700,	.reg = 0x18 },
	{ .mbps =  750,	.reg = 0x09 },
	{ .mbps =  800,	.reg = 0x19 },
	{ .mbps =  850,	.reg = 0x29 },
	{ .mbps =  900,	.reg = 0x39 },
	{ .mbps =  950,	.reg = 0x0a },
	{ .mbps = 1000,	.reg = 0x1a },
	{ .mbps = 1050,	.reg = 0x2a },
	{ .mbps = 1100,	.reg = 0x3a },
	{ .mbps = 1150,	.reg = 0x0b },
	{ .mbps = 1200,	.reg = 0x1b },
	{ .mbps = 1250,	.reg = 0x2b },
	{ .mbps = 1300,	.reg = 0x3b },
	{ .mbps = 1350,	.reg = 0x0c },
	{ .mbps = 1400,	.reg = 0x1c },
	{ .mbps = 1450,	.reg = 0x2c },
	{ .mbps = 1500,	.reg = 0x3c },
	{ /* sentinel */ },
};

/* PHY ESC Error Monitor */
#define PHEERM_REG			0x74

/* PHY Clock Lane Monitor */
#define PHCLM_REG			0x78
#define PHCLM_STOPSTATECKL		BIT(0)

/* PHY Data Lane Monitor */
#define PHDLM_REG			0x7c

/* CSI0CLK Frequency Configuration Preset Register */
#define CSI0CLKFCPR_REG			0x260
#define CSI0CLKFREQRANGE(n)		((n & 0x3f) << 16)

struct rcar_csi2_format {
	u32 code;
	unsigned int datatype;
	unsigned int bpp;
};

static const struct rcar_csi2_format rcar_csi2_formats[] = {
	{ .code = MEDIA_BUS_FMT_RGB888_1X24,	.datatype = 0x24, .bpp = 24 },
	{ .code = MEDIA_BUS_FMT_UYVY8_1X16,	.datatype = 0x1e, .bpp = 16 },
	{ .code = MEDIA_BUS_FMT_YUYV8_1X16,	.datatype = 0x1e, .bpp = 16 },
	{ .code = MEDIA_BUS_FMT_UYVY8_2X8,	.datatype = 0x1e, .bpp = 16 },
	{ .code = MEDIA_BUS_FMT_YUYV10_2X10,	.datatype = 0x1e, .bpp = 20 },
420
	{ .code = MEDIA_BUS_FMT_Y10_1X10,	.datatype = 0x2b, .bpp = 10 },
421 422 423
	{ .code = MEDIA_BUS_FMT_SBGGR8_1X8,     .datatype = 0x2a, .bpp = 8 },
	{ .code = MEDIA_BUS_FMT_SGBRG8_1X8,     .datatype = 0x2a, .bpp = 8 },
	{ .code = MEDIA_BUS_FMT_SGRBG8_1X8,     .datatype = 0x2a, .bpp = 8 },
424
	{ .code = MEDIA_BUS_FMT_SRGGB8_1X8,     .datatype = 0x2a, .bpp = 8 },
425
	{ .code = MEDIA_BUS_FMT_Y8_1X8,		.datatype = 0x2a, .bpp = 8 },
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
};

static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
		if (rcar_csi2_formats[i].code == code)
			return &rcar_csi2_formats[i];

	return NULL;
}

enum rcar_csi2_pads {
	RCAR_CSI2_SINK,
	RCAR_CSI2_SOURCE_VC0,
	RCAR_CSI2_SOURCE_VC1,
	RCAR_CSI2_SOURCE_VC2,
	RCAR_CSI2_SOURCE_VC3,
	NR_OF_RCAR_CSI2_PAD,
};

struct rcar_csi2_info {
	int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
450
	int (*phy_post_init)(struct rcar_csi2 *priv);
451 452
	const struct rcsi2_mbps_reg *hsfreqrange;
	unsigned int csi0clkfreqrange;
453
	unsigned int num_channels;
454
	bool clear_ulps;
455
	bool use_isp;
456 457 458 459 460 461
};

struct rcar_csi2 {
	struct device *dev;
	void __iomem *base;
	const struct rcar_csi2_info *info;
462
	struct reset_control *rstc;
463 464 465 466 467 468

	struct v4l2_subdev subdev;
	struct media_pad pads[NR_OF_RCAR_CSI2_PAD];

	struct v4l2_async_notifier notifier;
	struct v4l2_subdev *remote;
469
	unsigned int remote_pad;
470

471
	struct mutex lock; /* Protects mf and stream_count. */
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	struct v4l2_mbus_framefmt mf;
	int stream_count;

	unsigned short lanes;
	unsigned char lane_swap[4];
};

static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
{
	return container_of(sd, struct rcar_csi2, subdev);
}

static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
{
	return container_of(n, struct rcar_csi2, notifier);
}

static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
{
	return ioread32(priv->base + reg);
}

static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
{
	iowrite32(data, priv->base + reg);
}

499
static void rcsi2_enter_standby(struct rcar_csi2 *priv)
500
{
501 502 503
	rcsi2_write(priv, PHYCNT_REG, 0);
	rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
	reset_control_assert(priv->rstc);
504
	usleep_range(100, 150);
505 506 507
	pm_runtime_put(priv->dev);
}

508
static int rcsi2_exit_standby(struct rcar_csi2 *priv)
509
{
510 511 512 513 514 515
	int ret;

	ret = pm_runtime_resume_and_get(priv->dev);
	if (ret < 0)
		return ret;

516
	reset_control_deassert(priv->rstc);
517 518

	return 0;
519 520
}

521 522
static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
				unsigned int lanes)
523 524 525 526 527
{
	unsigned int timeout;

	/* Wait for the clock and data lanes to enter LP-11 state. */
	for (timeout = 0; timeout <= 20; timeout++) {
528
		const u32 lane_mask = (1 << lanes) - 1;
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

		if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL)  &&
		    (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
			return 0;

		usleep_range(1000, 2000);
	}

	dev_err(priv->dev, "Timeout waiting for LP-11 state\n");

	return -ETIMEDOUT;
}

static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
{
	const struct rcsi2_mbps_reg *hsfreq;
545
	const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
546

547
	for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
548 549
		if (hsfreq->mbps >= mbps)
			break;
550 551
		hsfreq_prev = hsfreq;
	}
552 553 554 555 556 557

	if (!hsfreq->mbps) {
		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
		return -ERANGE;
	}

558 559 560 561
	if (hsfreq_prev &&
	    ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
		hsfreq = hsfreq_prev;

562 563 564 565 566
	rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));

	return 0;
}

567 568
static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
			   unsigned int lanes)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
{
	struct v4l2_subdev *source;
	struct v4l2_ctrl *ctrl;
	u64 mbps;

	if (!priv->remote)
		return -ENODEV;

	source = priv->remote;

	/* Read the pixel rate control from remote. */
	ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
	if (!ctrl) {
		dev_err(priv->dev, "no pixel rate control in subdev %s\n",
			source->name);
		return -EINVAL;
	}

	/*
	 * Calculate the phypll in mbps.
	 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
	 * bps = link_freq * 2
	 */
	mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
593
	do_div(mbps, lanes * 1000000);
594 595 596 597

	return mbps;
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
				  unsigned int *lanes)
{
	struct v4l2_mbus_config mbus_config = { 0 };
	unsigned int num_lanes = UINT_MAX;
	int ret;

	*lanes = priv->lanes;

	ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
			       priv->remote_pad, &mbus_config);
	if (ret == -ENOIOCTLCMD) {
		dev_dbg(priv->dev, "No remote mbus configuration available\n");
		return 0;
	}

	if (ret) {
		dev_err(priv->dev, "Failed to get remote mbus configuration\n");
		return ret;
	}

	if (mbus_config.type != V4L2_MBUS_CSI2_DPHY) {
		dev_err(priv->dev, "Unsupported media bus type %u\n",
			mbus_config.type);
		return -EINVAL;
	}

	if (mbus_config.flags & V4L2_MBUS_CSI2_1_LANE)
		num_lanes = 1;
	else if (mbus_config.flags & V4L2_MBUS_CSI2_2_LANE)
		num_lanes = 2;
	else if (mbus_config.flags & V4L2_MBUS_CSI2_3_LANE)
		num_lanes = 3;
	else if (mbus_config.flags & V4L2_MBUS_CSI2_4_LANE)
		num_lanes = 4;

	if (num_lanes > priv->lanes) {
		dev_err(priv->dev,
			"Unsupported mbus config: too many data lanes %u\n",
			num_lanes);
		return -EINVAL;
	}

	*lanes = num_lanes;

	return 0;
}

646
static int rcsi2_start_receiver(struct rcar_csi2 *priv)
647 648
{
	const struct rcar_csi2_format *format;
649
	u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
650
	unsigned int lanes;
651 652 653 654 655 656 657 658 659
	unsigned int i;
	int mbps, ret;

	dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
		priv->mf.width, priv->mf.height,
		priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');

	/* Code is validated in set_fmt. */
	format = rcsi2_code_to_fmt(priv->mf.code);
660 661
	if (!format)
		return -EINVAL;
662 663

	/*
664 665
	 * Enable all supported CSI-2 channels with virtual channel and
	 * data type matching.
666 667 668 669 670
	 *
	 * NOTE: It's not possible to get individual datatype for each
	 *       source virtual channel. Once this is possible in V4L2
	 *       it should be used here.
	 */
671
	for (i = 0; i < priv->info->num_channels; i++) {
672 673 674 675 676 677 678 679 680 681 682 683
		u32 vcdt_part;

		vcdt_part = VCDT_SEL_VC(i) | VCDT_VCDTN_EN | VCDT_SEL_DTN_ON |
			VCDT_SEL_DT(format->datatype);

		/* Store in correct reg and offset. */
		if (i < 2)
			vcdt |= vcdt_part << ((i % 2) * 16);
		else
			vcdt2 |= vcdt_part << ((i % 2) * 16);
	}

684 685 686 687 688 689 690 691 692 693
	if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
		fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
			| FLD_FLD_EN;

		if (priv->mf.height == 240)
			fld |= FLD_FLD_NUM(0);
		else
			fld |= FLD_FLD_NUM(1);
	}

694 695 696 697 698 699 700 701
	/*
	 * Get the number of active data lanes inspecting the remote mbus
	 * configuration.
	 */
	ret = rcsi2_get_active_lanes(priv, &lanes);
	if (ret)
		return ret;

702
	phycnt = PHYCNT_ENABLECLK;
703
	phycnt |= (1 << lanes) - 1;
704

705
	mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
706 707 708
	if (mbps < 0)
		return mbps;

709 710 711 712
	/* Enable interrupts. */
	rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
		    | INTEN_INT_ERRSOTSYNCHS);

713 714 715 716 717
	/* Init */
	rcsi2_write(priv, TREF_REG, TREF_TREF);
	rcsi2_write(priv, PHTC_REG, 0);

	/* Configure */
718 719 720 721 722 723
	if (!priv->info->use_isp) {
		rcsi2_write(priv, VCDT_REG, vcdt);
		if (vcdt2)
			rcsi2_write(priv, VCDT2_REG, vcdt2);
	}

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	/* Lanes are zero indexed. */
	rcsi2_write(priv, LSWAP_REG,
		    LSWAP_L0SEL(priv->lane_swap[0] - 1) |
		    LSWAP_L1SEL(priv->lane_swap[1] - 1) |
		    LSWAP_L2SEL(priv->lane_swap[2] - 1) |
		    LSWAP_L3SEL(priv->lane_swap[3] - 1));

	/* Start */
	if (priv->info->init_phtw) {
		ret = priv->info->init_phtw(priv, mbps);
		if (ret)
			return ret;
	}

	if (priv->info->hsfreqrange) {
		ret = rcsi2_set_phypll(priv, mbps);
		if (ret)
			return ret;
	}

	if (priv->info->csi0clkfreqrange)
		rcsi2_write(priv, CSI0CLKFCPR_REG,
			    CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));

748 749 750 751 752
	if (priv->info->use_isp)
		rcsi2_write(priv, PHYFRX_REG,
			    PHYFRX_FORCERX_MODE_3 | PHYFRX_FORCERX_MODE_2 |
			    PHYFRX_FORCERX_MODE_1 | PHYFRX_FORCERX_MODE_0);

753 754 755
	rcsi2_write(priv, PHYCNT_REG, phycnt);
	rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
		    LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
756
	rcsi2_write(priv, FLD_REG, fld);
757 758 759
	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);

760
	ret = rcsi2_wait_phy_start(priv, lanes);
761 762 763
	if (ret)
		return ret;

764 765 766
	if (priv->info->use_isp)
		rcsi2_write(priv, PHYFRX_REG, 0);

767 768 769
	/* Run post PHY start initialization, if needed. */
	if (priv->info->phy_post_init) {
		ret = priv->info->phy_post_init(priv);
770 771 772 773
		if (ret)
			return ret;
	}

774 775 776 777 778 779 780 781
	/* Clear Ultra Low Power interrupt. */
	if (priv->info->clear_ulps)
		rcsi2_write(priv, INTSTATE_REG,
			    INTSTATE_INT_ULPS_START |
			    INTSTATE_INT_ULPS_END);
	return 0;
}

782
static int rcsi2_start(struct rcar_csi2 *priv)
783
{
784
	int ret;
785

786 787 788
	ret = rcsi2_exit_standby(priv);
	if (ret < 0)
		return ret;
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	ret = rcsi2_start_receiver(priv);
	if (ret) {
		rcsi2_enter_standby(priv);
		return ret;
	}

	ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
	if (ret) {
		rcsi2_enter_standby(priv);
		return ret;
	}

	return 0;
}

static void rcsi2_stop(struct rcar_csi2 *priv)
{
	rcsi2_enter_standby(priv);
	v4l2_subdev_call(priv->remote, video, s_stream, 0);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
}

static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
{
	struct rcar_csi2 *priv = sd_to_csi2(sd);
	int ret = 0;

	mutex_lock(&priv->lock);

	if (!priv->remote) {
		ret = -ENODEV;
		goto out;
	}

	if (enable && priv->stream_count == 0) {
		ret = rcsi2_start(priv);
825
		if (ret)
826 827 828 829 830 831 832 833 834 835 836 837 838
			goto out;
	} else if (!enable && priv->stream_count == 1) {
		rcsi2_stop(priv);
	}

	priv->stream_count += enable ? 1 : -1;
out:
	mutex_unlock(&priv->lock);

	return ret;
}

static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
839
				struct v4l2_subdev_state *sd_state,
840 841 842 843 844
				struct v4l2_subdev_format *format)
{
	struct rcar_csi2 *priv = sd_to_csi2(sd);
	struct v4l2_mbus_framefmt *framefmt;

845 846
	mutex_lock(&priv->lock);

847
	if (!rcsi2_code_to_fmt(format->format.code))
848
		format->format.code = rcar_csi2_formats[0].code;
849 850 851 852

	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
		priv->mf = format->format;
	} else {
853
		framefmt = v4l2_subdev_get_try_format(sd, sd_state, 0);
854 855 856
		*framefmt = format->format;
	}

857 858
	mutex_unlock(&priv->lock);

859 860 861 862
	return 0;
}

static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
863
				struct v4l2_subdev_state *sd_state,
864 865 866 867
				struct v4l2_subdev_format *format)
{
	struct rcar_csi2 *priv = sd_to_csi2(sd);

868 869
	mutex_lock(&priv->lock);

870 871 872
	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
		format->format = priv->mf;
	else
873
		format->format = *v4l2_subdev_get_try_format(sd, sd_state, 0);
874

875 876
	mutex_unlock(&priv->lock);

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	return 0;
}

static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
	.s_stream = rcsi2_s_stream,
};

static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
	.set_fmt = rcsi2_set_pad_format,
	.get_fmt = rcsi2_get_pad_format,
};

static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
	.video	= &rcar_csi2_video_ops,
	.pad	= &rcar_csi2_pad_ops,
};

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static irqreturn_t rcsi2_irq(int irq, void *data)
{
	struct rcar_csi2 *priv = data;
	u32 status, err_status;

	status = rcsi2_read(priv, INTSTATE_REG);
	err_status = rcsi2_read(priv, INTERRSTATE_REG);

	if (!status)
		return IRQ_HANDLED;

	rcsi2_write(priv, INTSTATE_REG, status);

	if (!err_status)
		return IRQ_HANDLED;

	rcsi2_write(priv, INTERRSTATE_REG, err_status);

	dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");

	return IRQ_WAKE_THREAD;
}

static irqreturn_t rcsi2_irq_thread(int irq, void *data)
{
	struct rcar_csi2 *priv = data;

	mutex_lock(&priv->lock);
	rcsi2_stop(priv);
	usleep_range(1000, 2000);
	if (rcsi2_start(priv))
		dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
	mutex_unlock(&priv->lock);

	return IRQ_HANDLED;
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
/* -----------------------------------------------------------------------------
 * Async handling and registration of subdevices and links.
 */

static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
			      struct v4l2_subdev *subdev,
			      struct v4l2_async_subdev *asd)
{
	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
	int pad;

	pad = media_entity_get_fwnode_pad(&subdev->entity, asd->match.fwnode,
					  MEDIA_PAD_FL_SOURCE);
	if (pad < 0) {
		dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
		return pad;
	}

	priv->remote = subdev;
950
	priv->remote_pad = pad;
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984

	dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);

	return media_create_pad_link(&subdev->entity, pad,
				     &priv->subdev.entity, 0,
				     MEDIA_LNK_FL_ENABLED |
				     MEDIA_LNK_FL_IMMUTABLE);
}

static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
				struct v4l2_subdev *subdev,
				struct v4l2_async_subdev *asd)
{
	struct rcar_csi2 *priv = notifier_to_csi2(notifier);

	priv->remote = NULL;

	dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
}

static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
	.bound = rcsi2_notify_bound,
	.unbind = rcsi2_notify_unbind,
};

static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
			    struct v4l2_fwnode_endpoint *vep)
{
	unsigned int i;

	/* Only port 0 endpoint 0 is valid. */
	if (vep->base.port || vep->base.id)
		return -ENOTCONN;

985
	if (vep->bus_type != V4L2_MBUS_CSI2_DPHY) {
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
		return -EINVAL;
	}

	priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
	if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
		dev_err(priv->dev, "Unsupported number of data-lanes: %u\n",
			priv->lanes);
		return -EINVAL;
	}

	for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
		priv->lane_swap[i] = i < priv->lanes ?
			vep->bus.mipi_csi2.data_lanes[i] : i;

		/* Check for valid lane number. */
		if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
			dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
			return -EINVAL;
		}
	}

	return 0;
}

static int rcsi2_parse_dt(struct rcar_csi2 *priv)
{
1013 1014
	struct v4l2_async_subdev *asd;
	struct fwnode_handle *fwnode;
1015
	struct fwnode_handle *ep;
1016 1017 1018
	struct v4l2_fwnode_endpoint v4l2_ep = {
		.bus_type = V4L2_MBUS_CSI2_DPHY
	};
1019 1020
	int ret;

1021
	ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0);
1022 1023 1024 1025 1026
	if (!ep) {
		dev_err(priv->dev, "Not connected to subdevice\n");
		return -EINVAL;
	}

1027
	ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
1028 1029
	if (ret) {
		dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
1030
		fwnode_handle_put(ep);
1031 1032 1033 1034 1035
		return -EINVAL;
	}

	ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
	if (ret) {
1036
		fwnode_handle_put(ep);
1037 1038 1039
		return ret;
	}

1040 1041
	fwnode = fwnode_graph_get_remote_endpoint(ep);
	fwnode_handle_put(ep);
1042

1043
	dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
1044

1045
	v4l2_async_nf_init(&priv->notifier);
1046 1047
	priv->notifier.ops = &rcar_csi2_notify_ops;

1048 1049
	asd = v4l2_async_nf_add_fwnode(&priv->notifier, fwnode,
				       struct v4l2_async_subdev);
1050 1051 1052
	fwnode_handle_put(fwnode);
	if (IS_ERR(asd))
		return PTR_ERR(asd);
1053

1054
	ret = v4l2_async_subdev_nf_register(&priv->subdev, &priv->notifier);
1055
	if (ret)
1056
		v4l2_async_nf_cleanup(&priv->notifier);
1057 1058

	return ret;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
}

/* -----------------------------------------------------------------------------
 * PHTW initialization sequences.
 *
 * NOTE: Magic values are from the datasheet and lack documentation.
 */

static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
{
	unsigned int timeout;

	rcsi2_write(priv, PHTW_REG,
		    PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
		    PHTW_CWEN | PHTW_TESTDIN_CODE(code));

	/* Wait for DWEN and CWEN to be cleared by hardware. */
	for (timeout = 0; timeout <= 20; timeout++) {
		if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
			return 0;

		usleep_range(1000, 2000);
	}

	dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");

	return -ETIMEDOUT;
}

static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
				  const struct phtw_value *values)
{
	const struct phtw_value *value;
	int ret;

	for (value = values; value->data || value->code; value++) {
		ret = rcsi2_phtw_write(priv, value->data, value->code);
		if (ret)
			return ret;
	}

	return 0;
}

static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
				 const struct rcsi2_mbps_reg *values, u16 code)
{
	const struct rcsi2_mbps_reg *value;

	for (value = values; value->mbps; value++)
		if (value->mbps >= mbps)
			break;

	if (!value->mbps) {
		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
		return -ERANGE;
	}

	return rcsi2_phtw_write(priv, value->reg, code);
}

1120 1121
static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
					unsigned int mbps)
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
{
	static const struct phtw_value step1[] = {
		{ .data = 0xcc, .code = 0xe2 },
		{ .data = 0x01, .code = 0xe3 },
		{ .data = 0x11, .code = 0xe4 },
		{ .data = 0x01, .code = 0xe5 },
		{ .data = 0x10, .code = 0x04 },
		{ /* sentinel */ },
	};

	static const struct phtw_value step2[] = {
		{ .data = 0x38, .code = 0x08 },
		{ .data = 0x01, .code = 0x00 },
		{ .data = 0x4b, .code = 0xac },
		{ .data = 0x03, .code = 0x00 },
		{ .data = 0x80, .code = 0x07 },
		{ /* sentinel */ },
	};

	int ret;

	ret = rcsi2_phtw_write_array(priv, step1);
	if (ret)
		return ret;

1147
	if (mbps != 0 && mbps <= 250) {
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		ret = rcsi2_phtw_write(priv, 0x39, 0x05);
		if (ret)
			return ret;

		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
					    0xf1);
		if (ret)
			return ret;
	}

	return rcsi2_phtw_write_array(priv, step2);
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
{
	return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
}

static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
{
	return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
}

1171
static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1172 1173 1174 1175
{
	return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
}

1176
static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1177 1178
{
	static const struct phtw_value step1[] = {
1179 1180 1181 1182 1183
		{ .data = 0xee, .code = 0x34 },
		{ .data = 0xee, .code = 0x44 },
		{ .data = 0xee, .code = 0x54 },
		{ .data = 0xee, .code = 0x84 },
		{ .data = 0xee, .code = 0x94 },
1184 1185 1186 1187 1188 1189
		{ /* sentinel */ },
	};

	return rcsi2_phtw_write_array(priv, step1);
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
static int rcsi2_init_phtw_v3u(struct rcar_csi2 *priv,
			       unsigned int mbps)
{
	/* In case of 1500Mbps or less */
	static const struct phtw_value step1[] = {
		{ .data = 0xcc, .code = 0xe2 },
		{ /* sentinel */ },
	};

	static const struct phtw_value step2[] = {
		{ .data = 0x01, .code = 0xe3 },
		{ .data = 0x11, .code = 0xe4 },
		{ .data = 0x01, .code = 0xe5 },
		{ /* sentinel */ },
	};

	/* In case of 1500Mbps or less */
	static const struct phtw_value step3[] = {
		{ .data = 0x38, .code = 0x08 },
		{ /* sentinel */ },
	};

	static const struct phtw_value step4[] = {
		{ .data = 0x01, .code = 0x00 },
		{ .data = 0x4b, .code = 0xac },
		{ .data = 0x03, .code = 0x00 },
		{ .data = 0x80, .code = 0x07 },
		{ /* sentinel */ },
	};

	int ret;

	if (mbps != 0 && mbps <= 1500)
		ret = rcsi2_phtw_write_array(priv, step1);
	else
		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3u, 0xe2);
	if (ret)
		return ret;

	ret = rcsi2_phtw_write_array(priv, step2);
	if (ret)
		return ret;

	if (mbps != 0 && mbps <= 1500) {
		ret = rcsi2_phtw_write_array(priv, step3);
		if (ret)
			return ret;
	}

	ret = rcsi2_phtw_write_array(priv, step4);
	if (ret)
		return ret;

	return ret;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/* -----------------------------------------------------------------------------
 * Platform Device Driver.
 */

static const struct media_entity_operations rcar_csi2_entity_ops = {
	.link_validate = v4l2_subdev_link_validate,
};

static int rcsi2_probe_resources(struct rcar_csi2 *priv,
				 struct platform_device *pdev)
{
1257
	int irq, ret;
1258

1259
	priv->base = devm_platform_ioremap_resource(pdev, 0);
1260 1261 1262 1263 1264 1265 1266
	if (IS_ERR(priv->base))
		return PTR_ERR(priv->base);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

1267 1268 1269 1270 1271 1272
	ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
					rcsi2_irq_thread, IRQF_SHARED,
					KBUILD_MODNAME, priv);
	if (ret)
		return ret;

1273 1274
	priv->rstc = devm_reset_control_get(&pdev->dev, NULL);

1275
	return PTR_ERR_OR_ZERO(priv->rstc);
1276 1277 1278 1279 1280 1281
}

static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
	.csi0clkfreqrange = 0x20,
1282
	.num_channels = 4,
1283 1284 1285 1286 1287
	.clear_ulps = true,
};

static const struct rcar_csi2_info rcar_csi2_info_r8a7795es1 = {
	.hsfreqrange = hsfreqrange_m3w_h3es1,
1288
	.num_channels = 4,
1289 1290
};

1291 1292 1293 1294 1295 1296 1297 1298
static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
	.init_phtw = rcsi2_init_phtw_h3es2,
	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
	.csi0clkfreqrange = 0x20,
	.num_channels = 4,
	.clear_ulps = true,
};

1299 1300
static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
	.hsfreqrange = hsfreqrange_m3w_h3es1,
1301
	.num_channels = 4,
1302 1303
};

1304 1305 1306 1307 1308
static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
	.hsfreqrange = hsfreqrange_m3w_h3es1,
	.num_channels = 4,
};

1309 1310 1311 1312
static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
	.csi0clkfreqrange = 0x20,
1313
	.num_channels = 4,
1314 1315 1316 1317 1318
	.clear_ulps = true,
};

static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
	.init_phtw = rcsi2_init_phtw_v3m_e3,
1319
	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1320
	.num_channels = 4,
1321 1322
};

1323 1324 1325 1326 1327 1328 1329
static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
	.csi0clkfreqrange = 0x20,
	.clear_ulps = true,
};

1330 1331
static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
	.init_phtw = rcsi2_init_phtw_v3m_e3,
1332
	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1333
	.num_channels = 2,
1334 1335
};

1336 1337 1338 1339 1340 1341 1342 1343
static const struct rcar_csi2_info rcar_csi2_info_r8a779a0 = {
	.init_phtw = rcsi2_init_phtw_v3u,
	.hsfreqrange = hsfreqrange_v3u,
	.csi0clkfreqrange = 0x20,
	.clear_ulps = true,
	.use_isp = true,
};

1344
static const struct of_device_id rcar_csi2_of_table[] = {
1345 1346 1347 1348
	{
		.compatible = "renesas,r8a774a1-csi2",
		.data = &rcar_csi2_info_r8a7796,
	},
1349 1350 1351 1352
	{
		.compatible = "renesas,r8a774b1-csi2",
		.data = &rcar_csi2_info_r8a77965,
	},
1353 1354 1355 1356
	{
		.compatible = "renesas,r8a774c0-csi2",
		.data = &rcar_csi2_info_r8a77990,
	},
1357 1358 1359 1360
	{
		.compatible = "renesas,r8a774e1-csi2",
		.data = &rcar_csi2_info_r8a7795,
	},
1361 1362 1363 1364 1365 1366 1367 1368
	{
		.compatible = "renesas,r8a7795-csi2",
		.data = &rcar_csi2_info_r8a7795,
	},
	{
		.compatible = "renesas,r8a7796-csi2",
		.data = &rcar_csi2_info_r8a7796,
	},
1369 1370 1371 1372
	{
		.compatible = "renesas,r8a77961-csi2",
		.data = &rcar_csi2_info_r8a77961,
	},
1373 1374 1375 1376 1377 1378 1379 1380
	{
		.compatible = "renesas,r8a77965-csi2",
		.data = &rcar_csi2_info_r8a77965,
	},
	{
		.compatible = "renesas,r8a77970-csi2",
		.data = &rcar_csi2_info_r8a77970,
	},
1381 1382 1383 1384
	{
		.compatible = "renesas,r8a77980-csi2",
		.data = &rcar_csi2_info_r8a77980,
	},
1385 1386 1387 1388
	{
		.compatible = "renesas,r8a77990-csi2",
		.data = &rcar_csi2_info_r8a77990,
	},
1389 1390 1391 1392
	{
		.compatible = "renesas,r8a779a0-csi2",
		.data = &rcar_csi2_info_r8a779a0,
	},
1393 1394 1395 1396
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);

1397
static const struct soc_device_attribute r8a7795[] = {
1398 1399 1400 1401
	{
		.soc_id = "r8a7795", .revision = "ES1.*",
		.data = &rcar_csi2_info_r8a7795es1,
	},
1402 1403 1404 1405
	{
		.soc_id = "r8a7795", .revision = "ES2.*",
		.data = &rcar_csi2_info_r8a7795es2,
	},
1406 1407 1408 1409 1410 1411 1412
	{ /* sentinel */ },
};

static int rcsi2_probe(struct platform_device *pdev)
{
	const struct soc_device_attribute *attr;
	struct rcar_csi2 *priv;
1413
	unsigned int i, num_pads;
1414 1415 1416 1417 1418 1419 1420 1421 1422
	int ret;

	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->info = of_device_get_match_data(&pdev->dev);

	/*
1423 1424
	 * The different ES versions of r8a7795 (H3) behave differently but
	 * share the same compatible string.
1425
	 */
1426
	attr = soc_device_match(r8a7795);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	if (attr)
		priv->info = attr->data;

	priv->dev = &pdev->dev;

	mutex_init(&priv->lock);
	priv->stream_count = 0;

	ret = rcsi2_probe_resources(priv, pdev);
	if (ret) {
		dev_err(priv->dev, "Failed to get resources\n");
1438
		goto error_mutex;
1439 1440 1441 1442 1443 1444
	}

	platform_set_drvdata(pdev, priv);

	ret = rcsi2_parse_dt(priv);
	if (ret)
1445
		goto error_mutex;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

	priv->subdev.owner = THIS_MODULE;
	priv->subdev.dev = &pdev->dev;
	v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
	v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
	snprintf(priv->subdev.name, V4L2_SUBDEV_NAME_SIZE, "%s %s",
		 KBUILD_MODNAME, dev_name(&pdev->dev));
	priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;

	priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
	priv->subdev.entity.ops = &rcar_csi2_entity_ops;

1458 1459
	num_pads = priv->info->use_isp ? 2 : NR_OF_RCAR_CSI2_PAD;

1460
	priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1461
	for (i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++)
1462 1463
		priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;

1464
	ret = media_entity_pads_init(&priv->subdev.entity, num_pads,
1465 1466
				     priv->pads);
	if (ret)
1467
		goto error_async;
1468 1469 1470 1471 1472

	pm_runtime_enable(&pdev->dev);

	ret = v4l2_async_register_subdev(&priv->subdev);
	if (ret < 0)
1473
		goto error_async;
1474 1475 1476 1477 1478

	dev_info(priv->dev, "%d lanes found\n", priv->lanes);

	return 0;

1479
error_async:
1480 1481
	v4l2_async_nf_unregister(&priv->notifier);
	v4l2_async_nf_cleanup(&priv->notifier);
1482 1483
error_mutex:
	mutex_destroy(&priv->lock);
1484 1485 1486 1487 1488 1489 1490 1491

	return ret;
}

static int rcsi2_remove(struct platform_device *pdev)
{
	struct rcar_csi2 *priv = platform_get_drvdata(pdev);

1492 1493
	v4l2_async_nf_unregister(&priv->notifier);
	v4l2_async_nf_cleanup(&priv->notifier);
1494 1495 1496 1497
	v4l2_async_unregister_subdev(&priv->subdev);

	pm_runtime_disable(&pdev->dev);

1498 1499
	mutex_destroy(&priv->lock);

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	return 0;
}

static struct platform_driver rcar_csi2_pdrv = {
	.remove	= rcsi2_remove,
	.probe	= rcsi2_probe,
	.driver	= {
		.name	= "rcar-csi2",
		.of_match_table	= rcar_csi2_of_table,
	},
};

module_platform_driver(rcar_csi2_pdrv);

MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
MODULE_LICENSE("GPL");