vc4_crtc.c 37.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2015 Broadcom
 */

/**
 * DOC: VC4 CRTC module
 *
 * In VC4, the Pixel Valve is what most closely corresponds to the
 * DRM's concept of a CRTC.  The PV generates video timings from the
11
 * encoder's clock plus its configuration.  It pulls scaled pixels from
12 13 14
 * the HVS at that timing, and feeds it to the encoder.
 *
 * However, the DRM CRTC also collects the configuration of all the
15 16 17
 * DRM planes attached to it.  As a result, the CRTC is also
 * responsible for writing the display list for the HVS channel that
 * the CRTC will use.
18 19 20 21 22 23 24 25 26 27 28 29 30 31
 *
 * The 2835 has 3 different pixel valves.  pv0 in the audio power
 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
 * image domain can feed either HDMI or the SDTV controller.  The
 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
 * SDTV, etc.) according to which output type is chosen in the mux.
 *
 * For power management, the pixel valve's registers are all clocked
 * by the AXI clock, while the timings and FIFOs make use of the
 * output-specific clock.  Since the encoders also directly consume
 * the CPRMAN clocks, and know what timings they need, they are the
 * ones that set the clock.
 */

S
Sam Ravnborg 已提交
32 33 34 35
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/of_device.h>

36 37
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
D
Daniel Vetter 已提交
38
#include <drm/drm_atomic_uapi.h>
S
Sam Ravnborg 已提交
39
#include <drm/drm_fb_cma_helper.h>
40
#include <drm/drm_print.h>
41
#include <drm/drm_probe_helper.h>
S
Sam Ravnborg 已提交
42 43
#include <drm/drm_vblank.h>

44 45 46
#include "vc4_drv.h"
#include "vc4_regs.h"

47 48 49 50
struct vc4_crtc_state {
	struct drm_crtc_state base;
	/* Dlist area for this CRTC configuration. */
	struct drm_mm_node mm;
51 52
	bool feed_txp;
	bool txp_armed;
53 54 55 56 57 58 59

	struct {
		unsigned int left;
		unsigned int right;
		unsigned int top;
		unsigned int bottom;
	} margins;
60 61 62 63 64 65 66 67
};

static inline struct vc4_crtc_state *
to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
{
	return (struct vc4_crtc_state *)crtc_state;
}

68 69 70
#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))

71 72 73 74 75 76 77 78 79 80 81 82 83 84
static const struct debugfs_reg32 crtc_regs[] = {
	VC4_REG32(PV_CONTROL),
	VC4_REG32(PV_V_CONTROL),
	VC4_REG32(PV_VSYNCD_EVEN),
	VC4_REG32(PV_HORZA),
	VC4_REG32(PV_HORZB),
	VC4_REG32(PV_VERTA),
	VC4_REG32(PV_VERTB),
	VC4_REG32(PV_VERTA_EVEN),
	VC4_REG32(PV_VERTB_EVEN),
	VC4_REG32(PV_INTEN),
	VC4_REG32(PV_INTSTAT),
	VC4_REG32(PV_STAT),
	VC4_REG32(PV_HACT_ACT),
85 86
};

87 88 89 90
bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
			     bool in_vblank_irq, int *vpos, int *hpos,
			     ktime_t *stime, ktime_t *etime,
			     const struct drm_display_mode *mode)
91 92
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
93 94
	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95 96 97
	u32 val;
	int fifo_lines;
	int vblank_lines;
98
	bool ret = false;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */

	/* Get optional system timestamp before query. */
	if (stime)
		*stime = ktime_get();

	/*
	 * Read vertical scanline which is currently composed for our
	 * pixelvalve by the HVS, and also the scaler status.
	 */
	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));

	/* Get optional system timestamp after query. */
	if (etime)
		*etime = ktime_get();

	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */

	/* Vertical position of hvs composed scanline. */
	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
120 121 122 123
	*hpos = 0;

	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		*vpos /= 2;
124

125 126 127 128
		/* Use hpos to correct for field offset in interlaced mode. */
		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
			*hpos += mode->crtc_htotal / 2;
	}
129 130 131 132 133

	/* This is the offset we need for translating hvs -> pv scanout pos. */
	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;

	if (fifo_lines > 0)
134
		ret = true;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	/* HVS more than fifo_lines into frame for compositing? */
	if (*vpos > fifo_lines) {
		/*
		 * We are in active scanout and can get some meaningful results
		 * from HVS. The actual PV scanout can not trail behind more
		 * than fifo_lines as that is the fifo's capacity. Assume that
		 * in active scanout the HVS and PV work in lockstep wrt. HVS
		 * refilling the fifo and PV consuming from the fifo, ie.
		 * whenever the PV consumes and frees up a scanline in the
		 * fifo, the HVS will immediately refill it, therefore
		 * incrementing vpos. Therefore we choose HVS read position -
		 * fifo size in scanlines as a estimate of the real scanout
		 * position of the PV.
		 */
		*vpos -= fifo_lines + 1;

		return ret;
	}

	/*
	 * Less: This happens when we are in vblank and the HVS, after getting
	 * the VSTART restart signal from the PV, just started refilling its
	 * fifo with new lines from the top-most lines of the new framebuffers.
	 * The PV does not scan out in vblank, so does not remove lines from
	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
	 * We can't get meaningful readings wrt. scanline position of the PV
	 * and need to make things up in a approximative but consistent way.
	 */
164
	vblank_lines = mode->vtotal - mode->vdisplay;
165

166
	if (in_vblank_irq) {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
		/*
		 * Assume the irq handler got called close to first
		 * line of vblank, so PV has about a full vblank
		 * scanlines to go, and as a base timestamp use the
		 * one taken at entry into vblank irq handler, so it
		 * is not affected by random delays due to lock
		 * contention on event_lock or vblank_time lock in
		 * the core.
		 */
		*vpos = -vblank_lines;

		if (stime)
			*stime = vc4_crtc->t_vblank;
		if (etime)
			*etime = vc4_crtc->t_vblank;

		/*
		 * If the HVS fifo is not yet full then we know for certain
		 * we are at the very beginning of vblank, as the hvs just
		 * started refilling, and the stime and etime timestamps
		 * truly correspond to start of vblank.
188 189 190
		 *
		 * Unfortunately there's no way to report this to upper levels
		 * and make it more useful.
191 192 193 194 195 196 197 198 199 200 201 202 203 204
		 */
	} else {
		/*
		 * No clue where we are inside vblank. Return a vpos of zero,
		 * which will cause calling code to just return the etime
		 * timestamp uncorrected. At least this is no worse than the
		 * standard fallback.
		 */
		*vpos = 0;
	}

	return ret;
}

205 206 207 208 209
static void vc4_crtc_destroy(struct drm_crtc *crtc)
{
	drm_crtc_cleanup(crtc);
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void
vc4_crtc_lut_load(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 i;

	/* The LUT memory is laid out with each HVS channel in order,
	 * each of which takes 256 writes for R, 256 for G, then 256
	 * for B.
	 */
	HVS_WRITE(SCALER_GAMADDR,
		  SCALER_GAMADDR_AUTOINC |
		  (vc4_crtc->channel * 3 * crtc->gamma_size));

	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
}

234 235
static void
vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
236 237
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238 239
	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
240 241
	u32 i;

242 243 244 245
	for (i = 0; i < length; i++) {
		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
246 247 248 249 250
	}

	vc4_crtc_lut_load(crtc);
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
static u32 vc4_get_fifo_full_level(u32 format)
{
	static const u32 fifo_len_bytes = 64;
	static const u32 hvs_latency_pix = 6;

	switch (format) {
	case PV_CONTROL_FORMAT_DSIV_16:
	case PV_CONTROL_FORMAT_DSIC_16:
		return fifo_len_bytes - 2 * hvs_latency_pix;
	case PV_CONTROL_FORMAT_DSIV_18:
		return fifo_len_bytes - 14;
	case PV_CONTROL_FORMAT_24:
	case PV_CONTROL_FORMAT_DSIV_24:
	default:
		return fifo_len_bytes - 3 * hvs_latency_pix;
	}
}

/*
270 271 272 273 274
 * Returns the encoder attached to the CRTC.
 *
 * VC4 can only scan out to one encoder at a time, while the DRM core
 * allows drivers to push pixels to more than one encoder from the
 * same CRTC.
275
 */
276
static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
277 278
{
	struct drm_connector *connector;
279
	struct drm_connector_list_iter conn_iter;
280

281 282
	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
J
Julia Lawall 已提交
283
		if (connector->state->crtc == crtc) {
284
			drm_connector_list_iter_end(&conn_iter);
285
			return connector->encoder;
286 287
		}
	}
288
	drm_connector_list_iter_end(&conn_iter);
289

290
	return NULL;
291 292
}

293
static void vc4_crtc_config_pv(struct drm_crtc *crtc)
294
{
295 296
	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
297 298 299 300
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_crtc_state *state = crtc->state;
	struct drm_display_mode *mode = &state->adjusted_mode;
	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
301
	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
302 303 304
	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
305 306 307 308 309 310 311

	/* Reset the PV fifo. */
	CRTC_WRITE(PV_CONTROL, 0);
	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
	CRTC_WRITE(PV_CONTROL, 0);

	CRTC_WRITE(PV_HORZA,
312 313
		   VC4_SET_FIELD((mode->htotal -
				  mode->hsync_end) * pixel_rep,
314
				 PV_HORZA_HBP) |
315 316
		   VC4_SET_FIELD((mode->hsync_end -
				  mode->hsync_start) * pixel_rep,
317 318
				 PV_HORZA_HSYNC));
	CRTC_WRITE(PV_HORZB,
319 320
		   VC4_SET_FIELD((mode->hsync_start -
				  mode->hdisplay) * pixel_rep,
321
				 PV_HORZB_HFP) |
322
		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
323

324
	CRTC_WRITE(PV_VERTA,
325
		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
326
				 PV_VERTA_VBP) |
327
		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
328 329
				 PV_VERTA_VSYNC));
	CRTC_WRITE(PV_VERTB,
330
		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
331
				 PV_VERTB_VFP) |
332
		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
333

334 335
	if (interlace) {
		CRTC_WRITE(PV_VERTA_EVEN,
336 337
			   VC4_SET_FIELD(mode->crtc_vtotal -
					 mode->crtc_vsync_end - 1,
338
					 PV_VERTA_VBP) |
339 340
			   VC4_SET_FIELD(mode->crtc_vsync_end -
					 mode->crtc_vsync_start,
341 342
					 PV_VERTA_VSYNC));
		CRTC_WRITE(PV_VERTB_EVEN,
343 344
			   VC4_SET_FIELD(mode->crtc_vsync_start -
					 mode->crtc_vdisplay,
345
					 PV_VERTB_VFP) |
346 347 348 349 350 351 352 353 354
			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));

		/* We set up first field even mode for HDMI.  VEC's
		 * NTSC mode would want first field odd instead, once
		 * we support it (to do so, set ODD_FIRST and put the
		 * delay in VSYNCD_EVEN instead).
		 */
		CRTC_WRITE(PV_V_CONTROL,
			   PV_VCONTROL_CONTINUOUS |
355
			   (is_dsi ? PV_VCONTROL_DSI : 0) |
356
			   PV_VCONTROL_INTERLACE |
357
			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
358 359 360
					 PV_VCONTROL_ODD_DELAY));
		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
	} else {
361 362 363
		CRTC_WRITE(PV_V_CONTROL,
			   PV_VCONTROL_CONTINUOUS |
			   (is_dsi ? PV_VCONTROL_DSI : 0));
364 365
	}

366
	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
367 368 369 370 371

	CRTC_WRITE(PV_CONTROL,
		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
				 PV_CONTROL_FIFO_LEVEL) |
372
		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
373 374 375
		   PV_CONTROL_CLR_AT_START |
		   PV_CONTROL_TRIGGER_UNDERFLOW |
		   PV_CONTROL_WAIT_HSTART |
376 377
		   VC4_SET_FIELD(vc4_encoder->clock_select,
				 PV_CONTROL_CLK_SELECT) |
378 379
		   PV_CONTROL_FIFO_CLR |
		   PV_CONTROL_EN);
380 381 382 383 384 385 386 387 388 389 390 391 392
}

static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
	bool debug_dump_regs = false;

	if (debug_dump_regs) {
393 394 395 396
		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
			 drm_crtc_index(crtc));
		drm_print_regset32(&p, &vc4_crtc->regset);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	}

	if (vc4_crtc->channel == 2) {
		u32 dispctrl;
		u32 dsp3_mux;

		/*
		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
		 * FIFO X'.
		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
		 *
		 * DSP3 is connected to FIFO2 unless the transposer is
		 * enabled. In this case, FIFO 2 is directly accessed by the
		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
		 * route.
		 */
		if (vc4_state->feed_txp)
			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
		else
			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);

		dispctrl = HVS_READ(SCALER_DISPCTRL) &
			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
	}

	if (!vc4_state->feed_txp)
		vc4_crtc_config_pv(crtc);
425

426 427
	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
		  SCALER_DISPBKGND_AUTOHS |
428
		  SCALER_DISPBKGND_GAMMA |
429 430
		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));

431 432 433 434 435
	/* Reload the LUT, since the SRAMs would have been disabled if
	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
	 */
	vc4_crtc_lut_load(crtc);

436
	if (debug_dump_regs) {
437 438 439 440
		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
			 drm_crtc_index(crtc));
		drm_print_regset32(&p, &vc4_crtc->regset);
441 442 443 444 445 446 447 448 449 450 451
	}
}

static void require_hvs_enabled(struct drm_device *dev)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);

	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
		     SCALER_DISPCTRL_ENABLE);
}

452 453
static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
				    struct drm_crtc_state *old_state)
454 455 456 457 458 459 460 461
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 chan = vc4_crtc->channel;
	int ret;
	require_hvs_enabled(dev);

462 463 464
	/* Disable vblank irq handling before crtc is disabled. */
	drm_crtc_vblank_off(crtc);

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");

	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
	    SCALER_DISPCTRLX_ENABLE) {
		HVS_WRITE(SCALER_DISPCTRLX(chan),
			  SCALER_DISPCTRLX_RESET);

		/* While the docs say that reset is self-clearing, it
		 * seems it doesn't actually.
		 */
		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
	}

	/* Once we leave, the scaler should be disabled and its fifo empty. */

	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);

	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
				   SCALER_DISPSTATX_MODE) !=
		     SCALER_DISPSTATX_MODE_DISABLED);

	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
		     SCALER_DISPSTATX_EMPTY);
492 493 494 495 496 497 498 499 500 501 502 503 504

	/*
	 * Make sure we issue a vblank event after disabling the CRTC if
	 * someone was waiting it.
	 */
	if (crtc->state->event) {
		unsigned long flags;

		spin_lock_irqsave(&dev->event_lock, flags);
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}
505 506
}

507 508 509 510 511 512 513
void vc4_crtc_txp_armed(struct drm_crtc_state *state)
{
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);

	vc4_state->txp_armed = true;
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);

	if (crtc->state->event) {
		unsigned long flags;

		crtc->state->event->pipe = drm_crtc_index(crtc);

		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
529 530 531 532 533

		if (!vc4_state->feed_txp || vc4_state->txp_armed) {
			vc4_crtc->event = crtc->state->event;
			crtc->state->event = NULL;
		}
534 535 536 537 538 539 540 541 542 543 544

		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
			  vc4_state->mm.start);

		spin_unlock_irqrestore(&dev->event_lock, flags);
	} else {
		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
			  vc4_state->mm.start);
	}
}

545 546
static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
				   struct drm_crtc_state *old_state)
547 548 549 550
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
551 552
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
553 554 555

	require_hvs_enabled(dev);

556 557 558 559 560 561
	/* Enable vblank irq handling before crtc is started otherwise
	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
	 */
	drm_crtc_vblank_on(crtc);
	vc4_crtc_update_dlist(crtc);

562 563
	/* Turn on the scaler, which will wait for vstart to start
	 * compositing.
564 565
	 * When feeding the transposer, we should operate in oneshot
	 * mode.
566 567 568 569
	 */
	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
570 571
		  SCALER_DISPCTRLX_ENABLE |
		  (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
572

573 574 575 576 577 578
	/* When feeding the transposer block the pixelvalve is unneeded and
	 * should not be enabled.
	 */
	if (!vc4_state->feed_txp)
		CRTC_WRITE(PV_V_CONTROL,
			   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
579 580
}

581 582
static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
						const struct drm_display_mode *mode)
583
{
584
	/* Do not allow doublescan modes from user space */
585
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
586 587
		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
			      crtc->base.id);
588
		return MODE_NO_DBLESCAN;
589 590
	}

591
	return MODE_OK;
592 593
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
void vc4_crtc_get_margins(struct drm_crtc_state *state,
			  unsigned int *left, unsigned int *right,
			  unsigned int *top, unsigned int *bottom)
{
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
	struct drm_connector_state *conn_state;
	struct drm_connector *conn;
	int i;

	*left = vc4_state->margins.left;
	*right = vc4_state->margins.right;
	*top = vc4_state->margins.top;
	*bottom = vc4_state->margins.bottom;

	/* We have to interate over all new connector states because
	 * vc4_crtc_get_margins() might be called before
	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
	 * might be outdated.
	 */
	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
		if (conn_state->crtc != state->crtc)
			continue;

		*left = conn_state->tv.margins.left;
		*right = conn_state->tv.margins.right;
		*top = conn_state->tv.margins.top;
		*bottom = conn_state->tv.margins.bottom;
		break;
	}
}

625 626 627
static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
				 struct drm_crtc_state *state)
{
628
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
629 630 631
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane;
632
	unsigned long flags;
633
	const struct drm_plane_state *plane_state;
634 635
	struct drm_connector *conn;
	struct drm_connector_state *conn_state;
636
	u32 dlist_count = 0;
637
	int ret, i;
638 639 640 641

	/* The pixelvalve can only feed one encoder (and encoders are
	 * 1:1 with connectors.)
	 */
642
	if (hweight32(state->connector_mask) > 1)
643 644
		return -EINVAL;

645
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
646 647 648 649
		dlist_count += vc4_plane_dlist_size(plane_state);

	dlist_count++; /* Account for SCALER_CTL0_END. */

650 651
	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
652
				 dlist_count);
653 654 655
	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
	if (ret)
		return ret;
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
		if (conn_state->crtc != crtc)
			continue;

		/* The writeback connector is implemented using the transposer
		 * block which is directly taking its data from the HVS FIFO.
		 */
		if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
			state->no_vblank = true;
			vc4_state->feed_txp = true;
		} else {
			state->no_vblank = false;
			vc4_state->feed_txp = false;
		}

672 673 674 675
		vc4_state->margins.left = conn_state->tv.margins.left;
		vc4_state->margins.right = conn_state->tv.margins.right;
		vc4_state->margins.top = conn_state->tv.margins.top;
		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
676 677 678
		break;
	}

679 680 681 682 683 684 685 686
	return 0;
}

static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
				  struct drm_crtc_state *old_state)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
687
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
688
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689
	struct drm_plane *plane;
690
	struct vc4_plane_state *vc4_plane_state;
691
	bool debug_dump_regs = false;
692
	bool enable_bg_fill = false;
693 694
	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
	u32 __iomem *dlist_next = dlist_start;
695 696 697 698 699 700

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
		vc4_hvs_dump_state(dev);
	}

701
	/* Copy all the active planes' dlist contents to the hardware dlist. */
702
	drm_atomic_crtc_for_each_plane(plane, crtc) {
703 704 705 706 707 708 709 710 711 712 713 714 715 716
		/* Is this the first active plane? */
		if (dlist_next == dlist_start) {
			/* We need to enable background fill when a plane
			 * could be alpha blending from the background, i.e.
			 * where no other plane is underneath. It suffices to
			 * consider the first active plane here since we set
			 * needs_bg_fill such that either the first plane
			 * already needs it or all planes on top blend from
			 * the first or a lower plane.
			 */
			vc4_plane_state = to_vc4_plane_state(plane->state);
			enable_bg_fill = vc4_plane_state->needs_bg_fill;
		}

717 718 719
		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
	}

720 721 722 723 724
	writel(SCALER_CTL0_END, dlist_next);
	dlist_next++;

	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);

725 726 727 728 729 730 731 732
	if (enable_bg_fill)
		/* This sets a black background color fill, as is the case
		 * with other DRM drivers.
		 */
		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
			  SCALER_DISPBKGND_FILL);

733 734 735 736 737 738 739 740 741
	/* Only update DISPLIST if the CRTC was already running and is not
	 * being disabled.
	 * vc4_crtc_enable() takes care of updating the dlist just after
	 * re-enabling VBLANK interrupts and before enabling the engine.
	 * If the CRTC is being disabled, there's no point in updating this
	 * information.
	 */
	if (crtc->state->active && old_state->active)
		vc4_crtc_update_dlist(crtc);
742

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	if (crtc->state->color_mgmt_changed) {
		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));

		if (crtc->state->gamma_lut) {
			vc4_crtc_update_gamma_lut(crtc);
			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
		} else {
			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
			 * in hardware, which is the same as a linear lut that
			 * DRM expects us to use in absence of a user lut.
			 */
			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
		}
		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
	}

759 760 761
	if (debug_dump_regs) {
		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
		vc4_hvs_dump_state(dev);
762 763 764
	}
}

765
static int vc4_enable_vblank(struct drm_crtc *crtc)
766
{
767
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
768 769 770 771 772 773

	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);

	return 0;
}

774
static void vc4_disable_vblank(struct drm_crtc *crtc)
775
{
776
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
777 778 779 780 781 782 783 784

	CRTC_WRITE(PV_INTEN, 0);
}

static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
{
	struct drm_crtc *crtc = &vc4_crtc->base;
	struct drm_device *dev = crtc->dev;
785 786 787
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
	u32 chan = vc4_crtc->channel;
788 789 790
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
791
	if (vc4_crtc->event &&
792 793
	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
	     vc4_state->feed_txp)) {
794 795
		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
		vc4_crtc->event = NULL;
796
		drm_crtc_vblank_put(crtc);
797 798 799 800 801 802 803 804

		/* Wait for the page flip to unmask the underrun to ensure that
		 * the display list was updated by the hardware. Before that
		 * happens, the HVS will be using the previous display list with
		 * the CRTC and encoder already reconfigured, leading to
		 * underruns. This can be seen when reconfiguring the CRTC.
		 */
		vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
805 806 807 808
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

809 810 811 812 813 814 815
void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
{
	crtc->t_vblank = ktime_get();
	drm_crtc_handle_vblank(&crtc->base);
	vc4_crtc_handle_page_flip(crtc);
}

816 817 818 819 820 821 822 823
static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
{
	struct vc4_crtc *vc4_crtc = data;
	u32 stat = CRTC_READ(PV_INTSTAT);
	irqreturn_t ret = IRQ_NONE;

	if (stat & PV_INT_VFP_START) {
		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
824
		vc4_crtc_handle_vblank(vc4_crtc);
825 826 827 828 829 830
		ret = IRQ_HANDLED;
	}

	return ret;
}

831 832 833
struct vc4_async_flip_state {
	struct drm_crtc *crtc;
	struct drm_framebuffer *fb;
834
	struct drm_framebuffer *old_fb;
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	struct drm_pending_vblank_event *event;

	struct vc4_seqno_cb cb;
};

/* Called when the V3D execution for the BO being flipped to is done, so that
 * we can actually update the plane's address to point to it.
 */
static void
vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
{
	struct vc4_async_flip_state *flip_state =
		container_of(cb, struct vc4_async_flip_state, cb);
	struct drm_crtc *crtc = flip_state->crtc;
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane = crtc->primary;

	vc4_plane_async_set_fb(plane, flip_state->fb);
	if (flip_state->event) {
		unsigned long flags;

		spin_lock_irqsave(&dev->event_lock, flags);
		drm_crtc_send_vblank_event(crtc, flip_state->event);
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

862
	drm_crtc_vblank_put(crtc);
863
	drm_framebuffer_put(flip_state->fb);
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
	 * when the planes are updated through the async update path.
	 * FIXME: we should move to generic async-page-flip when it's
	 * available, so that we can get rid of this hand-made cleanup_fb()
	 * logic.
	 */
	if (flip_state->old_fb) {
		struct drm_gem_cma_object *cma_bo;
		struct vc4_bo *bo;

		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
		bo = to_vc4_bo(&cma_bo->base);
		vc4_bo_dec_usecnt(bo);
		drm_framebuffer_put(flip_state->old_fb);
	}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	kfree(flip_state);

	up(&vc4->async_modeset);
}

/* Implements async (non-vblank-synced) page flips.
 *
 * The page flip ioctl needs to return immediately, so we grab the
 * modeset semaphore on the pipe, and queue the address update for
 * when V3D is done with the BO being flipped to.
 */
static int vc4_async_page_flip(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb,
			       struct drm_pending_vblank_event *event,
			       uint32_t flags)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane = crtc->primary;
	int ret = 0;
	struct vc4_async_flip_state *flip_state;
	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);

905 906 907 908 909 910 911 912 913 914 915
	/* Increment the BO usecnt here, so that we never end up with an
	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
	 * plane is later updated through the non-async path.
	 * FIXME: we should move to generic async-page-flip when it's
	 * available, so that we can get rid of this hand-made prepare_fb()
	 * logic.
	 */
	ret = vc4_bo_inc_usecnt(bo);
	if (ret)
		return ret;

916
	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
917 918
	if (!flip_state) {
		vc4_bo_dec_usecnt(bo);
919
		return -ENOMEM;
920
	}
921

922
	drm_framebuffer_get(fb);
923 924 925 926 927 928 929
	flip_state->fb = fb;
	flip_state->crtc = crtc;
	flip_state->event = event;

	/* Make sure all other async modesetes have landed. */
	ret = down_interruptible(&vc4->async_modeset);
	if (ret) {
930
		drm_framebuffer_put(fb);
931
		vc4_bo_dec_usecnt(bo);
932 933 934 935
		kfree(flip_state);
		return ret;
	}

936 937 938 939 940 941 942 943 944 945 946 947
	/* Save the current FB before it's replaced by the new one in
	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
	 * it consistent.
	 * FIXME: we should move to generic async-page-flip when it's
	 * available, so that we can get rid of this hand-made cleanup_fb()
	 * logic.
	 */
	flip_state->old_fb = plane->state->fb;
	if (flip_state->old_fb)
		drm_framebuffer_get(flip_state->old_fb);

948 949
	WARN_ON(drm_crtc_vblank_get(crtc) != 0);

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	/* Immediately update the plane's legacy fb pointer, so that later
	 * modeset prep sees the state that will be present when the semaphore
	 * is released.
	 */
	drm_atomic_set_fb_for_plane(plane->state, fb);

	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
			   vc4_async_page_flip_complete);

	/* Driver takes ownership of state on successful async commit. */
	return 0;
}

static int vc4_page_flip(struct drm_crtc *crtc,
			 struct drm_framebuffer *fb,
			 struct drm_pending_vblank_event *event,
966 967
			 uint32_t flags,
			 struct drm_modeset_acquire_ctx *ctx)
968 969 970 971
{
	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
		return vc4_async_page_flip(crtc, fb, event, flags);
	else
972
		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
973 974
}

975 976
static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
{
977
	struct vc4_crtc_state *vc4_state, *old_vc4_state;
978 979 980 981 982

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

983 984
	old_vc4_state = to_vc4_crtc_state(crtc->state);
	vc4_state->feed_txp = old_vc4_state->feed_txp;
985
	vc4_state->margins = old_vc4_state->margins;
986

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
	return &vc4_state->base;
}

static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
				   struct drm_crtc_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);

	if (vc4_state->mm.allocated) {
		unsigned long flags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
		drm_mm_remove_node(&vc4_state->mm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);

	}

1006
	drm_atomic_helper_crtc_destroy_state(crtc, state);
1007 1008
}

1009 1010 1011 1012
static void
vc4_crtc_reset(struct drm_crtc *crtc)
{
	if (crtc->state)
1013
		vc4_crtc_destroy_state(crtc, crtc->state);
1014 1015 1016 1017 1018 1019

	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
	if (crtc->state)
		crtc->state->crtc = crtc;
}

1020 1021 1022
static const struct drm_crtc_funcs vc4_crtc_funcs = {
	.set_config = drm_atomic_helper_set_config,
	.destroy = vc4_crtc_destroy,
1023
	.page_flip = vc4_page_flip,
1024 1025 1026
	.set_property = NULL,
	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1027
	.reset = vc4_crtc_reset,
1028 1029
	.atomic_duplicate_state = vc4_crtc_duplicate_state,
	.atomic_destroy_state = vc4_crtc_destroy_state,
1030
	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1031 1032
	.enable_vblank = vc4_enable_vblank,
	.disable_vblank = vc4_disable_vblank,
1033 1034 1035 1036
};

static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
	.mode_set_nofb = vc4_crtc_mode_set_nofb,
1037
	.mode_valid = vc4_crtc_mode_valid,
1038 1039
	.atomic_check = vc4_crtc_atomic_check,
	.atomic_flush = vc4_crtc_atomic_flush,
1040
	.atomic_enable = vc4_crtc_atomic_enable,
1041
	.atomic_disable = vc4_crtc_atomic_disable,
1042 1043 1044 1045
};

static const struct vc4_crtc_data pv0_data = {
	.hvs_channel = 0,
1046
	.debugfs_name = "crtc0_regs",
1047 1048 1049 1050
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
	},
1051 1052 1053 1054
};

static const struct vc4_crtc_data pv1_data = {
	.hvs_channel = 2,
1055
	.debugfs_name = "crtc1_regs",
1056 1057 1058 1059
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
	},
1060 1061 1062 1063
};

static const struct vc4_crtc_data pv2_data = {
	.hvs_channel = 1,
1064
	.debugfs_name = "crtc2_regs",
1065 1066 1067 1068
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
	},
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
};

static const struct of_device_id vc4_crtc_dt_match[] = {
	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
	{}
};

static void vc4_set_crtc_possible_masks(struct drm_device *drm,
					struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1082 1083
	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1084 1085 1086
	struct drm_encoder *encoder;

	drm_for_each_encoder(encoder, drm) {
1087
		struct vc4_encoder *vc4_encoder;
1088 1089
		int i;

1090 1091 1092 1093 1094 1095 1096 1097
		/* HVS FIFO2 can feed the TXP IP. */
		if (crtc_data->hvs_channel == 2 &&
		    encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
			encoder->possible_crtcs |= drm_crtc_mask(crtc);
			continue;
		}

		vc4_encoder = to_vc4_encoder(encoder);
1098 1099 1100 1101 1102 1103
		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
			if (vc4_encoder->type == encoder_types[i]) {
				vc4_encoder->clock_select = i;
				encoder->possible_crtcs |= drm_crtc_mask(crtc);
				break;
			}
1104 1105 1106 1107
		}
	}
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static void
vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
{
	struct drm_device *drm = vc4_crtc->base.dev;
	struct vc4_dev *vc4 = to_vc4_dev(drm);
	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
	/* Top/base are supposed to be 4-pixel aligned, but the
	 * Raspberry Pi firmware fills the low bits (which are
	 * presumably ignored).
	 */
	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;

	vc4_crtc->cob_size = top - base + 4;
}

1124 1125 1126 1127 1128 1129
static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct drm_device *drm = dev_get_drvdata(master);
	struct vc4_crtc *vc4_crtc;
	struct drm_crtc *crtc;
1130
	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1131
	const struct of_device_id *match;
1132
	int ret, i;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
	if (!vc4_crtc)
		return -ENOMEM;
	crtc = &vc4_crtc->base;

	match = of_match_device(vc4_crtc_dt_match, dev);
	if (!match)
		return -ENODEV;
	vc4_crtc->data = match->data;
1143
	vc4_crtc->pdev = pdev;
1144 1145 1146 1147 1148

	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
	if (IS_ERR(vc4_crtc->regs))
		return PTR_ERR(vc4_crtc->regs);

1149 1150 1151 1152
	vc4_crtc->regset.base = vc4_crtc->regs;
	vc4_crtc->regset.regs = crtc_regs;
	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);

1153 1154 1155 1156 1157 1158 1159
	/* For now, we create just the primary and the legacy cursor
	 * planes.  We should be able to stack more planes on easily,
	 * but to do that we would need to compute the bandwidth
	 * requirement of the plane configuration, and reject ones
	 * that will take too much.
	 */
	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1160
	if (IS_ERR(primary_plane)) {
1161 1162 1163 1164 1165
		dev_err(dev, "failed to construct primary plane\n");
		ret = PTR_ERR(primary_plane);
		goto err;
	}

1166
	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1167
				  &vc4_crtc_funcs, NULL);
1168 1169
	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1170
	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1171
	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1172

S
Stefan Schake 已提交
1173 1174 1175 1176 1177
	/* We support CTM, but only for one CRTC at a time. It's therefore
	 * implemented as private driver state in vc4_kms, not here.
	 */
	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/* Set up some arbitrary number of planes.  We're not limited
	 * by a set number of physical registers, just the space in
	 * the HVS (16k) and how small an plane can be (28 bytes).
	 * However, each plane we set up takes up some memory, and
	 * increases the cost of looping over planes, which atomic
	 * modesetting does quite a bit.  As a result, we pick a
	 * modest number of planes to expose, that should hopefully
	 * still cover any sane usecase.
	 */
	for (i = 0; i < 8; i++) {
		struct drm_plane *plane =
			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);

		if (IS_ERR(plane))
			continue;

V
Ville Syrjälä 已提交
1194
		plane->possible_crtcs = drm_crtc_mask(crtc);
1195 1196 1197 1198 1199 1200 1201 1202
	}

	/* Set up the legacy cursor after overlay initialization,
	 * since we overlay planes on the CRTC in the order they were
	 * initialized.
	 */
	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
	if (!IS_ERR(cursor_plane)) {
V
Ville Syrjälä 已提交
1203
		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1204 1205 1206
		crtc->cursor = cursor_plane;
	}

1207 1208
	vc4_crtc_get_cob_allocation(vc4_crtc);

1209 1210 1211 1212 1213
	CRTC_WRITE(PV_INTEN, 0);
	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
	if (ret)
1214
		goto err_destroy_planes;
1215 1216 1217

	vc4_set_crtc_possible_masks(drm, crtc);

1218 1219 1220 1221 1222 1223
	for (i = 0; i < crtc->gamma_size; i++) {
		vc4_crtc->lut_r[i] = i;
		vc4_crtc->lut_g[i] = i;
		vc4_crtc->lut_b[i] = i;
	}

1224 1225
	platform_set_drvdata(pdev, vc4_crtc);

1226 1227 1228
	vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
				 &vc4_crtc->regset);

1229 1230
	return 0;

1231 1232 1233
err_destroy_planes:
	list_for_each_entry_safe(destroy_plane, temp,
				 &drm->mode_config.plane_list, head) {
V
Ville Syrjälä 已提交
1234
		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1235 1236
		    destroy_plane->funcs->destroy(destroy_plane);
	}
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
err:
	return ret;
}

static void vc4_crtc_unbind(struct device *dev, struct device *master,
			    void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);

	vc4_crtc_destroy(&vc4_crtc->base);

	CRTC_WRITE(PV_INTEN, 0);

	platform_set_drvdata(pdev, NULL);
}

static const struct component_ops vc4_crtc_ops = {
	.bind   = vc4_crtc_bind,
	.unbind = vc4_crtc_unbind,
};

static int vc4_crtc_dev_probe(struct platform_device *pdev)
{
	return component_add(&pdev->dev, &vc4_crtc_ops);
}

static int vc4_crtc_dev_remove(struct platform_device *pdev)
{
	component_del(&pdev->dev, &vc4_crtc_ops);
	return 0;
}

struct platform_driver vc4_crtc_driver = {
	.probe = vc4_crtc_dev_probe,
	.remove = vc4_crtc_dev_remove,
	.driver = {
		.name = "vc4_crtc",
		.of_match_table = vc4_crtc_dt_match,
	},
};