vc4_crtc.c 30.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 2015 Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/**
 * DOC: VC4 CRTC module
 *
 * In VC4, the Pixel Valve is what most closely corresponds to the
 * DRM's concept of a CRTC.  The PV generates video timings from the
14
 * encoder's clock plus its configuration.  It pulls scaled pixels from
15 16 17
 * the HVS at that timing, and feeds it to the encoder.
 *
 * However, the DRM CRTC also collects the configuration of all the
18 19 20
 * DRM planes attached to it.  As a result, the CRTC is also
 * responsible for writing the display list for the HVS channel that
 * the CRTC will use.
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * The 2835 has 3 different pixel valves.  pv0 in the audio power
 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
 * image domain can feed either HDMI or the SDTV controller.  The
 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
 * SDTV, etc.) according to which output type is chosen in the mux.
 *
 * For power management, the pixel valve's registers are all clocked
 * by the AXI clock, while the timings and FIFOs make use of the
 * output-specific clock.  Since the encoders also directly consume
 * the CPRMAN clocks, and know what timings they need, they are the
 * ones that set the clock.
 */

35 36 37 38 39 40 41
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <linux/clk.h>
#include <drm/drm_fb_cma_helper.h>
#include <linux/component.h>
#include <linux/of_device.h>
42 43 44 45 46 47 48 49
#include "vc4_drv.h"
#include "vc4_regs.h"

struct vc4_crtc {
	struct drm_crtc base;
	const struct vc4_crtc_data *data;
	void __iomem *regs;

50 51 52
	/* Timestamp at start of vblank irq - unaffected by lock delays. */
	ktime_t t_vblank;

53 54 55
	/* Which HVS channel we're using for our CRTC. */
	int channel;

56 57 58
	u8 lut_r[256];
	u8 lut_g[256];
	u8 lut_b[256];
59 60
	/* Size in pixels of the COB memory allocated to this CRTC. */
	u32 cob_size;
61

62 63 64
	struct drm_pending_vblank_event *event;
};

65 66 67 68 69 70
struct vc4_crtc_state {
	struct drm_crtc_state base;
	/* Dlist area for this CRTC configuration. */
	struct drm_mm_node mm;
};

71 72 73 74 75 76
static inline struct vc4_crtc *
to_vc4_crtc(struct drm_crtc *crtc)
{
	return (struct vc4_crtc *)crtc;
}

77 78 79 80 81 82
static inline struct vc4_crtc_state *
to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
{
	return (struct vc4_crtc_state *)crtc_state;
}

83 84 85 86
struct vc4_crtc_data {
	/* Which channel of the HVS this pixelvalve sources from. */
	int hvs_channel;

87
	enum vc4_encoder_type encoder_types[4];
88 89 90 91 92 93 94 95 96 97 98 99
};

#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))

#define CRTC_REG(reg) { reg, #reg }
static const struct {
	u32 reg;
	const char *name;
} crtc_regs[] = {
	CRTC_REG(PV_CONTROL),
	CRTC_REG(PV_V_CONTROL),
100
	CRTC_REG(PV_VSYNCD_EVEN),
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	CRTC_REG(PV_HORZA),
	CRTC_REG(PV_HORZB),
	CRTC_REG(PV_VERTA),
	CRTC_REG(PV_VERTB),
	CRTC_REG(PV_VERTA_EVEN),
	CRTC_REG(PV_VERTB_EVEN),
	CRTC_REG(PV_INTEN),
	CRTC_REG(PV_INTSTAT),
	CRTC_REG(PV_STAT),
	CRTC_REG(PV_HACT_ACT),
};

static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
		DRM_INFO("0x%04x (%s): 0x%08x\n",
			 crtc_regs[i].reg, crtc_regs[i].name,
			 CRTC_READ(crtc_regs[i].reg));
	}
}

#ifdef CONFIG_DEBUG_FS
int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *)m->private;
	struct drm_device *dev = node->minor->dev;
	int crtc_index = (uintptr_t)node->info_ent->data;
	struct drm_crtc *crtc;
	struct vc4_crtc *vc4_crtc;
	int i;

	i = 0;
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		if (i == crtc_index)
			break;
		i++;
	}
	if (!crtc)
		return 0;
	vc4_crtc = to_vc4_crtc(crtc);

	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
		seq_printf(m, "%s (0x%04x): 0x%08x\n",
			   crtc_regs[i].name, crtc_regs[i].reg,
			   CRTC_READ(crtc_regs[i].reg));
	}

	return 0;
}
#endif

154 155 156 157
bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
			     bool in_vblank_irq, int *vpos, int *hpos,
			     ktime_t *stime, ktime_t *etime,
			     const struct drm_display_mode *mode)
158 159
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
160 161
	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162 163 164
	u32 val;
	int fifo_lines;
	int vblank_lines;
165
	bool ret = false;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */

	/* Get optional system timestamp before query. */
	if (stime)
		*stime = ktime_get();

	/*
	 * Read vertical scanline which is currently composed for our
	 * pixelvalve by the HVS, and also the scaler status.
	 */
	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));

	/* Get optional system timestamp after query. */
	if (etime)
		*etime = ktime_get();

	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */

	/* Vertical position of hvs composed scanline. */
	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187 188 189 190
	*hpos = 0;

	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		*vpos /= 2;
191

192 193 194 195
		/* Use hpos to correct for field offset in interlaced mode. */
		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
			*hpos += mode->crtc_htotal / 2;
	}
196 197 198 199 200

	/* This is the offset we need for translating hvs -> pv scanout pos. */
	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;

	if (fifo_lines > 0)
201
		ret = true;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

	/* HVS more than fifo_lines into frame for compositing? */
	if (*vpos > fifo_lines) {
		/*
		 * We are in active scanout and can get some meaningful results
		 * from HVS. The actual PV scanout can not trail behind more
		 * than fifo_lines as that is the fifo's capacity. Assume that
		 * in active scanout the HVS and PV work in lockstep wrt. HVS
		 * refilling the fifo and PV consuming from the fifo, ie.
		 * whenever the PV consumes and frees up a scanline in the
		 * fifo, the HVS will immediately refill it, therefore
		 * incrementing vpos. Therefore we choose HVS read position -
		 * fifo size in scanlines as a estimate of the real scanout
		 * position of the PV.
		 */
		*vpos -= fifo_lines + 1;

		return ret;
	}

	/*
	 * Less: This happens when we are in vblank and the HVS, after getting
	 * the VSTART restart signal from the PV, just started refilling its
	 * fifo with new lines from the top-most lines of the new framebuffers.
	 * The PV does not scan out in vblank, so does not remove lines from
	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
	 * We can't get meaningful readings wrt. scanline position of the PV
	 * and need to make things up in a approximative but consistent way.
	 */
231
	vblank_lines = mode->vtotal - mode->vdisplay;
232

233
	if (in_vblank_irq) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		/*
		 * Assume the irq handler got called close to first
		 * line of vblank, so PV has about a full vblank
		 * scanlines to go, and as a base timestamp use the
		 * one taken at entry into vblank irq handler, so it
		 * is not affected by random delays due to lock
		 * contention on event_lock or vblank_time lock in
		 * the core.
		 */
		*vpos = -vblank_lines;

		if (stime)
			*stime = vc4_crtc->t_vblank;
		if (etime)
			*etime = vc4_crtc->t_vblank;

		/*
		 * If the HVS fifo is not yet full then we know for certain
		 * we are at the very beginning of vblank, as the hvs just
		 * started refilling, and the stime and etime timestamps
		 * truly correspond to start of vblank.
255 256 257
		 *
		 * Unfortunately there's no way to report this to upper levels
		 * and make it more useful.
258 259 260 261 262 263 264 265 266 267 268 269 270 271
		 */
	} else {
		/*
		 * No clue where we are inside vblank. Return a vpos of zero,
		 * which will cause calling code to just return the etime
		 * timestamp uncorrected. At least this is no worse than the
		 * standard fallback.
		 */
		*vpos = 0;
	}

	return ret;
}

272 273 274 275 276
static void vc4_crtc_destroy(struct drm_crtc *crtc)
{
	drm_crtc_cleanup(crtc);
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void
vc4_crtc_lut_load(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 i;

	/* The LUT memory is laid out with each HVS channel in order,
	 * each of which takes 256 writes for R, 256 for G, then 256
	 * for B.
	 */
	HVS_WRITE(SCALER_GAMADDR,
		  SCALER_GAMADDR_AUTOINC |
		  (vc4_crtc->channel * 3 * crtc->gamma_size));

	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
}

301
static int
302
vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
303 304
		   uint32_t size,
		   struct drm_modeset_acquire_ctx *ctx)
305 306 307 308
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 i;

309
	for (i = 0; i < size; i++) {
310 311 312 313 314 315
		vc4_crtc->lut_r[i] = r[i] >> 8;
		vc4_crtc->lut_g[i] = g[i] >> 8;
		vc4_crtc->lut_b[i] = b[i] >> 8;
	}

	vc4_crtc_lut_load(crtc);
316 317

	return 0;
318 319
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
static u32 vc4_get_fifo_full_level(u32 format)
{
	static const u32 fifo_len_bytes = 64;
	static const u32 hvs_latency_pix = 6;

	switch (format) {
	case PV_CONTROL_FORMAT_DSIV_16:
	case PV_CONTROL_FORMAT_DSIC_16:
		return fifo_len_bytes - 2 * hvs_latency_pix;
	case PV_CONTROL_FORMAT_DSIV_18:
		return fifo_len_bytes - 14;
	case PV_CONTROL_FORMAT_24:
	case PV_CONTROL_FORMAT_DSIV_24:
	default:
		return fifo_len_bytes - 3 * hvs_latency_pix;
	}
}

/*
339 340 341 342 343
 * Returns the encoder attached to the CRTC.
 *
 * VC4 can only scan out to one encoder at a time, while the DRM core
 * allows drivers to push pixels to more than one encoder from the
 * same CRTC.
344
 */
345
static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
346 347 348 349
{
	struct drm_connector *connector;

	drm_for_each_connector(connector, crtc->dev) {
J
Julia Lawall 已提交
350
		if (connector->state->crtc == crtc) {
351
			return connector->encoder;
352 353 354
		}
	}

355
	return NULL;
356 357 358 359
}

static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
360 361
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
362 363
	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
364 365 366 367
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_crtc_state *state = crtc->state;
	struct drm_display_mode *mode = &state->adjusted_mode;
	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
368
	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
369 370 371
	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
372 373 374 375 376 377 378 379 380 381 382 383 384
	bool debug_dump_regs = false;

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
		vc4_crtc_dump_regs(vc4_crtc);
	}

	/* Reset the PV fifo. */
	CRTC_WRITE(PV_CONTROL, 0);
	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
	CRTC_WRITE(PV_CONTROL, 0);

	CRTC_WRITE(PV_HORZA,
385 386
		   VC4_SET_FIELD((mode->htotal -
				  mode->hsync_end) * pixel_rep,
387
				 PV_HORZA_HBP) |
388 389
		   VC4_SET_FIELD((mode->hsync_end -
				  mode->hsync_start) * pixel_rep,
390 391
				 PV_HORZA_HSYNC));
	CRTC_WRITE(PV_HORZB,
392 393
		   VC4_SET_FIELD((mode->hsync_start -
				  mode->hdisplay) * pixel_rep,
394
				 PV_HORZB_HFP) |
395
		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
396

397
	CRTC_WRITE(PV_VERTA,
398
		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
399
				 PV_VERTA_VBP) |
400
		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
401 402
				 PV_VERTA_VSYNC));
	CRTC_WRITE(PV_VERTB,
403
		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
404
				 PV_VERTB_VFP) |
405
		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
406

407 408
	if (interlace) {
		CRTC_WRITE(PV_VERTA_EVEN,
409 410
			   VC4_SET_FIELD(mode->crtc_vtotal -
					 mode->crtc_vsync_end - 1,
411
					 PV_VERTA_VBP) |
412 413
			   VC4_SET_FIELD(mode->crtc_vsync_end -
					 mode->crtc_vsync_start,
414 415
					 PV_VERTA_VSYNC));
		CRTC_WRITE(PV_VERTB_EVEN,
416 417
			   VC4_SET_FIELD(mode->crtc_vsync_start -
					 mode->crtc_vdisplay,
418
					 PV_VERTB_VFP) |
419 420 421 422 423 424 425 426 427
			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));

		/* We set up first field even mode for HDMI.  VEC's
		 * NTSC mode would want first field odd instead, once
		 * we support it (to do so, set ODD_FIRST and put the
		 * delay in VSYNCD_EVEN instead).
		 */
		CRTC_WRITE(PV_V_CONTROL,
			   PV_VCONTROL_CONTINUOUS |
428
			   (is_dsi ? PV_VCONTROL_DSI : 0) |
429
			   PV_VCONTROL_INTERLACE |
430
			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
431 432 433
					 PV_VCONTROL_ODD_DELAY));
		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
	} else {
434 435 436
		CRTC_WRITE(PV_V_CONTROL,
			   PV_VCONTROL_CONTINUOUS |
			   (is_dsi ? PV_VCONTROL_DSI : 0));
437 438
	}

439
	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
440 441 442 443 444

	CRTC_WRITE(PV_CONTROL,
		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
				 PV_CONTROL_FIFO_LEVEL) |
445
		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
446 447 448
		   PV_CONTROL_CLR_AT_START |
		   PV_CONTROL_TRIGGER_UNDERFLOW |
		   PV_CONTROL_WAIT_HSTART |
449 450
		   VC4_SET_FIELD(vc4_encoder->clock_select,
				 PV_CONTROL_CLK_SELECT) |
451 452 453
		   PV_CONTROL_FIFO_CLR |
		   PV_CONTROL_EN);

454 455
	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
		  SCALER_DISPBKGND_AUTOHS |
456
		  SCALER_DISPBKGND_GAMMA |
457 458
		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));

459 460 461 462 463
	/* Reload the LUT, since the SRAMs would have been disabled if
	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
	 */
	vc4_crtc_lut_load(crtc);

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	if (debug_dump_regs) {
		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
		vc4_crtc_dump_regs(vc4_crtc);
	}
}

static void require_hvs_enabled(struct drm_device *dev)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);

	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
		     SCALER_DISPCTRL_ENABLE);
}

static void vc4_crtc_disable(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 chan = vc4_crtc->channel;
	int ret;
	require_hvs_enabled(dev);

487 488 489
	/* Disable vblank irq handling before crtc is disabled. */
	drm_crtc_vblank_off(crtc);

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");

	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
	    SCALER_DISPCTRLX_ENABLE) {
		HVS_WRITE(SCALER_DISPCTRLX(chan),
			  SCALER_DISPCTRLX_RESET);

		/* While the docs say that reset is self-clearing, it
		 * seems it doesn't actually.
		 */
		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
	}

	/* Once we leave, the scaler should be disabled and its fifo empty. */

	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);

	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
				   SCALER_DISPSTATX_MODE) !=
		     SCALER_DISPSTATX_MODE_DISABLED);

	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
		     SCALER_DISPSTATX_EMPTY);
}

static void vc4_crtc_enable(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_crtc_state *state = crtc->state;
	struct drm_display_mode *mode = &state->adjusted_mode;

	require_hvs_enabled(dev);

	/* Turn on the scaler, which will wait for vstart to start
	 * compositing.
	 */
	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
		  SCALER_DISPCTRLX_ENABLE);

	/* Turn on the pixel valve, which will emit the vstart signal. */
	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
540 541 542

	/* Enable vblank irq handling after crtc is started. */
	drm_crtc_vblank_on(crtc);
543 544
}

545 546 547 548
static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
				const struct drm_display_mode *mode,
				struct drm_display_mode *adjusted_mode)
{
549 550 551 552 553 554 555
	/* Do not allow doublescan modes from user space */
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
			      crtc->base.id);
		return false;
	}

556 557 558
	return true;
}

559 560 561
static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
				 struct drm_crtc_state *state)
{
562
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
563 564 565
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane;
566
	unsigned long flags;
567
	const struct drm_plane_state *plane_state;
568
	u32 dlist_count = 0;
569
	int ret;
570 571 572 573

	/* The pixelvalve can only feed one encoder (and encoders are
	 * 1:1 with connectors.)
	 */
574
	if (hweight32(state->connector_mask) > 1)
575 576
		return -EINVAL;

577
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
578 579 580 581
		dlist_count += vc4_plane_dlist_size(plane_state);

	dlist_count++; /* Account for SCALER_CTL0_END. */

582 583
	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
584
				 dlist_count);
585 586 587
	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
	if (ret)
		return ret;
588 589 590 591 592 593 594 595 596 597

	return 0;
}

static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
				  struct drm_crtc_state *old_state)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
598
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
599 600
	struct drm_plane *plane;
	bool debug_dump_regs = false;
601 602
	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
	u32 __iomem *dlist_next = dlist_start;
603 604 605 606 607 608

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
		vc4_hvs_dump_state(dev);
	}

609
	/* Copy all the active planes' dlist contents to the hardware dlist. */
610 611 612 613
	drm_atomic_crtc_for_each_plane(plane, crtc) {
		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
	}

614 615 616 617 618
	writel(SCALER_CTL0_END, dlist_next);
	dlist_next++;

	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);

619 620 621 622 623 624 625 626 627 628
	if (crtc->state->event) {
		unsigned long flags;

		crtc->state->event->pipe = drm_crtc_index(crtc);

		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		vc4_crtc->event = crtc->state->event;
		crtc->state->event = NULL;
629 630 631 632 633 634 635 636 637 638 639 640 641

		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
			  vc4_state->mm.start);

		spin_unlock_irqrestore(&dev->event_lock, flags);
	} else {
		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
			  vc4_state->mm.start);
	}

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
		vc4_hvs_dump_state(dev);
642 643 644
	}
}

645
static int vc4_enable_vblank(struct drm_crtc *crtc)
646
{
647
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
648 649 650 651 652 653

	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);

	return 0;
}

654
static void vc4_disable_vblank(struct drm_crtc *crtc)
655
{
656
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
657 658 659 660

	CRTC_WRITE(PV_INTEN, 0);
}

661 662 663 664 665 666 667 668
/* Must be called with the event lock held */
bool vc4_event_pending(struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);

	return !!vc4_crtc->event;
}

669 670 671 672
static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
{
	struct drm_crtc *crtc = &vc4_crtc->base;
	struct drm_device *dev = crtc->dev;
673 674 675
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
	u32 chan = vc4_crtc->channel;
676 677 678
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
679 680
	if (vc4_crtc->event &&
	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
681 682
		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
		vc4_crtc->event = NULL;
683
		drm_crtc_vblank_put(crtc);
684 685 686 687 688 689 690 691 692 693 694
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
{
	struct vc4_crtc *vc4_crtc = data;
	u32 stat = CRTC_READ(PV_INTSTAT);
	irqreturn_t ret = IRQ_NONE;

	if (stat & PV_INT_VFP_START) {
695
		vc4_crtc->t_vblank = ktime_get();
696 697 698 699 700 701 702 703 704
		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
		drm_crtc_handle_vblank(&vc4_crtc->base);
		vc4_crtc_handle_page_flip(vc4_crtc);
		ret = IRQ_HANDLED;
	}

	return ret;
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
struct vc4_async_flip_state {
	struct drm_crtc *crtc;
	struct drm_framebuffer *fb;
	struct drm_pending_vblank_event *event;

	struct vc4_seqno_cb cb;
};

/* Called when the V3D execution for the BO being flipped to is done, so that
 * we can actually update the plane's address to point to it.
 */
static void
vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
{
	struct vc4_async_flip_state *flip_state =
		container_of(cb, struct vc4_async_flip_state, cb);
	struct drm_crtc *crtc = flip_state->crtc;
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane = crtc->primary;

	vc4_plane_async_set_fb(plane, flip_state->fb);
	if (flip_state->event) {
		unsigned long flags;

		spin_lock_irqsave(&dev->event_lock, flags);
		drm_crtc_send_vblank_event(crtc, flip_state->event);
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

735
	drm_crtc_vblank_put(crtc);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	drm_framebuffer_unreference(flip_state->fb);
	kfree(flip_state);

	up(&vc4->async_modeset);
}

/* Implements async (non-vblank-synced) page flips.
 *
 * The page flip ioctl needs to return immediately, so we grab the
 * modeset semaphore on the pipe, and queue the address update for
 * when V3D is done with the BO being flipped to.
 */
static int vc4_async_page_flip(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb,
			       struct drm_pending_vblank_event *event,
			       uint32_t flags)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane = crtc->primary;
	int ret = 0;
	struct vc4_async_flip_state *flip_state;
	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);

	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
	if (!flip_state)
		return -ENOMEM;

	drm_framebuffer_reference(fb);
	flip_state->fb = fb;
	flip_state->crtc = crtc;
	flip_state->event = event;

	/* Make sure all other async modesetes have landed. */
	ret = down_interruptible(&vc4->async_modeset);
	if (ret) {
773
		drm_framebuffer_unreference(fb);
774 775 776 777
		kfree(flip_state);
		return ret;
	}

778 779
	WARN_ON(drm_crtc_vblank_get(crtc) != 0);

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	/* Immediately update the plane's legacy fb pointer, so that later
	 * modeset prep sees the state that will be present when the semaphore
	 * is released.
	 */
	drm_atomic_set_fb_for_plane(plane->state, fb);
	plane->fb = fb;

	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
			   vc4_async_page_flip_complete);

	/* Driver takes ownership of state on successful async commit. */
	return 0;
}

static int vc4_page_flip(struct drm_crtc *crtc,
			 struct drm_framebuffer *fb,
			 struct drm_pending_vblank_event *event,
797 798
			 uint32_t flags,
			 struct drm_modeset_acquire_ctx *ctx)
799 800 801 802
{
	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
		return vc4_async_page_flip(crtc, fb, event, flags);
	else
803
		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
804 805
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
{
	struct vc4_crtc_state *vc4_state;

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
	return &vc4_state->base;
}

static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
				   struct drm_crtc_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);

	if (vc4_state->mm.allocated) {
		unsigned long flags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
		drm_mm_remove_node(&vc4_state->mm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);

	}

833
	drm_atomic_helper_crtc_destroy_state(crtc, state);
834 835
}

836 837 838 839 840 841 842 843 844 845 846
static void
vc4_crtc_reset(struct drm_crtc *crtc)
{
	if (crtc->state)
		__drm_atomic_helper_crtc_destroy_state(crtc->state);

	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
	if (crtc->state)
		crtc->state->crtc = crtc;
}

847 848 849
static const struct drm_crtc_funcs vc4_crtc_funcs = {
	.set_config = drm_atomic_helper_set_config,
	.destroy = vc4_crtc_destroy,
850
	.page_flip = vc4_page_flip,
851 852 853
	.set_property = NULL,
	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
854
	.reset = vc4_crtc_reset,
855 856
	.atomic_duplicate_state = vc4_crtc_duplicate_state,
	.atomic_destroy_state = vc4_crtc_destroy_state,
857
	.gamma_set = vc4_crtc_gamma_set,
858 859
	.enable_vblank = vc4_enable_vblank,
	.disable_vblank = vc4_disable_vblank,
860 861 862 863 864 865
};

static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
	.mode_set_nofb = vc4_crtc_mode_set_nofb,
	.disable = vc4_crtc_disable,
	.enable = vc4_crtc_enable,
866
	.mode_fixup = vc4_crtc_mode_fixup,
867 868 869 870 871 872
	.atomic_check = vc4_crtc_atomic_check,
	.atomic_flush = vc4_crtc_atomic_flush,
};

static const struct vc4_crtc_data pv0_data = {
	.hvs_channel = 0,
873 874 875 876
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
	},
877 878 879 880
};

static const struct vc4_crtc_data pv1_data = {
	.hvs_channel = 2,
881 882 883 884
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
	},
885 886 887 888
};

static const struct vc4_crtc_data pv2_data = {
	.hvs_channel = 1,
889 890 891 892
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
	},
893 894 895 896 897 898 899 900 901 902 903 904 905
};

static const struct of_device_id vc4_crtc_dt_match[] = {
	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
	{}
};

static void vc4_set_crtc_possible_masks(struct drm_device *drm,
					struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
906 907
	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
908 909 910 911
	struct drm_encoder *encoder;

	drm_for_each_encoder(encoder, drm) {
		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
912 913 914 915 916 917 918 919
		int i;

		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
			if (vc4_encoder->type == encoder_types[i]) {
				vc4_encoder->clock_select = i;
				encoder->possible_crtcs |= drm_crtc_mask(crtc);
				break;
			}
920 921 922 923
		}
	}
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
static void
vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
{
	struct drm_device *drm = vc4_crtc->base.dev;
	struct vc4_dev *vc4 = to_vc4_dev(drm);
	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
	/* Top/base are supposed to be 4-pixel aligned, but the
	 * Raspberry Pi firmware fills the low bits (which are
	 * presumably ignored).
	 */
	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;

	vc4_crtc->cob_size = top - base + 4;
}

940 941 942 943 944 945
static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct drm_device *drm = dev_get_drvdata(master);
	struct vc4_crtc *vc4_crtc;
	struct drm_crtc *crtc;
946
	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
947
	const struct of_device_id *match;
948
	int ret, i;
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
	if (!vc4_crtc)
		return -ENOMEM;
	crtc = &vc4_crtc->base;

	match = of_match_device(vc4_crtc_dt_match, dev);
	if (!match)
		return -ENODEV;
	vc4_crtc->data = match->data;

	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
	if (IS_ERR(vc4_crtc->regs))
		return PTR_ERR(vc4_crtc->regs);

	/* For now, we create just the primary and the legacy cursor
	 * planes.  We should be able to stack more planes on easily,
	 * but to do that we would need to compute the bandwidth
	 * requirement of the plane configuration, and reject ones
	 * that will take too much.
	 */
	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
971
	if (IS_ERR(primary_plane)) {
972 973 974 975 976
		dev_err(dev, "failed to construct primary plane\n");
		ret = PTR_ERR(primary_plane);
		goto err;
	}

977
	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
978
				  &vc4_crtc_funcs, NULL);
979 980 981
	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
	primary_plane->crtc = crtc;
	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
982
	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	/* Set up some arbitrary number of planes.  We're not limited
	 * by a set number of physical registers, just the space in
	 * the HVS (16k) and how small an plane can be (28 bytes).
	 * However, each plane we set up takes up some memory, and
	 * increases the cost of looping over planes, which atomic
	 * modesetting does quite a bit.  As a result, we pick a
	 * modest number of planes to expose, that should hopefully
	 * still cover any sane usecase.
	 */
	for (i = 0; i < 8; i++) {
		struct drm_plane *plane =
			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);

		if (IS_ERR(plane))
			continue;

		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
	}

	/* Set up the legacy cursor after overlay initialization,
	 * since we overlay planes on the CRTC in the order they were
	 * initialized.
	 */
	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
	if (!IS_ERR(cursor_plane)) {
		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
		cursor_plane->crtc = crtc;
		crtc->cursor = cursor_plane;
	}

1014 1015
	vc4_crtc_get_cob_allocation(vc4_crtc);

1016 1017 1018 1019 1020
	CRTC_WRITE(PV_INTEN, 0);
	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
	if (ret)
1021
		goto err_destroy_planes;
1022 1023 1024

	vc4_set_crtc_possible_masks(drm, crtc);

1025 1026 1027 1028 1029 1030
	for (i = 0; i < crtc->gamma_size; i++) {
		vc4_crtc->lut_r[i] = i;
		vc4_crtc->lut_g[i] = i;
		vc4_crtc->lut_b[i] = i;
	}

1031 1032 1033 1034
	platform_set_drvdata(pdev, vc4_crtc);

	return 0;

1035 1036 1037 1038 1039 1040
err_destroy_planes:
	list_for_each_entry_safe(destroy_plane, temp,
				 &drm->mode_config.plane_list, head) {
		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
		    destroy_plane->funcs->destroy(destroy_plane);
	}
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
err:
	return ret;
}

static void vc4_crtc_unbind(struct device *dev, struct device *master,
			    void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);

	vc4_crtc_destroy(&vc4_crtc->base);

	CRTC_WRITE(PV_INTEN, 0);

	platform_set_drvdata(pdev, NULL);
}

static const struct component_ops vc4_crtc_ops = {
	.bind   = vc4_crtc_bind,
	.unbind = vc4_crtc_unbind,
};

static int vc4_crtc_dev_probe(struct platform_device *pdev)
{
	return component_add(&pdev->dev, &vc4_crtc_ops);
}

static int vc4_crtc_dev_remove(struct platform_device *pdev)
{
	component_del(&pdev->dev, &vc4_crtc_ops);
	return 0;
}

struct platform_driver vc4_crtc_driver = {
	.probe = vc4_crtc_dev_probe,
	.remove = vc4_crtc_dev_remove,
	.driver = {
		.name = "vc4_crtc",
		.of_match_table = vc4_crtc_dt_match,
	},
};