hns3_enet.c 113.6 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.
3 4 5 6

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
7 8 9
#ifdef CONFIG_RFS_ACCEL
#include <linux/cpu_rmap.h>
#endif
10 11 12 13 14
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/module.h>
#include <linux/pci.h>
15
#include <linux/aer.h>
16 17 18 19
#include <linux/skbuff.h>
#include <linux/sctp.h>
#include <linux/vermagic.h>
#include <net/gre.h>
20
#include <net/ip6_checksum.h>
21
#include <net/pkt_cls.h>
22
#include <net/tcp.h>
23 24 25 26 27
#include <net/vxlan.h>

#include "hnae3.h"
#include "hns3_enet.h"

28
#define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
29
#define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
30

31 32
static void hns3_clear_all_ring(struct hnae3_handle *h);
static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
33
static void hns3_remove_hw_addr(struct net_device *netdev);
34

35
static const char hns3_driver_name[] = "hns3";
36 37 38 39 40 41
const char hns3_driver_version[] = VERMAGIC_STRING;
static const char hns3_driver_string[] =
			"Hisilicon Ethernet Network Driver for Hip08 Family";
static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
static struct hnae3_client client;

42 43 44 45 46 47 48
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, " Network interface message level setting");

#define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)

49 50 51 52 53 54 55 56 57 58
/* hns3_pci_tbl - PCI Device ID Table
 *
 * Last entry must be all 0s
 *
 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 *   Class, Class Mask, private data (not used) }
 */
static const struct pci_device_id hns3_pci_tbl[] = {
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
59
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
60
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
61
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
62
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
63
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
64
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
65
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
66
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
67
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
68
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
69
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
70 71
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
72 73 74 75 76
	/* required last entry */
	{0, }
};
MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);

77
static irqreturn_t hns3_irq_handle(int irq, void *vector)
78
{
79
	struct hns3_enet_tqp_vector *tqp_vector = vector;
80

81
	napi_schedule_irqoff(&tqp_vector->napi);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

	return IRQ_HANDLED;
}

static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
{
	struct hns3_enet_tqp_vector *tqp_vectors;
	unsigned int i;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vectors = &priv->tqp_vector[i];

		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
			continue;

97
		/* clear the affinity mask */
P
Peng Li 已提交
98 99
		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
		/* release the irq resource */
		free_irq(tqp_vectors->vector_irq, tqp_vectors);
		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
	}
}

static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
{
	struct hns3_enet_tqp_vector *tqp_vectors;
	int txrx_int_idx = 0;
	int rx_int_idx = 0;
	int tx_int_idx = 0;
	unsigned int i;
	int ret;

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vectors = &priv->tqp_vector[i];

		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
			continue;

		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
				 "%s-%s-%d", priv->netdev->name, "TxRx",
				 txrx_int_idx++);
			txrx_int_idx++;
		} else if (tqp_vectors->rx_group.ring) {
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
				 "%s-%s-%d", priv->netdev->name, "Rx",
				 rx_int_idx++);
		} else if (tqp_vectors->tx_group.ring) {
			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
				 "%s-%s-%d", priv->netdev->name, "Tx",
				 tx_int_idx++);
		} else {
			/* Skip this unused q_vector */
			continue;
		}

		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';

		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
142
				  tqp_vectors->name, tqp_vectors);
143 144 145 146 147 148
		if (ret) {
			netdev_err(priv->netdev, "request irq(%d) fail\n",
				   tqp_vectors->vector_irq);
			return ret;
		}

P
Peng Li 已提交
149 150 151
		irq_set_affinity_hint(tqp_vectors->vector_irq,
				      &tqp_vectors->affinity_mask);

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
	}

	return 0;
}

static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
				 u32 mask_en)
{
	writel(mask_en, tqp_vector->mask_addr);
}

static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
{
	napi_enable(&tqp_vector->napi);

	/* enable vector */
	hns3_mask_vector_irq(tqp_vector, 1);
}

static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
{
	/* disable vector */
	hns3_mask_vector_irq(tqp_vector, 0);

	disable_irq(tqp_vector->vector_irq);
	napi_disable(&tqp_vector->napi);
}

181 182
void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
				 u32 rl_value)
183
{
184 185
	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);

186 187 188 189
	/* this defines the configuration for RL (Interrupt Rate Limiter).
	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
	 */
190

191 192
	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
	    !tqp_vector->rx_group.coal.gl_adapt_enable)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
		/* According to the hardware, the range of rl_reg is
		 * 0-59 and the unit is 4.
		 */
		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;

	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
}

void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
				    u32 gl_value)
{
	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);

	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
}

void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
				    u32 gl_value)
{
	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);

	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
215 216
}

217 218
static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
				   struct hns3_nic_priv *priv)
219 220 221 222 223 224
{
	/* initialize the configuration for interrupt coalescing.
	 * 1. GL (Interrupt Gap Limiter)
	 * 2. RL (Interrupt Rate Limiter)
	 */

225
	/* Default: enable interrupt coalescing self-adaptive and GL */
226 227
	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
228

229 230
	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
231

232 233
	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
234 235
}

236 237 238 239 240 241
static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
				      struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;

	hns3_set_vector_coalesce_tx_gl(tqp_vector,
242
				       tqp_vector->tx_group.coal.int_gl);
243
	hns3_set_vector_coalesce_rx_gl(tqp_vector,
244
				       tqp_vector->rx_group.coal.int_gl);
245 246 247
	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
}

248 249
static int hns3_nic_set_real_num_queue(struct net_device *netdev)
{
250
	struct hnae3_handle *h = hns3_get_handle(netdev);
251 252
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	int i, ret;

	if (kinfo->num_tc <= 1) {
		netdev_reset_tc(netdev);
	} else {
		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
		if (ret) {
			netdev_err(netdev,
				   "netdev_set_num_tc fail, ret=%d!\n", ret);
			return ret;
		}

		for (i = 0; i < HNAE3_MAX_TC; i++) {
			if (!kinfo->tc_info[i].enable)
				continue;

			netdev_set_tc_queue(netdev,
					    kinfo->tc_info[i].tc,
					    kinfo->tc_info[i].tqp_count,
					    kinfo->tc_info[i].tqp_offset);
		}
	}
275 276 277 278

	ret = netif_set_real_num_tx_queues(netdev, queue_size);
	if (ret) {
		netdev_err(netdev,
279
			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
280 281 282 283 284 285 286 287 288 289 290 291 292
		return ret;
	}

	ret = netif_set_real_num_rx_queues(netdev, queue_size);
	if (ret) {
		netdev_err(netdev,
			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
		return ret;
	}

	return 0;
}

293 294
static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
{
295
	u16 alloc_tqps, max_rss_size, rss_size;
296

297 298
	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
	rss_size = alloc_tqps / h->kinfo.num_tc;
299

300
	return min_t(u16, rss_size, max_rss_size);
301 302
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
static void hns3_tqp_enable(struct hnae3_queue *tqp)
{
	u32 rcb_reg;

	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
	rcb_reg |= BIT(HNS3_RING_EN_B);
	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}

static void hns3_tqp_disable(struct hnae3_queue *tqp)
{
	u32 rcb_reg;

	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
	rcb_reg &= ~BIT(HNS3_RING_EN_B);
	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
{
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
	netdev->rx_cpu_rmap = NULL;
#endif
}

static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
{
#ifdef CONFIG_RFS_ACCEL
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hns3_enet_tqp_vector *tqp_vector;
	int i, ret;

	if (!netdev->rx_cpu_rmap) {
		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
		if (!netdev->rx_cpu_rmap)
			return -ENOMEM;
	}

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
				       tqp_vector->vector_irq);
		if (ret) {
			hns3_free_rx_cpu_rmap(netdev);
			return ret;
		}
	}
#endif
	return 0;
}

355 356 357 358 359 360 361
static int hns3_nic_net_up(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	int i, j;
	int ret;

362 363 364 365
	ret = hns3_nic_reset_all_ring(h);
	if (ret)
		return ret;

366 367 368 369 370
	/* the device can work without cpu rmap, only aRFS needs it */
	ret = hns3_set_rx_cpu_rmap(netdev);
	if (ret)
		netdev_warn(netdev, "set rx cpu rmap fail, ret=%d!\n", ret);

371 372 373
	/* get irq resource for all vectors */
	ret = hns3_nic_init_irq(priv);
	if (ret) {
374
		netdev_err(netdev, "init irq failed! ret=%d\n", ret);
375
		goto free_rmap;
376 377
	}

378 379
	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);

380 381 382 383
	/* enable the vectors */
	for (i = 0; i < priv->vector_num; i++)
		hns3_vector_enable(&priv->tqp_vector[i]);

384 385 386 387
	/* enable rcb */
	for (j = 0; j < h->kinfo.num_tqps; j++)
		hns3_tqp_enable(h->kinfo.tqp[j]);

388 389 390 391 392 393 394 395
	/* start the ae_dev */
	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
	if (ret)
		goto out_start_err;

	return 0;

out_start_err:
396
	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
397 398 399
	while (j--)
		hns3_tqp_disable(h->kinfo.tqp[j]);

400 401 402 403
	for (j = i - 1; j >= 0; j--)
		hns3_vector_disable(&priv->tqp_vector[j]);

	hns3_nic_uninit_irq(priv);
404 405
free_rmap:
	hns3_free_rx_cpu_rmap(netdev);
406 407 408
	return ret;
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static void hns3_config_xps(struct hns3_nic_priv *priv)
{
	int i;

	for (i = 0; i < priv->vector_num; i++) {
		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;

		while (ring) {
			int ret;

			ret = netif_set_xps_queue(priv->netdev,
						  &tqp_vector->affinity_mask,
						  ring->tqp->tqp_index);
			if (ret)
				netdev_warn(priv->netdev,
					    "set xps queue failed: %d", ret);

			ring = ring->next;
		}
	}
}

432 433
static int hns3_nic_net_open(struct net_device *netdev)
{
434
	struct hns3_nic_priv *priv = netdev_priv(netdev);
435 436 437
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct hnae3_knic_private_info *kinfo;
	int i, ret;
438

439 440 441
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

442 443
	netif_carrier_off(netdev);

444 445
	ret = hns3_nic_set_real_num_queue(netdev);
	if (ret)
446 447 448 449
		return ret;

	ret = hns3_nic_net_up(netdev);
	if (ret) {
450
		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
451 452 453
		return ret;
	}

454
	kinfo = &h->kinfo;
455 456
	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
457

458 459 460
	if (h->ae_algo->ops->set_timer_task)
		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);

461
	hns3_config_xps(priv);
462 463 464 465 466 467
	return 0;
}

static void hns3_nic_net_down(struct net_device *netdev)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
468
	struct hnae3_handle *h = hns3_get_handle(netdev);
469 470 471
	const struct hnae3_ae_ops *ops;
	int i;

472 473 474
	/* disable vectors */
	for (i = 0; i < priv->vector_num; i++)
		hns3_vector_disable(&priv->tqp_vector[i]);
475 476 477 478

	/* disable rcb */
	for (i = 0; i < h->kinfo.num_tqps; i++)
		hns3_tqp_disable(h->kinfo.tqp[i]);
479

480 481 482 483 484
	/* stop ae_dev */
	ops = priv->ae_handle->ae_algo->ops;
	if (ops->stop)
		ops->stop(priv->ae_handle);

485 486
	hns3_free_rx_cpu_rmap(netdev);

487 488
	/* free irq resources */
	hns3_nic_uninit_irq(priv);
489 490

	hns3_clear_all_ring(priv->ae_handle);
491 492 493 494
}

static int hns3_nic_net_stop(struct net_device *netdev)
{
495
	struct hns3_nic_priv *priv = netdev_priv(netdev);
496
	struct hnae3_handle *h = hns3_get_handle(netdev);
497 498 499 500

	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
		return 0;

501 502 503
	if (h->ae_algo->ops->set_timer_task)
		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);

504 505 506 507 508 509 510 511 512 513 514
	netif_tx_stop_all_queues(netdev);
	netif_carrier_off(netdev);

	hns3_nic_net_down(netdev);

	return 0;
}

static int hns3_nic_uc_sync(struct net_device *netdev,
			    const unsigned char *addr)
{
515
	struct hnae3_handle *h = hns3_get_handle(netdev);
516 517 518 519 520 521 522 523 524 525

	if (h->ae_algo->ops->add_uc_addr)
		return h->ae_algo->ops->add_uc_addr(h, addr);

	return 0;
}

static int hns3_nic_uc_unsync(struct net_device *netdev,
			      const unsigned char *addr)
{
526
	struct hnae3_handle *h = hns3_get_handle(netdev);
527 528 529 530 531 532 533 534 535 536

	if (h->ae_algo->ops->rm_uc_addr)
		return h->ae_algo->ops->rm_uc_addr(h, addr);

	return 0;
}

static int hns3_nic_mc_sync(struct net_device *netdev,
			    const unsigned char *addr)
{
537
	struct hnae3_handle *h = hns3_get_handle(netdev);
538

539
	if (h->ae_algo->ops->add_mc_addr)
540 541 542 543 544 545 546 547
		return h->ae_algo->ops->add_mc_addr(h, addr);

	return 0;
}

static int hns3_nic_mc_unsync(struct net_device *netdev,
			      const unsigned char *addr)
{
548
	struct hnae3_handle *h = hns3_get_handle(netdev);
549

550
	if (h->ae_algo->ops->rm_mc_addr)
551 552 553 554 555
		return h->ae_algo->ops->rm_mc_addr(h, addr);

	return 0;
}

556 557 558 559 560
static u8 hns3_get_netdev_flags(struct net_device *netdev)
{
	u8 flags = 0;

	if (netdev->flags & IFF_PROMISC) {
561
		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
562 563 564 565 566 567 568 569 570
	} else {
		flags |= HNAE3_VLAN_FLTR;
		if (netdev->flags & IFF_ALLMULTI)
			flags |= HNAE3_USER_MPE;
	}

	return flags;
}

571
static void hns3_nic_set_rx_mode(struct net_device *netdev)
572
{
573
	struct hnae3_handle *h = hns3_get_handle(netdev);
574 575
	u8 new_flags;
	int ret;
576

577 578 579 580
	new_flags = hns3_get_netdev_flags(netdev);

	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
	if (ret) {
581
		netdev_err(netdev, "sync uc address fail\n");
582 583 584 585
		if (ret == -ENOSPC)
			new_flags |= HNAE3_OVERFLOW_UPE;
	}

586
	if (netdev->flags & IFF_MULTICAST) {
587 588 589
		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
				    hns3_nic_mc_unsync);
		if (ret) {
590
			netdev_err(netdev, "sync mc address fail\n");
591 592 593 594 595 596 597 598 599 600 601
			if (ret == -ENOSPC)
				new_flags |= HNAE3_OVERFLOW_MPE;
		}
	}

	/* User mode Promisc mode enable and vlan filtering is disabled to
	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
	 * vlan fitering is enabled
	 */
	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
	h->netdev_flags = new_flags;
602
	hns3_update_promisc_mode(netdev, new_flags);
603 604
}

605
int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
606 607 608 609 610
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;

	if (h->ae_algo->ops->set_promisc_mode) {
611 612 613
		return h->ae_algo->ops->set_promisc_mode(h,
						promisc_flags & HNAE3_UPE,
						promisc_flags & HNAE3_MPE);
614
	}
615 616

	return 0;
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
}

void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	bool last_state;

	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
		if (enable != last_state) {
			netdev_info(netdev,
				    "%s vlan filter\n",
				    enable ? "enable" : "disable");
			h->ae_algo->ops->enable_vlan_filter(h, enable);
		}
633
	}
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
}

static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
			u16 *mss, u32 *type_cs_vlan_tso)
{
	u32 l4_offset, hdr_len;
	union l3_hdr_info l3;
	union l4_hdr_info l4;
	u32 l4_paylen;
	int ret;

	if (!skb_is_gso(skb))
		return 0;

	ret = skb_cow_head(skb, 0);
649
	if (unlikely(ret))
650 651 652 653 654 655 656 657 658 659 660
		return ret;

	l3.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);

	/* Software should clear the IPv4's checksum field when tso is
	 * needed.
	 */
	if (l3.v4->version == 4)
		l3.v4->check = 0;

661
	/* tunnel packet */
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
					 SKB_GSO_GRE_CSUM |
					 SKB_GSO_UDP_TUNNEL |
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
		if ((!(skb_shinfo(skb)->gso_type &
		    SKB_GSO_PARTIAL)) &&
		    (skb_shinfo(skb)->gso_type &
		    SKB_GSO_UDP_TUNNEL_CSUM)) {
			/* Software should clear the udp's checksum
			 * field when tso is needed.
			 */
			l4.udp->check = 0;
		}
		/* reset l3&l4 pointers from outer to inner headers */
		l3.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* Software should clear the IPv4's checksum field when
		 * tso is needed.
		 */
		if (l3.v4->version == 4)
			l3.v4->check = 0;
	}

686
	/* normal or tunnel packet */
687
	l4_offset = l4.hdr - skb->data;
688
	hdr_len = (l4.tcp->doff << 2) + l4_offset;
689

690
	/* remove payload length from inner pseudo checksum when tso */
691 692 693 694 695 696
	l4_paylen = skb->len - l4_offset;
	csum_replace_by_diff(&l4.tcp->check,
			     (__force __wsum)htonl(l4_paylen));

	/* find the txbd field values */
	*paylen = skb->len - hdr_len;
697
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
698 699 700 701 702 703 704

	/* get MSS for TSO */
	*mss = skb_shinfo(skb)->gso_size;

	return 0;
}

705 706
static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
				u8 *il4_proto)
707
{
708
	union l3_hdr_info l3;
709 710 711 712 713 714 715
	unsigned char *l4_hdr;
	unsigned char *exthdr;
	u8 l4_proto_tmp;
	__be16 frag_off;

	/* find outer header point */
	l3.hdr = skb_network_header(skb);
716
	l4_hdr = skb_transport_header(skb);
717 718 719 720 721 722 723 724 725

	if (skb->protocol == htons(ETH_P_IPV6)) {
		exthdr = l3.hdr + sizeof(*l3.v6);
		l4_proto_tmp = l3.v6->nexthdr;
		if (l4_hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto_tmp, &frag_off);
	} else if (skb->protocol == htons(ETH_P_IP)) {
		l4_proto_tmp = l3.v4->protocol;
726 727
	} else {
		return -EINVAL;
728 729 730 731 732 733 734
	}

	*ol4_proto = l4_proto_tmp;

	/* tunnel packet */
	if (!skb->encapsulation) {
		*il4_proto = 0;
735
		return 0;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	}

	/* find inner header point */
	l3.hdr = skb_inner_network_header(skb);
	l4_hdr = skb_inner_transport_header(skb);

	if (l3.v6->version == 6) {
		exthdr = l3.hdr + sizeof(*l3.v6);
		l4_proto_tmp = l3.v6->nexthdr;
		if (l4_hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto_tmp, &frag_off);
	} else if (l3.v4->version == 4) {
		l4_proto_tmp = l3.v4->protocol;
	}

	*il4_proto = l4_proto_tmp;
753 754

	return 0;
755 756
}

757 758 759 760 761 762 763 764
/* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
 * and it is udp packet, which has a dest port as the IANA assigned.
 * the hardware is expected to do the checksum offload, but the
 * hardware will not do the checksum offload when udp dest port is
 * 4789.
 */
static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
{
765
	union l4_hdr_info l4;
766 767 768

	l4.hdr = skb_transport_header(skb);

769 770
	if (!(!skb->encapsulation &&
	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
771 772 773 774 775 776 777
		return false;

	skb_checksum_help(skb);

	return true;
}

778 779
static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
				  u32 *ol_type_vlan_len_msec)
780
{
781 782
	u32 l2_len, l3_len, l4_len;
	unsigned char *il2_hdr;
783
	union l3_hdr_info l3;
784
	union l4_hdr_info l4;
785 786

	l3.hdr = skb_network_header(skb);
787
	l4.hdr = skb_transport_header(skb);
788

789 790 791 792 793 794 795
	/* compute OL2 header size, defined in 2 Bytes */
	l2_len = l3.hdr - skb->data;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);

	/* compute OL3 header size, defined in 4 Bytes */
	l3_len = l4.hdr - l3.hdr;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
796

797
	il2_hdr = skb_inner_mac_header(skb);
798
	/* compute OL4 header size, defined in 4 Bytes */
799 800 801 802 803 804
	l4_len = il2_hdr - l4.hdr;
	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);

	/* define outer network header type */
	if (skb->protocol == htons(ETH_P_IP)) {
		if (skb_is_gso(skb))
805
			hns3_set_field(*ol_type_vlan_len_msec,
806 807 808
				       HNS3_TXD_OL3T_S,
				       HNS3_OL3T_IPV4_CSUM);
		else
809
			hns3_set_field(*ol_type_vlan_len_msec,
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
				       HNS3_TXD_OL3T_S,
				       HNS3_OL3T_IPV4_NO_CSUM);

	} else if (skb->protocol == htons(ETH_P_IPV6)) {
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
			       HNS3_OL3T_IPV6);
	}

	if (ol4_proto == IPPROTO_UDP)
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
			       HNS3_TUN_MAC_IN_UDP);
	else if (ol4_proto == IPPROTO_GRE)
		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
			       HNS3_TUN_NVGRE);
}

static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
			   u8 il4_proto, u32 *type_cs_vlan_tso,
			   u32 *ol_type_vlan_len_msec)
{
830
	unsigned char *l2_hdr = skb->data;
831 832 833 834 835 836 837 838 839 840 841 842
	u32 l4_proto = ol4_proto;
	union l4_hdr_info l4;
	union l3_hdr_info l3;
	u32 l2_len, l3_len;

	l4.hdr = skb_transport_header(skb);
	l3.hdr = skb_network_header(skb);

	/* handle encapsulation skb */
	if (skb->encapsulation) {
		/* If this is a not UDP/GRE encapsulation skb */
		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
843 844 845 846 847 848 849 850 851 852 853 854 855
			/* drop the skb tunnel packet if hardware don't support,
			 * because hardware can't calculate csum when TSO.
			 */
			if (skb_is_gso(skb))
				return -EDOM;

			/* the stack computes the IP header already,
			 * driver calculate l4 checksum when not TSO.
			 */
			skb_checksum_help(skb);
			return 0;
		}

856 857 858 859
		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);

		/* switch to inner header */
		l2_hdr = skb_inner_mac_header(skb);
860
		l3.hdr = skb_inner_network_header(skb);
861
		l4.hdr = skb_inner_transport_header(skb);
862 863 864 865
		l4_proto = il4_proto;
	}

	if (l3.v4->version == 4) {
866 867
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
			       HNS3_L3T_IPV4);
868 869 870 871 872

		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
		if (skb_is_gso(skb))
873
			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
874
	} else if (l3.v6->version == 6) {
875 876
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
			       HNS3_L3T_IPV6);
877 878
	}

879 880 881 882 883 884 885 886 887
	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
	l2_len = l3.hdr - l2_hdr;
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);

	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
	l3_len = l4.hdr - l3.hdr;
	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);

	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
888 889
	switch (l4_proto) {
	case IPPROTO_TCP:
890 891 892
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_TCP);
893 894
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       l4.tcp->doff);
895 896
		break;
	case IPPROTO_UDP:
897 898 899
		if (hns3_tunnel_csum_bug(skb))
			break;

900 901 902
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_UDP);
903 904
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       (sizeof(struct udphdr) >> 2));
905 906
		break;
	case IPPROTO_SCTP:
907 908 909
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
			       HNS3_L4T_SCTP);
910 911
		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
			       (sizeof(struct sctphdr) >> 2));
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
		break;
	default:
		/* drop the skb tunnel packet if hardware don't support,
		 * because hardware can't calculate csum when TSO.
		 */
		if (skb_is_gso(skb))
			return -EDOM;

		/* the stack computes the IP header already,
		 * driver calculate l4 checksum when not TSO.
		 */
		skb_checksum_help(skb);
		return 0;
	}

	return 0;
}

static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
{
	/* Config bd buffer end */
933 934
	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
935 936
}

937 938 939 940 941 942 943 944 945
static int hns3_fill_desc_vtags(struct sk_buff *skb,
				struct hns3_enet_ring *tx_ring,
				u32 *inner_vlan_flag,
				u32 *out_vlan_flag,
				u16 *inner_vtag,
				u16 *out_vtag)
{
#define HNS3_TX_VLAN_PRIO_SHIFT 13

946 947 948 949 950 951 952 953 954 955
	struct hnae3_handle *handle = tx_ring->tqp->handle;

	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
	 * header is allowed in skb, otherwise it will cause RAS error.
	 */
	if (unlikely(skb_vlan_tagged_multi(skb) &&
		     handle->port_base_vlan_state ==
		     HNAE3_PORT_BASE_VLAN_ENABLE))
		return -EINVAL;

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	if (skb->protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->tqp->handle->kinfo.netdev->features &
	    NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off, and the stack
		 * sets the protocol to 802.1q, the driver just need to
		 * set the protocol to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		return 0;
	}

	if (skb_vlan_tag_present(skb)) {
		u16 vlan_tag;

		vlan_tag = skb_vlan_tag_get(skb);
		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;

		/* Based on hw strategy, use out_vtag in two layer tag case,
		 * and use inner_vtag in one tag case.
		 */
		if (skb->protocol == htons(ETH_P_8021Q)) {
977 978 979 980 981 982 983 984 985 986
			if (handle->port_base_vlan_state ==
			    HNAE3_PORT_BASE_VLAN_DISABLE){
				hns3_set_field(*out_vlan_flag,
					       HNS3_TXD_OVLAN_B, 1);
				*out_vtag = vlan_tag;
			} else {
				hns3_set_field(*inner_vlan_flag,
					       HNS3_TXD_VLAN_B, 1);
				*inner_vtag = vlan_tag;
			}
987
		} else {
988
			hns3_set_field(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
989 990 991 992 993 994 995
			*inner_vtag = vlan_tag;
		}
	} else if (skb->protocol == htons(ETH_P_8021Q)) {
		struct vlan_ethhdr *vhdr;
		int rc;

		rc = skb_cow_head(skb, 0);
996
		if (unlikely(rc < 0))
997 998 999 1000 1001 1002 1003 1004 1005 1006
			return rc;
		vhdr = (struct vlan_ethhdr *)skb->data;
		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
					<< HNS3_TX_VLAN_PRIO_SHIFT);
	}

	skb->protocol = vlan_get_protocol(skb);
	return 0;
}

1007
static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1008
			  int size, int frag_end, enum hns_desc_type type)
1009 1010 1011
{
	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1012 1013
	struct device *dev = ring_to_dev(ring);
	struct skb_frag_struct *frag;
1014
	unsigned int frag_buf_num;
1015
	int k, sizeoflast;
1016
	dma_addr_t dma;
1017 1018

	if (type == DESC_TYPE_SKB) {
1019 1020 1021 1022 1023 1024 1025 1026
		struct sk_buff *skb = (struct sk_buff *)priv;
		u32 ol_type_vlan_len_msec = 0;
		u32 type_cs_vlan_tso = 0;
		u32 paylen = skb->len;
		u16 inner_vtag = 0;
		u16 out_vtag = 0;
		u16 mss = 0;
		int ret;
1027

1028 1029 1030 1031 1032 1033
		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
					   &ol_type_vlan_len_msec,
					   &inner_vtag, &out_vtag);
		if (unlikely(ret))
			return ret;

1034
		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1035 1036
			u8 ol4_proto, il4_proto;

1037 1038
			skb_reset_mac_len(skb);

1039
			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1040
			if (unlikely(ret))
1041
				return ret;
1042 1043 1044 1045

			ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
					      &type_cs_vlan_tso,
					      &ol_type_vlan_len_msec);
1046
			if (unlikely(ret))
1047 1048 1049 1050
				return ret;

			ret = hns3_set_tso(skb, &paylen, &mss,
					   &type_cs_vlan_tso);
1051
			if (unlikely(ret))
1052 1053 1054 1055 1056 1057
				return ret;
		}

		/* Set txbd */
		desc->tx.ol_type_vlan_len_msec =
			cpu_to_le32(ol_type_vlan_len_msec);
1058
		desc->tx.type_cs_vlan_tso_len =	cpu_to_le32(type_cs_vlan_tso);
1059
		desc->tx.paylen = cpu_to_le32(paylen);
1060
		desc->tx.mss = cpu_to_le16(mss);
1061 1062
		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1063 1064 1065 1066 1067 1068 1069

		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
	} else {
		frag = (struct skb_frag_struct *)priv;
		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
	}

1070
	if (unlikely(dma_mapping_error(dev, dma))) {
1071 1072
		ring->stats.sw_err_cnt++;
		return -ENOMEM;
1073 1074
	}

1075 1076
	desc_cb->length = size;

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (likely(size <= HNS3_MAX_BD_SIZE)) {
		u16 bdtp_fe_sc_vld_ra_ri = 0;

		desc_cb->priv = priv;
		desc_cb->dma = dma;
		desc_cb->type = type;
		desc->addr = cpu_to_le64(dma);
		desc->tx.send_size = cpu_to_le16(size);
		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
		desc->tx.bdtp_fe_sc_vld_ra_ri =
			cpu_to_le16(bdtp_fe_sc_vld_ra_ri);

		ring_ptr_move_fw(ring, next_to_use);
		return 0;
	}

1093
	frag_buf_num = hns3_tx_bd_count(size);
1094
	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1095 1096 1097 1098
	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;

	/* When frag size is bigger than hardware limit, split this frag */
	for (k = 0; k < frag_buf_num; k++) {
1099 1100
		u16 bdtp_fe_sc_vld_ra_ri = 0;

1101 1102 1103 1104
		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
		desc_cb->priv = priv;
		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1105
				DESC_TYPE_SKB : DESC_TYPE_PAGE;
1106 1107 1108

		/* now, fill the descriptor */
		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1109
		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1110
				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1111 1112 1113 1114 1115 1116
		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
				       frag_end && (k == frag_buf_num - 1) ?
						1 : 0);
		desc->tx.bdtp_fe_sc_vld_ra_ri =
				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);

1117
		/* move ring pointer to next */
1118 1119 1120 1121 1122
		ring_ptr_move_fw(ring, next_to_use);

		desc_cb = &ring->desc_cb[ring->next_to_use];
		desc = &ring->desc[ring->next_to_use];
	}
1123 1124 1125 1126

	return 0;
}

1127
static int hns3_nic_bd_num(struct sk_buff *skb)
1128
{
1129 1130
	int size = skb_headlen(skb);
	int i, bd_num;
1131

1132 1133 1134
	/* if the total len is within the max bd limit */
	if (likely(skb->len <= HNS3_MAX_BD_SIZE))
		return skb_shinfo(skb)->nr_frags + 1;
1135

1136
	bd_num = hns3_tx_bd_count(size);
1137

1138 1139 1140
	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
		int frag_bd_num;
1141

1142 1143 1144 1145
		size = skb_frag_size(frag);
		frag_bd_num = hns3_tx_bd_count(size);

		if (unlikely(frag_bd_num > HNS3_MAX_BD_PER_FRAG))
P
Peng Li 已提交
1146 1147
			return -ENOMEM;

1148 1149
		bd_num += frag_bd_num;
	}
1150

1151
	return bd_num;
1152 1153
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
{
	if (!skb->encapsulation)
		return skb_transport_offset(skb) + tcp_hdrlen(skb);

	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
}

/* HW need every continuous 8 buffer data to be larger than MSS,
 * we simplify it by ensuring skb_headlen + the first continuous
 * 7 frags to to be larger than gso header len + mss, and the remaining
 * continuous 7 frags to be larger than MSS except the last 7 frags.
 */
static bool hns3_skb_need_linearized(struct sk_buff *skb)
{
	int bd_limit = HNS3_MAX_BD_PER_FRAG - 1;
	unsigned int tot_len = 0;
	int i;

	for (i = 0; i < bd_limit; i++)
		tot_len += skb_frag_size(&skb_shinfo(skb)->frags[i]);

	/* ensure headlen + the first 7 frags is greater than mss + header
	 * and the first 7 frags is greater than mss.
	 */
	if (((tot_len + skb_headlen(skb)) < (skb_shinfo(skb)->gso_size +
	    hns3_gso_hdr_len(skb))) || (tot_len < skb_shinfo(skb)->gso_size))
		return true;

	/* ensure the remaining continuous 7 buffer is greater than mss */
	for (i = 0; i < (skb_shinfo(skb)->nr_frags - bd_limit - 1); i++) {
		tot_len -= skb_frag_size(&skb_shinfo(skb)->frags[i]);
		tot_len += skb_frag_size(&skb_shinfo(skb)->frags[i + bd_limit]);

		if (tot_len < skb_shinfo(skb)->gso_size)
			return true;
	}

	return false;
}

1195 1196
static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
				  struct sk_buff **out_skb)
1197 1198
{
	struct sk_buff *skb = *out_skb;
1199
	int bd_num;
1200

1201 1202 1203 1204 1205 1206
	bd_num = hns3_nic_bd_num(skb);
	if (bd_num < 0)
		return bd_num;

	if (unlikely(bd_num > HNS3_MAX_BD_PER_FRAG)) {
		struct sk_buff *new_skb;
1207

1208 1209 1210
		if (skb_is_gso(skb) && !hns3_skb_need_linearized(skb))
			goto out;

1211 1212
		bd_num = hns3_tx_bd_count(skb->len);
		if (unlikely(ring_space(ring) < bd_num))
P
Peng Li 已提交
1213 1214 1215 1216 1217 1218 1219
			return -EBUSY;
		/* manual split the send packet */
		new_skb = skb_copy(skb, GFP_ATOMIC);
		if (!new_skb)
			return -ENOMEM;
		dev_kfree_skb_any(skb);
		*out_skb = new_skb;
1220 1221 1222 1223

		u64_stats_update_begin(&ring->syncp);
		ring->stats.tx_copy++;
		u64_stats_update_end(&ring->syncp);
P
Peng Li 已提交
1224 1225
	}

1226
out:
1227
	if (unlikely(ring_space(ring) < bd_num))
1228 1229
		return -EBUSY;

1230
	return bd_num;
1231 1232
}

F
Fuyun Liang 已提交
1233
static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1234 1235 1236 1237 1238 1239 1240 1241 1242
{
	struct device *dev = ring_to_dev(ring);
	unsigned int i;

	for (i = 0; i < ring->desc_num; i++) {
		/* check if this is where we started */
		if (ring->next_to_use == next_to_use_orig)
			break;

1243 1244 1245
		/* rollback one */
		ring_ptr_move_bw(ring, next_to_use);

1246 1247 1248 1249 1250 1251
		/* unmap the descriptor dma address */
		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
			dma_unmap_single(dev,
					 ring->desc_cb[ring->next_to_use].dma,
					ring->desc_cb[ring->next_to_use].length,
					DMA_TO_DEVICE);
1252
		else if (ring->desc_cb[ring->next_to_use].length)
1253 1254 1255 1256 1257
			dma_unmap_page(dev,
				       ring->desc_cb[ring->next_to_use].dma,
				       ring->desc_cb[ring->next_to_use].length,
				       DMA_TO_DEVICE);

1258
		ring->desc_cb[ring->next_to_use].length = 0;
1259
		ring->desc_cb[ring->next_to_use].dma = 0;
1260 1261 1262
	}
}

1263
netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hns3_nic_ring_data *ring_data =
		&tx_ring_data(priv, skb->queue_mapping);
	struct hns3_enet_ring *ring = ring_data->ring;
	struct netdev_queue *dev_queue;
	struct skb_frag_struct *frag;
	int next_to_use_head;
	int buf_num;
	int seg_num;
	int size;
	int ret;
	int i;

	/* Prefetch the data used later */
	prefetch(skb->data);

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	buf_num = hns3_nic_maybe_stop_tx(ring, &skb);
	if (unlikely(buf_num <= 0)) {
		if (buf_num == -EBUSY) {
			u64_stats_update_begin(&ring->syncp);
			ring->stats.tx_busy++;
			u64_stats_update_end(&ring->syncp);
			goto out_net_tx_busy;
		} else if (buf_num == -ENOMEM) {
			u64_stats_update_begin(&ring->syncp);
			ring->stats.sw_err_cnt++;
			u64_stats_update_end(&ring->syncp);
		}
1293

1294 1295
		if (net_ratelimit())
			netdev_err(netdev, "xmit error: %d!\n", buf_num);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

		goto out_err_tx_ok;
	}

	/* No. of segments (plus a header) */
	seg_num = skb_shinfo(skb)->nr_frags + 1;
	/* Fill the first part */
	size = skb_headlen(skb);

	next_to_use_head = ring->next_to_use;

1307 1308
	ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
			     DESC_TYPE_SKB);
1309
	if (unlikely(ret))
1310
		goto fill_err;
1311 1312 1313 1314 1315

	/* Fill the fragments */
	for (i = 1; i < seg_num; i++) {
		frag = &skb_shinfo(skb)->frags[i - 1];
		size = skb_frag_size(frag);
1316

1317 1318 1319
		ret = hns3_fill_desc(ring, frag, size,
				     seg_num - 1 == i ? 1 : 0,
				     DESC_TYPE_PAGE);
1320

1321
		if (unlikely(ret))
1322
			goto fill_err;
1323 1324 1325 1326 1327 1328 1329 1330
	}

	/* Complete translate all packets */
	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
	netdev_tx_sent_queue(dev_queue, skb->len);

	wmb(); /* Commit all data before submit */

P
Peng Li 已提交
1331
	hnae3_queue_xmit(ring->tqp, buf_num);
1332 1333 1334

	return NETDEV_TX_OK;

1335
fill_err:
F
Fuyun Liang 已提交
1336
	hns3_clear_desc(ring, next_to_use_head);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

out_err_tx_ok:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;

out_net_tx_busy:
	netif_stop_subqueue(netdev, ring_data->queue_index);
	smp_mb(); /* Commit all data before submit */

	return NETDEV_TX_BUSY;
}

static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
{
1351
	struct hnae3_handle *h = hns3_get_handle(netdev);
1352 1353 1354 1355 1356 1357
	struct sockaddr *mac_addr = p;
	int ret;

	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
		return -EADDRNOTAVAIL;

1358 1359 1360 1361 1362 1363
	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
		netdev_info(netdev, "already using mac address %pM\n",
			    mac_addr->sa_data);
		return 0;
	}

1364
	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (ret) {
		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
		return ret;
	}

	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);

	return 0;
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static int hns3_nic_do_ioctl(struct net_device *netdev,
			     struct ifreq *ifr, int cmd)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (!netif_running(netdev))
		return -EINVAL;

	if (!h->ae_algo->ops->do_ioctl)
		return -EOPNOTSUPP;

	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
}

1389 1390 1391
static int hns3_nic_set_features(struct net_device *netdev,
				 netdev_features_t features)
{
1392
	netdev_features_t changed = netdev->features ^ features;
1393
	struct hns3_nic_priv *priv = netdev_priv(netdev);
1394
	struct hnae3_handle *h = priv->ae_handle;
1395
	bool enable;
1396
	int ret;
1397

1398
	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1399 1400
		enable = !!(features & NETIF_F_GRO_HW);
		ret = h->ae_algo->ops->set_gro_en(h, enable);
1401 1402 1403 1404
		if (ret)
			return ret;
	}

1405 1406
	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
	    h->ae_algo->ops->enable_vlan_filter) {
1407 1408
		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
		h->ae_algo->ops->enable_vlan_filter(h, enable);
1409
	}
1410

1411 1412
	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1413 1414
		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1415 1416 1417 1418
		if (ret)
			return ret;
	}

1419
	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1420 1421
		enable = !!(features & NETIF_F_NTUPLE);
		h->ae_algo->ops->enable_fd(h, enable);
1422 1423
	}

1424 1425 1426 1427
	netdev->features = features;
	return 0;
}

1428 1429
static void hns3_nic_get_stats64(struct net_device *netdev,
				 struct rtnl_link_stats64 *stats)
1430 1431 1432
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int queue_num = priv->ae_handle->kinfo.num_tqps;
1433
	struct hnae3_handle *handle = priv->ae_handle;
1434
	struct hns3_enet_ring *ring;
1435 1436 1437
	u64 rx_length_errors = 0;
	u64 rx_crc_errors = 0;
	u64 rx_multicast = 0;
1438
	unsigned int start;
1439 1440
	u64 tx_errors = 0;
	u64 rx_errors = 0;
1441 1442 1443 1444 1445
	unsigned int idx;
	u64 tx_bytes = 0;
	u64 rx_bytes = 0;
	u64 tx_pkts = 0;
	u64 rx_pkts = 0;
1446 1447
	u64 tx_drop = 0;
	u64 rx_drop = 0;
1448

1449 1450 1451
	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
		return;

1452 1453
	handle->ae_algo->ops->update_stats(handle, &netdev->stats);

1454 1455 1456 1457
	for (idx = 0; idx < queue_num; idx++) {
		/* fetch the tx stats */
		ring = priv->ring_data[idx].ring;
		do {
1458
			start = u64_stats_fetch_begin_irq(&ring->syncp);
1459 1460
			tx_bytes += ring->stats.tx_bytes;
			tx_pkts += ring->stats.tx_pkts;
1461
			tx_drop += ring->stats.sw_err_cnt;
1462
			tx_errors += ring->stats.sw_err_cnt;
1463 1464 1465 1466 1467
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));

		/* fetch the rx stats */
		ring = priv->ring_data[idx + queue_num].ring;
		do {
1468
			start = u64_stats_fetch_begin_irq(&ring->syncp);
1469 1470
			rx_bytes += ring->stats.rx_bytes;
			rx_pkts += ring->stats.rx_pkts;
1471 1472
			rx_drop += ring->stats.non_vld_descs;
			rx_drop += ring->stats.l2_err;
1473 1474 1475 1476 1477 1478
			rx_errors += ring->stats.non_vld_descs;
			rx_errors += ring->stats.l2_err;
			rx_crc_errors += ring->stats.l2_err;
			rx_crc_errors += ring->stats.l3l4_csum_err;
			rx_multicast += ring->stats.rx_multicast;
			rx_length_errors += ring->stats.err_pkt_len;
1479 1480 1481 1482 1483 1484 1485 1486
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
	}

	stats->tx_bytes = tx_bytes;
	stats->tx_packets = tx_pkts;
	stats->rx_bytes = rx_bytes;
	stats->rx_packets = rx_pkts;

1487 1488 1489 1490
	stats->rx_errors = rx_errors;
	stats->multicast = rx_multicast;
	stats->rx_length_errors = rx_length_errors;
	stats->rx_crc_errors = rx_crc_errors;
1491 1492
	stats->rx_missed_errors = netdev->stats.rx_missed_errors;

1493 1494 1495
	stats->tx_errors = tx_errors;
	stats->rx_dropped = rx_drop;
	stats->tx_dropped = tx_drop;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	stats->collisions = netdev->stats.collisions;
	stats->rx_over_errors = netdev->stats.rx_over_errors;
	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
	stats->tx_window_errors = netdev->stats.tx_window_errors;
	stats->rx_compressed = netdev->stats.rx_compressed;
	stats->tx_compressed = netdev->stats.tx_compressed;
}

1509
static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1510
{
1511
	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1512
	struct hnae3_handle *h = hns3_get_handle(netdev);
1513
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1514 1515 1516 1517
	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
	u8 tc = mqprio_qopt->qopt.num_tc;
	u16 mode = mqprio_qopt->mode;
	u8 hw = mqprio_qopt->qopt.hw;
1518

1519 1520 1521 1522
	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
		return -EOPNOTSUPP;

1523 1524 1525 1526 1527 1528
	if (tc > HNAE3_MAX_TC)
		return -EINVAL;

	if (!netdev)
		return -EINVAL;

1529
	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1530
		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1531 1532
}

1533
static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1534
			     void *type_data)
1535
{
1536
	if (type != TC_SETUP_QDISC_MQPRIO)
1537
		return -EOPNOTSUPP;
1538

1539
	return hns3_setup_tc(dev, type_data);
1540 1541 1542 1543 1544
}

static int hns3_vlan_rx_add_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
{
1545
	struct hnae3_handle *h = hns3_get_handle(netdev);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	int ret = -EIO;

	if (h->ae_algo->ops->set_vlan_filter)
		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);

	return ret;
}

static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
				 __be16 proto, u16 vid)
{
1557
	struct hnae3_handle *h = hns3_get_handle(netdev);
1558 1559 1560 1561 1562
	int ret = -EIO;

	if (h->ae_algo->ops->set_vlan_filter)
		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);

1563
	return ret;
1564 1565
}

1566 1567 1568
static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
				u8 qos, __be16 vlan_proto)
{
1569
	struct hnae3_handle *h = hns3_get_handle(netdev);
1570 1571 1572 1573
	int ret = -EIO;

	if (h->ae_algo->ops->set_vf_vlan_filter)
		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1574
							  qos, vlan_proto);
1575 1576 1577 1578

	return ret;
}

1579 1580
static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
{
1581
	struct hnae3_handle *h = hns3_get_handle(netdev);
1582 1583
	int ret;

1584 1585 1586
	if (hns3_nic_resetting(netdev))
		return -EBUSY;

1587 1588 1589 1590
	if (!h->ae_algo->ops->set_mtu)
		return -EOPNOTSUPP;

	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1591
	if (ret)
1592 1593
		netdev_err(netdev, "failed to change MTU in hardware %d\n",
			   ret);
1594 1595
	else
		netdev->mtu = new_mtu;
F
Fuyun Liang 已提交
1596

1597 1598 1599
	return ret;
}

1600 1601 1602
static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
{
	struct hns3_nic_priv *priv = netdev_priv(ndev);
1603
	struct hnae3_handle *h = hns3_get_handle(ndev);
1604
	struct hns3_enet_ring *tx_ring = NULL;
1605
	struct napi_struct *napi;
1606 1607
	int timeout_queue = 0;
	int hw_head, hw_tail;
1608 1609 1610 1611
	int fbd_num, fbd_oft;
	int ebd_num, ebd_oft;
	int bd_num, bd_err;
	int ring_en, tc;
1612 1613 1614
	int i;

	/* Find the stopped queue the same way the stack does */
1615
	for (i = 0; i < ndev->num_tx_queues; i++) {
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		struct netdev_queue *q;
		unsigned long trans_start;

		q = netdev_get_tx_queue(ndev, i);
		trans_start = q->trans_start;
		if (netif_xmit_stopped(q) &&
		    time_after(jiffies,
			       (trans_start + ndev->watchdog_timeo))) {
			timeout_queue = i;
			break;
		}
	}

	if (i == ndev->num_tx_queues) {
		netdev_info(ndev,
			    "no netdev TX timeout queue found, timeout count: %llu\n",
			    priv->tx_timeout_count);
		return false;
	}

1636 1637
	priv->tx_timeout_count++;

1638
	tx_ring = priv->ring_data[timeout_queue].ring;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	napi = &tx_ring->tqp_vector->napi;

	netdev_info(ndev,
		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
		    tx_ring->next_to_clean, napi->state);

	netdev_info(ndev,
		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);

	netdev_info(ndev,
		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);

	/* When mac received many pause frames continuous, it's unable to send
	 * packets, which may cause tx timeout
	 */
	if (h->ae_algo->ops->update_stats &&
	    h->ae_algo->ops->get_mac_pause_stats) {
		u64 tx_pause_cnt, rx_pause_cnt;

		h->ae_algo->ops->update_stats(h, &ndev->stats);
		h->ae_algo->ops->get_mac_pause_stats(h, &tx_pause_cnt,
						     &rx_pause_cnt);
		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
			    tx_pause_cnt, rx_pause_cnt);
	}
1669 1670 1671 1672 1673

	hw_head = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_HEAD_REG);
	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_TAIL_REG);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_FBDNUM_REG);
	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_OFFSET_REG);
	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_EBDNUM_REG);
	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
				HNS3_RING_TX_RING_EBD_OFFSET_REG);
	bd_num = readl_relaxed(tx_ring->tqp->io_base +
			       HNS3_RING_TX_RING_BD_NUM_REG);
	bd_err = readl_relaxed(tx_ring->tqp->io_base +
			       HNS3_RING_TX_RING_BD_ERR_REG);
	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);

1689
	netdev_info(ndev,
1690 1691
		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
		    bd_num, hw_head, hw_tail, bd_err,
1692
		    readl(tx_ring->tqp_vector->mask_addr));
1693 1694 1695
	netdev_info(ndev,
		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

	return true;
}

static void hns3_nic_net_timeout(struct net_device *ndev)
{
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct hnae3_handle *h = priv->ae_handle;

	if (!hns3_get_tx_timeo_queue_info(ndev))
		return;

1708 1709 1710
	/* request the reset, and let the hclge to determine
	 * which reset level should be done
	 */
1711
	if (h->ae_algo->ops->reset_event)
1712
		h->ae_algo->ops->reset_event(h->pdev, h);
1713 1714
}

J
Jian Shen 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
#ifdef CONFIG_RFS_ACCEL
static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
			      u16 rxq_index, u32 flow_id)
{
	struct hnae3_handle *h = hns3_get_handle(dev);
	struct flow_keys fkeys;

	if (!h->ae_algo->ops->add_arfs_entry)
		return -EOPNOTSUPP;

	if (skb->encapsulation)
		return -EPROTONOSUPPORT;

	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
		return -EPROTONOSUPPORT;

	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
	     fkeys.basic.ip_proto != IPPROTO_UDP))
		return -EPROTONOSUPPORT;

	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
}
#endif

1741 1742 1743 1744
static const struct net_device_ops hns3_nic_netdev_ops = {
	.ndo_open		= hns3_nic_net_open,
	.ndo_stop		= hns3_nic_net_stop,
	.ndo_start_xmit		= hns3_nic_net_xmit,
1745
	.ndo_tx_timeout		= hns3_nic_net_timeout,
1746
	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1747
	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1748
	.ndo_change_mtu		= hns3_nic_change_mtu,
1749 1750 1751 1752 1753 1754 1755
	.ndo_set_features	= hns3_nic_set_features,
	.ndo_get_stats64	= hns3_nic_get_stats64,
	.ndo_setup_tc		= hns3_nic_setup_tc,
	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
J
Jian Shen 已提交
1756 1757 1758 1759
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
#endif

1760 1761
};

1762
bool hns3_is_phys_func(struct pci_dev *pdev)
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
{
	u32 dev_id = pdev->device;

	switch (dev_id) {
	case HNAE3_DEV_ID_GE:
	case HNAE3_DEV_ID_25GE:
	case HNAE3_DEV_ID_25GE_RDMA:
	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
	case HNAE3_DEV_ID_50GE_RDMA:
	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
		return true;
	case HNAE3_DEV_ID_100G_VF:
	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
		return false;
	default:
		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
			 dev_id);
	}

	return false;
}

static void hns3_disable_sriov(struct pci_dev *pdev)
{
	/* If our VFs are assigned we cannot shut down SR-IOV
	 * without causing issues, so just leave the hardware
	 * available but disabled
	 */
	if (pci_vfs_assigned(pdev)) {
		dev_warn(&pdev->dev,
			 "disabling driver while VFs are assigned\n");
		return;
	}

	pci_disable_sriov(pdev);
}

1801 1802 1803
static void hns3_get_dev_capability(struct pci_dev *pdev,
				    struct hnae3_ae_dev *ae_dev)
{
1804
	if (pdev->revision >= 0x21) {
1805
		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1806 1807
		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
	}
1808 1809
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
/* hns3_probe - Device initialization routine
 * @pdev: PCI device information struct
 * @ent: entry in hns3_pci_tbl
 *
 * hns3_probe initializes a PF identified by a pci_dev structure.
 * The OS initialization, configuring of the PF private structure,
 * and a hardware reset occur.
 *
 * Returns 0 on success, negative on failure
 */
static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct hnae3_ae_dev *ae_dev;
	int ret;

1825
	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
1826 1827 1828 1829 1830 1831
	if (!ae_dev) {
		ret = -ENOMEM;
		return ret;
	}

	ae_dev->pdev = pdev;
1832
	ae_dev->flag = ent->driver_data;
1833
	ae_dev->reset_type = HNAE3_NONE_RESET;
1834
	hns3_get_dev_capability(pdev, ae_dev);
1835 1836
	pci_set_drvdata(pdev, ae_dev);

1837 1838 1839 1840 1841
	ret = hnae3_register_ae_dev(ae_dev);
	if (ret) {
		devm_kfree(&pdev->dev, ae_dev);
		pci_set_drvdata(pdev, NULL);
	}
1842

1843
	return ret;
1844 1845 1846 1847 1848 1849 1850 1851 1852
}

/* hns3_remove - Device removal routine
 * @pdev: PCI device information struct
 */
static void hns3_remove(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

1853 1854 1855
	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
		hns3_disable_sriov(pdev);

1856
	hnae3_unregister_ae_dev(ae_dev);
1857
	pci_set_drvdata(pdev, NULL);
1858 1859
}

1860 1861 1862 1863 1864 1865 1866 1867
/**
 * hns3_pci_sriov_configure
 * @pdev: pointer to a pci_dev structure
 * @num_vfs: number of VFs to allocate
 *
 * Enable or change the number of VFs. Called when the user updates the number
 * of VFs in sysfs.
 **/
1868
static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
{
	int ret;

	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
		dev_warn(&pdev->dev, "Can not config SRIOV\n");
		return -EINVAL;
	}

	if (num_vfs) {
		ret = pci_enable_sriov(pdev, num_vfs);
		if (ret)
			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1881 1882
		else
			return num_vfs;
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	} else if (!pci_vfs_assigned(pdev)) {
		pci_disable_sriov(pdev);
	} else {
		dev_warn(&pdev->dev,
			 "Unable to free VFs because some are assigned to VMs.\n");
	}

	return 0;
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static void hns3_shutdown(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

	hnae3_unregister_ae_dev(ae_dev);
	devm_kfree(&pdev->dev, ae_dev);
	pci_set_drvdata(pdev, NULL);

	if (system_state == SYSTEM_POWER_OFF)
		pci_set_power_state(pdev, PCI_D3hot);
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
					    pci_channel_state_t state)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	pci_ers_result_t ret;

	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

1916
	if (!ae_dev || !ae_dev->ops) {
1917
		dev_err(&pdev->dev,
1918
			"Can't recover - error happened before device initialized\n");
1919 1920 1921
		return PCI_ERS_RESULT_NONE;
	}

1922 1923
	if (ae_dev->ops->handle_hw_ras_error)
		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1924 1925 1926 1927 1928 1929
	else
		return PCI_ERS_RESULT_NONE;

	return ret;
}

1930 1931 1932 1933 1934 1935 1936
static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	struct device *dev = &pdev->dev;

	dev_info(dev, "requesting reset due to PCI error\n");

1937 1938 1939
	if (!ae_dev || !ae_dev->ops)
		return PCI_ERS_RESULT_NONE;

1940 1941
	/* request the reset */
	if (ae_dev->ops->reset_event) {
1942 1943 1944
		if (!ae_dev->override_pci_need_reset)
			ae_dev->ops->reset_event(pdev, NULL);

1945 1946 1947 1948 1949 1950
		return PCI_ERS_RESULT_RECOVERED;
	}

	return PCI_ERS_RESULT_DISCONNECT;
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
static void hns3_reset_prepare(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

	dev_info(&pdev->dev, "hns3 flr prepare\n");
	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
		ae_dev->ops->flr_prepare(ae_dev);
}

static void hns3_reset_done(struct pci_dev *pdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);

	dev_info(&pdev->dev, "hns3 flr done\n");
	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
		ae_dev->ops->flr_done(ae_dev);
}

1969 1970
static const struct pci_error_handlers hns3_err_handler = {
	.error_detected = hns3_error_detected,
1971
	.slot_reset     = hns3_slot_reset,
1972 1973
	.reset_prepare	= hns3_reset_prepare,
	.reset_done	= hns3_reset_done,
1974 1975
};

1976 1977 1978 1979 1980
static struct pci_driver hns3_driver = {
	.name     = hns3_driver_name,
	.id_table = hns3_pci_tbl,
	.probe    = hns3_probe,
	.remove   = hns3_remove,
1981
	.shutdown = hns3_shutdown,
1982
	.sriov_configure = hns3_pci_sriov_configure,
1983
	.err_handler    = &hns3_err_handler,
1984 1985 1986 1987 1988
};

/* set default feature to hns3 */
static void hns3_set_default_feature(struct net_device *netdev)
{
1989 1990 1991
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct pci_dev *pdev = h->pdev;

1992 1993 1994 1995 1996 1997
	netdev->priv_flags |= IFF_UNICAST_FLT;

	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1998
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1999 2000 2001 2002 2003 2004 2005

	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;

	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;

	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_HW_VLAN_CTAG_FILTER |
2006
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2007 2008 2009
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2010
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2011 2012 2013 2014 2015 2016

	netdev->vlan_features |=
		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2017
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2018 2019

	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2020
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2021 2022 2023
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2024
		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2025

2026
	if (pdev->revision >= 0x21) {
2027
		netdev->hw_features |= NETIF_F_GRO_HW;
2028
		netdev->features |= NETIF_F_GRO_HW;
2029 2030 2031 2032 2033 2034

		if (!(h->flags & HNAE3_SUPPORT_VF)) {
			netdev->hw_features |= NETIF_F_NTUPLE;
			netdev->features |= NETIF_F_NTUPLE;
		}
	}
2035 2036 2037 2038 2039
}

static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
			     struct hns3_desc_cb *cb)
{
P
Peng Li 已提交
2040
	unsigned int order = hnae3_page_order(ring);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	struct page *p;

	p = dev_alloc_pages(order);
	if (!p)
		return -ENOMEM;

	cb->priv = p;
	cb->page_offset = 0;
	cb->reuse_flag = 0;
	cb->buf  = page_address(p);
P
Peng Li 已提交
2051
	cb->length = hnae3_page_size(ring);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	cb->type = DESC_TYPE_PAGE;

	return 0;
}

static void hns3_free_buffer(struct hns3_enet_ring *ring,
			     struct hns3_desc_cb *cb)
{
	if (cb->type == DESC_TYPE_SKB)
		dev_kfree_skb_any((struct sk_buff *)cb->priv);
	else if (!HNAE3_IS_TX_RING(ring))
		put_page((struct page *)cb->priv);
	memset(cb, 0, sizeof(*cb));
}

static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
{
	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
			       cb->length, ring_to_dma_dir(ring));

2072
	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		return -EIO;

	return 0;
}

static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
			      struct hns3_desc_cb *cb)
{
	if (cb->type == DESC_TYPE_SKB)
		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
				 ring_to_dma_dir(ring));
2084
	else if (cb->length)
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
			       ring_to_dma_dir(ring));
}

static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
{
	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
	ring->desc[i].addr = 0;
}

static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
{
	struct hns3_desc_cb *cb = &ring->desc_cb[i];

	if (!ring->desc_cb[i].dma)
		return;

	hns3_buffer_detach(ring, i);
	hns3_free_buffer(ring, cb);
}

static void hns3_free_buffers(struct hns3_enet_ring *ring)
{
	int i;

	for (i = 0; i < ring->desc_num; i++)
		hns3_free_buffer_detach(ring, i);
}

/* free desc along with its attached buffer */
static void hns3_free_desc(struct hns3_enet_ring *ring)
{
2117 2118
	int size = ring->desc_num * sizeof(ring->desc[0]);

2119 2120
	hns3_free_buffers(ring);

2121 2122 2123 2124 2125
	if (ring->desc) {
		dma_free_coherent(ring_to_dev(ring), size,
				  ring->desc, ring->desc_dma_addr);
		ring->desc = NULL;
	}
2126 2127 2128 2129 2130 2131
}

static int hns3_alloc_desc(struct hns3_enet_ring *ring)
{
	int size = ring->desc_num * sizeof(ring->desc[0]);

2132 2133
	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
					&ring->desc_dma_addr, GFP_KERNEL);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
				   struct hns3_desc_cb *cb)
{
	int ret;

	ret = hns3_alloc_buffer(ring, cb);
	if (ret)
		goto out;

	ret = hns3_map_buffer(ring, cb);
	if (ret)
		goto out_with_buf;

	return 0;

out_with_buf:
2156
	hns3_free_buffer(ring, cb);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
out:
	return ret;
}

static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
{
	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);

	if (ret)
		return ret;

	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);

	return 0;
}

/* Allocate memory for raw pkg, and map with dma */
static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
{
	int i, j, ret;

	for (i = 0; i < ring->desc_num; i++) {
		ret = hns3_alloc_buffer_attach(ring, i);
		if (ret)
			goto out_buffer_fail;
	}

	return 0;

out_buffer_fail:
	for (j = i - 1; j >= 0; j--)
		hns3_free_buffer_detach(ring, j);
	return ret;
}

2192
/* detach a in-used buffer and replace with a reserved one */
2193 2194 2195
static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
				struct hns3_desc_cb *res_cb)
{
2196
	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2197 2198
	ring->desc_cb[i] = *res_cb;
	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2199
	ring->desc[i].rx.bd_base_info = 0;
2200 2201 2202 2203 2204
}

static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
{
	ring->desc_cb[i].reuse_flag = 0;
2205 2206
	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
					 ring->desc_cb[i].page_offset);
2207
	ring->desc[i].rx.bd_base_info = 0;
2208 2209
}

2210 2211
static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
				  int *bytes, int *pkts)
2212
{
2213 2214
	int ntc = ring->next_to_clean;
	struct hns3_desc_cb *desc_cb;
2215

2216 2217 2218 2219 2220 2221
	while (head != ntc) {
		desc_cb = &ring->desc_cb[ntc];
		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
		(*bytes) += desc_cb->length;
		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
		hns3_free_buffer_detach(ring, ntc);
2222

2223 2224 2225 2226 2227 2228
		if (++ntc == ring->desc_num)
			ntc = 0;

		/* Issue prefetch for next Tx descriptor */
		prefetch(&ring->desc_cb[ntc]);
	}
2229 2230 2231 2232 2233

	/* This smp_store_release() pairs with smp_load_acquire() in
	 * ring_space called by hns3_nic_net_xmit.
	 */
	smp_store_release(&ring->next_to_clean, ntc);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
}

static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
{
	int u = ring->next_to_use;
	int c = ring->next_to_clean;

	if (unlikely(h > ring->desc_num))
		return 0;

	return u > c ? (h > c && h <= u) : (h > c || h <= u);
}

2247
void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2248 2249
{
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2250
	struct hns3_nic_priv *priv = netdev_priv(netdev);
2251 2252 2253 2254 2255 2256 2257 2258
	struct netdev_queue *dev_queue;
	int bytes, pkts;
	int head;

	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
	rmb(); /* Make sure head is ready before touch any data */

	if (is_ring_empty(ring) || head == ring->next_to_clean)
2259
		return; /* no data to poll */
2260

2261
	if (unlikely(!is_valid_clean_head(ring, head))) {
2262 2263 2264 2265 2266 2267
		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
			   ring->next_to_use, ring->next_to_clean);

		u64_stats_update_begin(&ring->syncp);
		ring->stats.io_err_cnt++;
		u64_stats_update_end(&ring->syncp);
2268
		return;
2269 2270 2271 2272
	}

	bytes = 0;
	pkts = 0;
2273
	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

	ring->tqp_vector->tx_group.total_bytes += bytes;
	ring->tqp_vector->tx_group.total_packets += pkts;

	u64_stats_update_begin(&ring->syncp);
	ring->stats.tx_bytes += bytes;
	ring->stats.tx_pkts += pkts;
	u64_stats_update_end(&ring->syncp);

	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
	netdev_tx_completed_queue(dev_queue, pkts, bytes);

	if (unlikely(pkts && netif_carrier_ok(netdev) &&
		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
2292 2293
		if (netif_tx_queue_stopped(dev_queue) &&
		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
			netif_tx_wake_queue(dev_queue);
			ring->stats.restart_queue++;
		}
	}
}

static int hns3_desc_unused(struct hns3_enet_ring *ring)
{
	int ntc = ring->next_to_clean;
	int ntu = ring->next_to_use;

	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
}

2308 2309
static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
				      int cleand_count)
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
{
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc_cb res_cbs;
	int i, ret;

	for (i = 0; i < cleand_count; i++) {
		desc_cb = &ring->desc_cb[ring->next_to_use];
		if (desc_cb->reuse_flag) {
			u64_stats_update_begin(&ring->syncp);
			ring->stats.reuse_pg_cnt++;
			u64_stats_update_end(&ring->syncp);

			hns3_reuse_buffer(ring, ring->next_to_use);
		} else {
			ret = hns3_reserve_buffer_map(ring, &res_cbs);
			if (ret) {
				u64_stats_update_begin(&ring->syncp);
				ring->stats.sw_err_cnt++;
				u64_stats_update_end(&ring->syncp);

				netdev_err(ring->tqp->handle->kinfo.netdev,
					   "hnae reserve buffer map failed.\n");
				break;
			}
			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2335 2336 2337 2338

			u64_stats_update_begin(&ring->syncp);
			ring->stats.non_reuse_pg++;
			u64_stats_update_end(&ring->syncp);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
		}

		ring_ptr_move_fw(ring, next_to_use);
	}

	wmb(); /* Make all data has been write before submit */
	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
}

static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
				struct hns3_enet_ring *ring, int pull_len,
				struct hns3_desc_cb *desc_cb)
{
2352 2353 2354
	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
	int size = le16_to_cpu(desc->rx.size);
	u32 truesize = hnae3_buf_size(ring);
2355 2356

	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2357
			size - pull_len, truesize);
2358

2359 2360 2361
	/* Avoid re-using remote pages, or the stack is still using the page
	 * when page_offset rollback to zero, flag default unreuse
	 */
2362
	if (unlikely(page_to_nid(desc_cb->priv) != numa_mem_id()) ||
2363
	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2364 2365 2366 2367 2368
		return;

	/* Move offset up to the next cache line */
	desc_cb->page_offset += truesize;

2369
	if (desc_cb->page_offset + truesize <= hnae3_page_size(ring)) {
2370
		desc_cb->reuse_flag = 1;
2371
		/* Bump ref count on page before it is given */
2372
		get_page(desc_cb->priv);
2373 2374 2375 2376
	} else if (page_count(desc_cb->priv) == 1) {
		desc_cb->reuse_flag = 1;
		desc_cb->page_offset = 0;
		get_page(desc_cb->priv);
2377 2378 2379
	}
}

2380
static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2381 2382 2383 2384 2385
{
	__be16 type = skb->protocol;
	struct tcphdr *th;
	int depth = 0;

2386
	while (eth_type_vlan(type)) {
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		struct vlan_hdr *vh;

		if ((depth + VLAN_HLEN) > skb_headlen(skb))
			return -EFAULT;

		vh = (struct vlan_hdr *)(skb->data + depth);
		type = vh->h_vlan_encapsulated_proto;
		depth += VLAN_HLEN;
	}

2397 2398
	skb_set_network_header(skb, depth);

2399
	if (type == htons(ETH_P_IP)) {
2400 2401
		const struct iphdr *iph = ip_hdr(skb);

2402
		depth += sizeof(struct iphdr);
2403 2404 2405 2406
		skb_set_transport_header(skb, depth);
		th = tcp_hdr(skb);
		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
					  iph->daddr, 0);
2407
	} else if (type == htons(ETH_P_IPV6)) {
2408 2409
		const struct ipv6hdr *iph = ipv6_hdr(skb);

2410
		depth += sizeof(struct ipv6hdr);
2411 2412 2413 2414
		skb_set_transport_header(skb, depth);
		th = tcp_hdr(skb);
		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
					  &iph->daddr, 0);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	} else {
		netdev_err(skb->dev,
			   "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
			   be16_to_cpu(type), depth);
		return -EFAULT;
	}

	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
	if (th->cwr)
		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;

2426 2427
	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2428

2429 2430 2431
	skb->csum_start = (unsigned char *)th - skb->head;
	skb->csum_offset = offsetof(struct tcphdr, check);
	skb->ip_summed = CHECKSUM_PARTIAL;
2432 2433 2434
	return 0;
}

2435
static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2436
			     u32 l234info, u32 bd_base_info, u32 ol_info)
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
{
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
	int l3_type, l4_type;
	int ol4_type;

	skb->ip_summed = CHECKSUM_NONE;

	skb_checksum_none_assert(skb);

	if (!(netdev->features & NETIF_F_RXCSUM))
		return;

	/* check if hardware has done checksum */
2450
	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2451 2452
		return;

2453 2454
	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
				 BIT(HNS3_RXD_OL3E_B) |
2455
				 BIT(HNS3_RXD_OL4E_B)))) {
2456 2457 2458 2459 2460 2461 2462
		u64_stats_update_begin(&ring->syncp);
		ring->stats.l3l4_csum_err++;
		u64_stats_update_end(&ring->syncp);

		return;
	}

2463
	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
P
Peng Li 已提交
2464
				   HNS3_RXD_OL4ID_S);
2465 2466 2467 2468
	switch (ol4_type) {
	case HNS3_OL4_TYPE_MAC_IN_UDP:
	case HNS3_OL4_TYPE_NVGRE:
		skb->csum_level = 1;
2469
		/* fall through */
2470
	case HNS3_OL4_TYPE_NO_TUN:
2471 2472 2473 2474 2475
		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
					  HNS3_RXD_L3ID_S);
		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
					  HNS3_RXD_L4ID_S);

2476
		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2477 2478 2479 2480 2481
		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
		     l3_type == HNS3_L3_TYPE_IPV6) &&
		    (l4_type == HNS3_L4_TYPE_UDP ||
		     l4_type == HNS3_L4_TYPE_TCP ||
		     l4_type == HNS3_L4_TYPE_SCTP))
2482 2483
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		break;
2484 2485
	default:
		break;
2486 2487 2488
	}
}

2489 2490
static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
{
2491 2492 2493
	if (skb_has_frag_list(skb))
		napi_gro_flush(&ring->tqp_vector->napi, false);

2494 2495 2496
	napi_gro_receive(&ring->tqp_vector->napi, skb);
}

2497 2498 2499
static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
				struct hns3_desc *desc, u32 l234info,
				u16 *vlan_tag)
2500
{
2501
	struct hnae3_handle *handle = ring->tqp->handle;
2502 2503 2504
	struct pci_dev *pdev = ring->tqp->handle->pdev;

	if (pdev->revision == 0x20) {
2505 2506 2507
		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		if (!(*vlan_tag & VLAN_VID_MASK))
			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2508

2509
		return (*vlan_tag != 0);
2510 2511 2512 2513
	}

#define HNS3_STRP_OUTER_VLAN	0x1
#define HNS3_STRP_INNER_VLAN	0x2
2514
#define HNS3_STRP_BOTH		0x3
2515

2516 2517 2518 2519
	/* Hardware always insert VLAN tag into RX descriptor when
	 * remove the tag from packet, driver needs to determine
	 * reporting which tag to stack.
	 */
P
Peng Li 已提交
2520 2521
	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
				HNS3_RXD_STRP_TAGP_S)) {
2522
	case HNS3_STRP_OUTER_VLAN:
2523 2524 2525 2526
		if (handle->port_base_vlan_state !=
				HNAE3_PORT_BASE_VLAN_DISABLE)
			return false;

2527 2528
		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		return true;
2529
	case HNS3_STRP_INNER_VLAN:
2530 2531 2532 2533
		if (handle->port_base_vlan_state !=
				HNAE3_PORT_BASE_VLAN_DISABLE)
			return false;

2534
		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2535 2536 2537 2538 2539 2540 2541 2542
		return true;
	case HNS3_STRP_BOTH:
		if (handle->port_base_vlan_state ==
				HNAE3_PORT_BASE_VLAN_DISABLE)
			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
		else
			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);

2543
		return true;
2544
	default:
2545
		return false;
2546 2547 2548
	}
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
			  unsigned char *va)
{
#define HNS3_NEED_ADD_FRAG	1
	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
	struct sk_buff *skb;

	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
	skb = ring->skb;
	if (unlikely(!skb)) {
		netdev_err(netdev, "alloc rx skb fail\n");

		u64_stats_update_begin(&ring->syncp);
		ring->stats.sw_err_cnt++;
		u64_stats_update_end(&ring->syncp);

		return -ENOMEM;
	}

	prefetchw(skb->data);

	ring->pending_buf = 1;
2572 2573
	ring->frag_num = 0;
	ring->tail_skb = NULL;
2574 2575 2576 2577
	if (length <= HNS3_RX_HEAD_SIZE) {
		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));

		/* We can reuse buffer as-is, just make sure it is local */
2578
		if (likely(page_to_nid(desc_cb->priv) == numa_mem_id()))
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
			desc_cb->reuse_flag = 1;
		else /* This page cannot be reused so discard it */
			put_page(desc_cb->priv);

		ring_ptr_move_fw(ring, next_to_clean);
		return 0;
	}
	u64_stats_update_begin(&ring->syncp);
	ring->stats.seg_pkt_cnt++;
	u64_stats_update_end(&ring->syncp);

2590
	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2591
	__skb_put(skb, ring->pull_len);
2592
	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
			    desc_cb);
	ring_ptr_move_fw(ring, next_to_clean);

	return HNS3_NEED_ADD_FRAG;
}

static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
			 struct sk_buff **out_skb, bool pending)
{
	struct sk_buff *skb = *out_skb;
2603 2604
	struct sk_buff *head_skb = *out_skb;
	struct sk_buff *new_skb;
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc *pre_desc;
	u32 bd_base_info;
	int pre_bd;

	/* if there is pending bd, the SW param next_to_clean has moved
	 * to next and the next is NULL
	 */
	if (pending) {
		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2615
			 ring->desc_num;
2616 2617 2618 2619 2620 2621
		pre_desc = &ring->desc[pre_bd];
		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
	} else {
		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
	}

2622
	while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2623 2624 2625
		desc = &ring->desc[ring->next_to_clean];
		desc_cb = &ring->desc_cb[ring->next_to_clean];
		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2626 2627
		/* make sure HW write desc complete */
		dma_rmb();
2628
		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2629 2630
			return -ENXIO;

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
						 HNS3_RX_HEAD_SIZE);
			if (unlikely(!new_skb)) {
				netdev_err(ring->tqp->handle->kinfo.netdev,
					   "alloc rx skb frag fail\n");
				return -ENXIO;
			}
			ring->frag_num = 0;

			if (ring->tail_skb) {
				ring->tail_skb->next = new_skb;
				ring->tail_skb = new_skb;
			} else {
				skb_shinfo(skb)->frag_list = new_skb;
				ring->tail_skb = new_skb;
			}
		}

		if (ring->tail_skb) {
			head_skb->truesize += hnae3_buf_size(ring);
			head_skb->data_len += le16_to_cpu(desc->rx.size);
			head_skb->len += le16_to_cpu(desc->rx.size);
			skb = ring->tail_skb;
		}

		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2658 2659 2660 2661 2662 2663 2664
		ring_ptr_move_fw(ring, next_to_clean);
		ring->pending_buf++;
	}

	return 0;
}

2665 2666
static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
				     struct sk_buff *skb, u32 l234info,
2667
				     u32 bd_base_info, u32 ol_info)
2668 2669 2670
{
	u32 l3_type;

2671 2672 2673
	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
						    HNS3_RXD_GRO_SIZE_M,
						    HNS3_RXD_GRO_SIZE_S);
2674
	/* if there is no HW GRO, do not set gro params */
2675
	if (!skb_shinfo(skb)->gso_size) {
2676
		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2677 2678
		return 0;
	}
2679

2680 2681 2682
	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
						  HNS3_RXD_GRO_COUNT_M,
						  HNS3_RXD_GRO_COUNT_S);
2683

2684
	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2685 2686 2687 2688 2689
	if (l3_type == HNS3_L3_TYPE_IPV4)
		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
	else if (l3_type == HNS3_L3_TYPE_IPV6)
		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
	else
2690
		return -EFAULT;
2691

2692
	return  hns3_gro_complete(skb, l234info);
2693 2694
}

2695
static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2696
				     struct sk_buff *skb, u32 rss_hash)
2697 2698 2699 2700
{
	struct hnae3_handle *handle = ring->tqp->handle;
	enum pkt_hash_types rss_type;

2701
	if (rss_hash)
2702 2703 2704 2705
		rss_type = handle->kinfo.rss_type;
	else
		rss_type = PKT_HASH_TYPE_NONE;

2706
	skb_set_hash(skb, rss_hash, rss_type);
2707 2708
}

2709
static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2710 2711
{
	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2712
	enum hns3_pkt_l2t_type l2_frame_type;
2713
	u32 bd_base_info, l234info, ol_info;
2714
	struct hns3_desc *desc;
2715
	unsigned int len;
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	int pre_ntc, ret;

	/* bdinfo handled below is only valid on the last BD of the
	 * current packet, and ring->next_to_clean indicates the first
	 * descriptor of next packet, so need - 1 below.
	 */
	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
					(ring->desc_num - 1);
	desc = &ring->desc[pre_ntc];
	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
	l234info = le32_to_cpu(desc->rx.l234_info);
2727
	ol_info = le32_to_cpu(desc->rx.ol_info);
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

	/* Based on hw strategy, the tag offloaded will be stored at
	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
	 * in one layer tag case.
	 */
	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
		u16 vlan_tag;

		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       vlan_tag);
	}

	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) {
		u64_stats_update_begin(&ring->syncp);
		ring->stats.non_vld_descs++;
		u64_stats_update_end(&ring->syncp);

		return -EINVAL;
	}

	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
				  BIT(HNS3_RXD_L2E_B))))) {
		u64_stats_update_begin(&ring->syncp);
		if (l234info & BIT(HNS3_RXD_L2E_B))
			ring->stats.l2_err++;
		else
			ring->stats.err_pkt_len++;
		u64_stats_update_end(&ring->syncp);

		return -EFAULT;
	}

	len = skb->len;

	/* Do update ip stack process */
	skb->protocol = eth_type_trans(skb, netdev);

	/* This is needed in order to enable forwarding support */
2767 2768
	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
					bd_base_info, ol_info);
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	if (unlikely(ret)) {
		u64_stats_update_begin(&ring->syncp);
		ring->stats.rx_err_cnt++;
		u64_stats_update_end(&ring->syncp);
		return ret;
	}

	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
					HNS3_RXD_DMAC_S);

	u64_stats_update_begin(&ring->syncp);
	ring->stats.rx_pkts++;
	ring->stats.rx_bytes += len;

	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
		ring->stats.rx_multicast++;

	u64_stats_update_end(&ring->syncp);

	ring->tqp_vector->rx_group.total_bytes += len;
2789 2790

	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
2791 2792 2793 2794 2795 2796
	return 0;
}

static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
			     struct sk_buff **out_skb)
{
2797
	struct sk_buff *skb = ring->skb;
2798 2799 2800 2801
	struct hns3_desc_cb *desc_cb;
	struct hns3_desc *desc;
	u32 bd_base_info;
	int length;
2802
	int ret;
2803 2804 2805 2806 2807 2808

	desc = &ring->desc[ring->next_to_clean];
	desc_cb = &ring->desc_cb[ring->next_to_clean];

	prefetch(desc);

2809
	length = le16_to_cpu(desc->rx.size);
2810 2811 2812
	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);

	/* Check valid BD */
2813
	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2814
		return -ENXIO;
2815

2816 2817
	if (!skb)
		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2818 2819 2820 2821 2822 2823 2824 2825

	/* Prefetch first cache line of first page
	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
	 * line size is 64B so need to prefetch twice to make it 128B. But in
	 * actual we can have greater size of caches with 128B Level 1 cache
	 * lines. In such a case, single fetch would suffice to cache in the
	 * relevant part of the header.
	 */
2826
	prefetch(ring->va);
2827
#if L1_CACHE_BYTES < 128
2828
	prefetch(ring->va + L1_CACHE_BYTES);
2829 2830
#endif

2831 2832 2833
	if (!skb) {
		ret = hns3_alloc_skb(ring, length, ring->va);
		*out_skb = skb = ring->skb;
2834

2835 2836 2837 2838 2839 2840
		if (ret < 0) /* alloc buffer fail */
			return ret;
		if (ret > 0) { /* need add frag */
			ret = hns3_add_frag(ring, desc, &skb, false);
			if (ret)
				return ret;
2841

2842 2843 2844 2845 2846 2847
			/* As the head data may be changed when GRO enable, copy
			 * the head data in after other data rx completed
			 */
			memcpy(skb->data, ring->va,
			       ALIGN(ring->pull_len, sizeof(long)));
		}
2848
	} else {
2849 2850 2851
		ret = hns3_add_frag(ring, desc, &skb, true);
		if (ret)
			return ret;
2852

2853 2854 2855 2856 2857
		/* As the head data may be changed when GRO enable, copy
		 * the head data in after other data rx completed
		 */
		memcpy(skb->data, ring->va,
		       ALIGN(ring->pull_len, sizeof(long)));
2858 2859
	}

2860
	ret = hns3_handle_bdinfo(ring, skb);
2861
	if (unlikely(ret)) {
2862
		dev_kfree_skb_any(skb);
2863
		return ret;
2864 2865
	}

J
Jian Shen 已提交
2866
	skb_record_rx_queue(skb, ring->tqp->tqp_index);
2867
	*out_skb = skb;
2868

2869 2870 2871
	return 0;
}

2872 2873
int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2874 2875 2876
{
#define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
	int recv_pkts, recv_bds, clean_count, err;
2877
	int unused_count = hns3_desc_unused(ring);
2878 2879
	struct sk_buff *skb = ring->skb;
	int num;
2880 2881 2882 2883 2884 2885

	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
	rmb(); /* Make sure num taken effect before the other data is touched */

	recv_pkts = 0, recv_bds = 0, clean_count = 0;
	num -= unused_count;
2886
	unused_count -= ring->pending_buf;
2887 2888 2889 2890 2891 2892 2893

	while (recv_pkts < budget && recv_bds < num) {
		/* Reuse or realloc buffers */
		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
			hns3_nic_alloc_rx_buffers(ring,
						  clean_count + unused_count);
			clean_count = 0;
2894 2895
			unused_count = hns3_desc_unused(ring) -
					ring->pending_buf;
2896 2897 2898
		}

		/* Poll one pkt */
2899
		err = hns3_handle_rx_bd(ring, &skb);
2900 2901 2902
		if (unlikely(!skb)) /* This fault cannot be repaired */
			goto out;

2903 2904 2905 2906 2907 2908 2909
		if (err == -ENXIO) { /* Do not get FE for the packet */
			goto out;
		} else if (unlikely(err)) {  /* Do jump the err */
			recv_bds += ring->pending_buf;
			clean_count += ring->pending_buf;
			ring->skb = NULL;
			ring->pending_buf = 0;
2910 2911 2912
			continue;
		}

2913
		rx_fn(ring, skb);
2914 2915 2916 2917
		recv_bds += ring->pending_buf;
		clean_count += ring->pending_buf;
		ring->skb = NULL;
		ring->pending_buf = 0;
2918 2919 2920 2921 2922 2923 2924

		recv_pkts++;
	}

out:
	/* Make all data has been write before submit */
	if (clean_count + unused_count > 0)
2925
		hns3_nic_alloc_rx_buffers(ring, clean_count + unused_count);
2926 2927 2928 2929

	return recv_pkts;
}

2930
static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
2931
{
2932 2933 2934 2935
#define HNS3_RX_LOW_BYTE_RATE 10000
#define HNS3_RX_MID_BYTE_RATE 20000
#define HNS3_RX_ULTRA_PACKET_RATE 40

2936
	enum hns3_flow_level_range new_flow_level;
2937 2938
	struct hns3_enet_tqp_vector *tqp_vector;
	int packets_per_msecs, bytes_per_msecs;
2939
	u32 time_passed_ms;
2940

2941
	tqp_vector = ring_group->ring->tqp_vector;
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	time_passed_ms =
		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
	if (!time_passed_ms)
		return false;

	do_div(ring_group->total_packets, time_passed_ms);
	packets_per_msecs = ring_group->total_packets;

	do_div(ring_group->total_bytes, time_passed_ms);
	bytes_per_msecs = ring_group->total_bytes;

2953
	new_flow_level = ring_group->coal.flow_level;
2954

2955 2956 2957 2958 2959 2960
	/* Simple throttlerate management
	 * 0-10MB/s   lower     (50000 ints/s)
	 * 10-20MB/s   middle    (20000 ints/s)
	 * 20-1249MB/s high      (18000 ints/s)
	 * > 40000pps  ultra     (8000 ints/s)
	 */
2961 2962
	switch (new_flow_level) {
	case HNS3_FLOW_LOW:
2963
		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2964 2965 2966
			new_flow_level = HNS3_FLOW_MID;
		break;
	case HNS3_FLOW_MID:
2967
		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2968
			new_flow_level = HNS3_FLOW_HIGH;
2969
		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2970 2971 2972 2973 2974
			new_flow_level = HNS3_FLOW_LOW;
		break;
	case HNS3_FLOW_HIGH:
	case HNS3_FLOW_ULTRA:
	default:
2975
		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2976 2977 2978 2979
			new_flow_level = HNS3_FLOW_MID;
		break;
	}

2980 2981
	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
	    &tqp_vector->rx_group == ring_group)
2982 2983
		new_flow_level = HNS3_FLOW_ULTRA;

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	ring_group->total_bytes = 0;
	ring_group->total_packets = 0;
	ring_group->coal.flow_level = new_flow_level;

	return true;
}

static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
{
	struct hns3_enet_tqp_vector *tqp_vector;
	u16 new_int_gl;

	if (!ring_group->ring)
		return false;

	tqp_vector = ring_group->ring->tqp_vector;
	if (!tqp_vector->last_jiffies)
		return false;

	if (ring_group->total_packets == 0) {
		ring_group->coal.int_gl = HNS3_INT_GL_50K;
		ring_group->coal.flow_level = HNS3_FLOW_LOW;
		return true;
	}

	if (!hns3_get_new_flow_lvl(ring_group))
		return false;

	new_int_gl = ring_group->coal.int_gl;
	switch (ring_group->coal.flow_level) {
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
	case HNS3_FLOW_LOW:
		new_int_gl = HNS3_INT_GL_50K;
		break;
	case HNS3_FLOW_MID:
		new_int_gl = HNS3_INT_GL_20K;
		break;
	case HNS3_FLOW_HIGH:
		new_int_gl = HNS3_INT_GL_18K;
		break;
	case HNS3_FLOW_ULTRA:
		new_int_gl = HNS3_INT_GL_8K;
		break;
	default:
		break;
	}

3030 3031
	if (new_int_gl != ring_group->coal.int_gl) {
		ring_group->coal.int_gl = new_int_gl;
3032 3033 3034 3035 3036 3037 3038
		return true;
	}
	return false;
}

static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
{
3039 3040 3041 3042
	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
	bool rx_update, tx_update;

3043 3044 3045
	/* update param every 1000ms */
	if (time_before(jiffies,
			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
F
Fuyun Liang 已提交
3046 3047
		return;

3048
	if (rx_group->coal.gl_adapt_enable) {
3049 3050 3051
		rx_update = hns3_get_new_int_gl(rx_group);
		if (rx_update)
			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3052
						       rx_group->coal.int_gl);
3053 3054
	}

3055
	if (tx_group->coal.gl_adapt_enable) {
3056
		tx_update = hns3_get_new_int_gl(tx_group);
3057 3058
		if (tx_update)
			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3059
						       tx_group->coal.int_gl);
3060
	}
F
Fuyun Liang 已提交
3061

3062
	tqp_vector->last_jiffies = jiffies;
3063 3064 3065 3066
}

static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
{
3067
	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3068 3069 3070 3071 3072 3073
	struct hns3_enet_ring *ring;
	int rx_pkt_total = 0;

	struct hns3_enet_tqp_vector *tqp_vector =
		container_of(napi, struct hns3_enet_tqp_vector, napi);
	bool clean_complete = true;
3074
	int rx_budget = budget;
3075

3076 3077 3078 3079 3080
	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
		napi_complete(napi);
		return 0;
	}

3081 3082 3083
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
3084 3085
	hns3_for_each_ring(ring, tqp_vector->tx_group)
		hns3_clean_tx_ring(ring);
3086 3087

	/* make sure rx ring budget not smaller than 1 */
3088 3089
	if (tqp_vector->num_tqps > 1)
		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3090 3091

	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3092 3093
		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
						    hns3_rx_skb);
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105

		if (rx_cleaned >= rx_budget)
			clean_complete = false;

		rx_pkt_total += rx_cleaned;
	}

	tqp_vector->rx_group.total_packets += rx_pkt_total;

	if (!clean_complete)
		return budget;

3106 3107
	if (napi_complete(napi) &&
	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3108 3109 3110
		hns3_update_new_int_gl(tqp_vector);
		hns3_mask_vector_irq(tqp_vector, 1);
	}
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126

	return rx_pkt_total;
}

static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
				      struct hnae3_ring_chain_node *head)
{
	struct pci_dev *pdev = tqp_vector->handle->pdev;
	struct hnae3_ring_chain_node *cur_chain = head;
	struct hnae3_ring_chain_node *chain;
	struct hns3_enet_ring *tx_ring;
	struct hns3_enet_ring *rx_ring;

	tx_ring = tqp_vector->tx_group.ring;
	if (tx_ring) {
		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
P
Peng Li 已提交
3127 3128 3129 3130
		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_TX);
		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3131 3132 3133 3134 3135 3136 3137 3138 3139

		cur_chain->next = NULL;

		while (tx_ring->next) {
			tx_ring = tx_ring->next;

			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
					     GFP_KERNEL);
			if (!chain)
3140
				goto err_free_chain;
3141 3142 3143

			cur_chain->next = chain;
			chain->tqp_index = tx_ring->tqp->tqp_index;
P
Peng Li 已提交
3144 3145 3146 3147 3148 3149
			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
				      HNAE3_RING_TYPE_TX);
			hnae3_set_field(chain->int_gl_idx,
					HNAE3_RING_GL_IDX_M,
					HNAE3_RING_GL_IDX_S,
					HNAE3_RING_GL_TX);
3150 3151 3152 3153 3154 3155 3156 3157 3158

			cur_chain = chain;
		}
	}

	rx_ring = tqp_vector->rx_group.ring;
	if (!tx_ring && rx_ring) {
		cur_chain->next = NULL;
		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
P
Peng Li 已提交
3159 3160 3161 3162
		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_RX);
		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3163 3164 3165 3166 3167 3168 3169

		rx_ring = rx_ring->next;
	}

	while (rx_ring) {
		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
		if (!chain)
3170
			goto err_free_chain;
3171 3172 3173

		cur_chain->next = chain;
		chain->tqp_index = rx_ring->tqp->tqp_index;
P
Peng Li 已提交
3174 3175 3176 3177
		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
			      HNAE3_RING_TYPE_RX);
		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3178

3179 3180 3181 3182 3183 3184
		cur_chain = chain;

		rx_ring = rx_ring->next;
	}

	return 0;
3185 3186 3187 3188 3189

err_free_chain:
	cur_chain = head->next;
	while (cur_chain) {
		chain = cur_chain->next;
3190
		devm_kfree(&pdev->dev, cur_chain);
3191 3192
		cur_chain = chain;
	}
3193
	head->next = NULL;
3194 3195

	return -ENOMEM;
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
}

static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
					struct hnae3_ring_chain_node *head)
{
	struct pci_dev *pdev = tqp_vector->handle->pdev;
	struct hnae3_ring_chain_node *chain_tmp, *chain;

	chain = head->next;

	while (chain) {
		chain_tmp = chain->next;
		devm_kfree(&pdev->dev, chain);
		chain = chain_tmp;
	}
}

static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
				   struct hns3_enet_ring *ring)
{
	ring->next = group->ring;
	group->ring = ring;

	group->count++;
}

P
Peng Li 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
{
	struct pci_dev *pdev = priv->ae_handle->pdev;
	struct hns3_enet_tqp_vector *tqp_vector;
	int num_vectors = priv->vector_num;
	int numa_node;
	int vector_i;

	numa_node = dev_to_node(&pdev->dev);

	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
		tqp_vector = &priv->tqp_vector[vector_i];
		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
				&tqp_vector->affinity_mask);
	}
}

3239 3240 3241 3242 3243 3244
static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
{
	struct hnae3_ring_chain_node vector_ring_chain;
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
	int ret = 0;
3245
	int i;
3246

P
Peng Li 已提交
3247 3248
	hns3_nic_set_cpumask(priv);

3249 3250 3251 3252 3253
	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
		tqp_vector->num_tqps = 0;
	}
3254

3255 3256 3257
	for (i = 0; i < h->kinfo.num_tqps; i++) {
		u16 vector_i = i % priv->vector_num;
		u16 tqp_num = h->kinfo.num_tqps;
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

		tqp_vector = &priv->tqp_vector[vector_i];

		hns3_add_ring_to_group(&tqp_vector->tx_group,
				       priv->ring_data[i].ring);

		hns3_add_ring_to_group(&tqp_vector->rx_group,
				       priv->ring_data[i + tqp_num].ring);

		priv->ring_data[i].ring->tqp_vector = tqp_vector;
		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3269
		tqp_vector->num_tqps++;
3270 3271
	}

3272
	for (i = 0; i < priv->vector_num; i++) {
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
		tqp_vector = &priv->tqp_vector[i];

		tqp_vector->rx_group.total_bytes = 0;
		tqp_vector->rx_group.total_packets = 0;
		tqp_vector->tx_group.total_bytes = 0;
		tqp_vector->tx_group.total_packets = 0;
		tqp_vector->handle = h;

		ret = hns3_get_vector_ring_chain(tqp_vector,
						 &vector_ring_chain);
		if (ret)
3284
			goto map_ring_fail;
3285 3286 3287 3288 3289 3290

		ret = h->ae_algo->ops->map_ring_to_vector(h,
			tqp_vector->vector_irq, &vector_ring_chain);

		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);

3291
		if (ret)
3292
			goto map_ring_fail;
3293

3294 3295 3296 3297
		netif_napi_add(priv->netdev, &tqp_vector->napi,
			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
	}

3298
	return 0;
3299 3300 3301 3302 3303 3304

map_ring_fail:
	while (i--)
		netif_napi_del(&priv->tqp_vector[i].napi);

	return ret;
3305 3306 3307 3308
}

static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
{
3309 3310
#define HNS3_VECTOR_PF_MAX_NUM		64

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
	struct hnae3_vector_info *vector;
	struct pci_dev *pdev = h->pdev;
	u16 tqp_num = h->kinfo.num_tqps;
	u16 vector_num;
	int ret = 0;
	u16 i;

	/* RSS size, cpu online and vector_num should be the same */
	/* Should consider 2p/4p later */
	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3323 3324
	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);

3325 3326 3327 3328 3329
	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
			      GFP_KERNEL);
	if (!vector)
		return -ENOMEM;

3330
	/* save the actual available vector number */
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);

	priv->vector_num = vector_num;
	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
			     GFP_KERNEL);
	if (!priv->tqp_vector) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];
		tqp_vector->idx = i;
		tqp_vector->mask_addr = vector[i].io_addr;
		tqp_vector->vector_irq = vector[i].vector;
		hns3_vector_gl_rl_init(tqp_vector, priv);
	}

3350 3351 3352 3353 3354
out:
	devm_kfree(&pdev->dev, vector);
	return ret;
}

3355 3356 3357 3358 3359 3360
static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
{
	group->ring = NULL;
	group->count = 0;
}

3361
static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3362 3363 3364 3365
{
	struct hnae3_ring_chain_node vector_ring_chain;
	struct hnae3_handle *h = priv->ae_handle;
	struct hns3_enet_tqp_vector *tqp_vector;
3366
	int i;
3367 3368 3369 3370

	for (i = 0; i < priv->vector_num; i++) {
		tqp_vector = &priv->tqp_vector[i];

3371 3372 3373
		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
			continue;

3374
		hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3375

3376
		h->ae_algo->ops->unmap_ring_from_vector(h,
3377 3378 3379 3380
			tqp_vector->vector_irq, &vector_ring_chain);

		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);

3381 3382 3383 3384
		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
			free_irq(tqp_vector->vector_irq, tqp_vector);
			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3385 3386
		}

3387 3388
		hns3_clear_ring_group(&tqp_vector->rx_group);
		hns3_clear_ring_group(&tqp_vector->tx_group);
3389 3390
		netif_napi_del(&priv->tqp_vector[i].napi);
	}
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
}

static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	struct pci_dev *pdev = h->pdev;
	int i, ret;

	for (i = 0; i < priv->vector_num; i++) {
		struct hns3_enet_tqp_vector *tqp_vector;

		tqp_vector = &priv->tqp_vector[i];
		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
		if (ret)
			return ret;
	}
3407

3408
	devm_kfree(&pdev->dev, priv->tqp_vector);
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	return 0;
}

static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
			     int ring_type)
{
	struct hns3_nic_ring_data *ring_data = priv->ring_data;
	int queue_num = priv->ae_handle->kinfo.num_tqps;
	struct pci_dev *pdev = priv->ae_handle->pdev;
	struct hns3_enet_ring *ring;
3419
	int desc_num;
3420 3421 3422 3423 3424 3425

	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
	if (!ring)
		return -ENOMEM;

	if (ring_type == HNAE3_RING_TYPE_TX) {
3426
		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3427
		ring_data[q->tqp_index].ring = ring;
3428
		ring_data[q->tqp_index].queue_index = q->tqp_index;
3429 3430
		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
	} else {
3431
		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3432
		ring_data[q->tqp_index + queue_num].ring = ring;
3433
		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3434 3435 3436
		ring->io_base = q->io_base;
	}

P
Peng Li 已提交
3437
	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3438 3439 3440 3441 3442 3443 3444

	ring->tqp = q;
	ring->desc = NULL;
	ring->desc_cb = NULL;
	ring->dev = priv->dev;
	ring->desc_dma_addr = 0;
	ring->buf_size = q->buf_size;
3445
	ring->desc_num = desc_num;
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	ring->next_to_use = 0;
	ring->next_to_clean = 0;

	return 0;
}

static int hns3_queue_to_ring(struct hnae3_queue *tqp,
			      struct hns3_nic_priv *priv)
{
	int ret;

	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
	if (ret)
		return ret;

	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3462 3463
	if (ret) {
		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3464
		return ret;
3465
	}
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475

	return 0;
}

static int hns3_get_ring_config(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	struct pci_dev *pdev = h->pdev;
	int i, ret;

3476 3477 3478 3479
	priv->ring_data =  devm_kzalloc(&pdev->dev,
					array3_size(h->kinfo.num_tqps,
						    sizeof(*priv->ring_data),
						    2),
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
					GFP_KERNEL);
	if (!priv->ring_data)
		return -ENOMEM;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
		if (ret)
			goto err;
	}

	return 0;
err:
3492 3493 3494 3495 3496 3497
	while (i--) {
		devm_kfree(priv->dev, priv->ring_data[i].ring);
		devm_kfree(priv->dev,
			   priv->ring_data[i + h->kinfo.num_tqps].ring);
	}

3498
	devm_kfree(&pdev->dev, priv->ring_data);
3499
	priv->ring_data = NULL;
3500 3501 3502
	return ret;
}

3503 3504 3505 3506 3507
static void hns3_put_ring_config(struct hns3_nic_priv *priv)
{
	struct hnae3_handle *h = priv->ae_handle;
	int i;

3508 3509 3510
	if (!priv->ring_data)
		return;

3511 3512 3513 3514 3515 3516
	for (i = 0; i < h->kinfo.num_tqps; i++) {
		devm_kfree(priv->dev, priv->ring_data[i].ring);
		devm_kfree(priv->dev,
			   priv->ring_data[i + h->kinfo.num_tqps].ring);
	}
	devm_kfree(priv->dev, priv->ring_data);
3517
	priv->ring_data = NULL;
3518 3519
}

3520 3521 3522 3523 3524 3525 3526
static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
{
	int ret;

	if (ring->desc_num <= 0 || ring->buf_size <= 0)
		return -EINVAL;

3527 3528
	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	if (!ring->desc_cb) {
		ret = -ENOMEM;
		goto out;
	}

	ret = hns3_alloc_desc(ring);
	if (ret)
		goto out_with_desc_cb;

	if (!HNAE3_IS_TX_RING(ring)) {
		ret = hns3_alloc_ring_buffers(ring);
		if (ret)
			goto out_with_desc;
	}

	return 0;

out_with_desc:
	hns3_free_desc(ring);
out_with_desc_cb:
3549
	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3550 3551 3552 3553 3554 3555 3556 3557
	ring->desc_cb = NULL;
out:
	return ret;
}

static void hns3_fini_ring(struct hns3_enet_ring *ring)
{
	hns3_free_desc(ring);
3558
	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3559 3560 3561
	ring->desc_cb = NULL;
	ring->next_to_clean = 0;
	ring->next_to_use = 0;
3562 3563 3564 3565 3566
	ring->pending_buf = 0;
	if (ring->skb) {
		dev_kfree_skb_any(ring->skb);
		ring->skb = NULL;
	}
3567 3568
}

3569
static int hns3_buf_size2type(u32 buf_size)
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
{
	int bd_size_type;

	switch (buf_size) {
	case 512:
		bd_size_type = HNS3_BD_SIZE_512_TYPE;
		break;
	case 1024:
		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
		break;
	case 2048:
		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
		break;
	case 4096:
		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
		break;
	default:
		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
	}

	return bd_size_type;
}

static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
{
	dma_addr_t dma = ring->desc_dma_addr;
	struct hnae3_queue *q = ring->tqp;

	if (!HNAE3_IS_TX_RING(ring)) {
3599
		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
			       (u32)((dma >> 31) >> 1));

		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
			       hns3_buf_size2type(ring->buf_size));
		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
			       ring->desc_num / 8 - 1);

	} else {
		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
			       (u32)dma);
		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
			       (u32)((dma >> 31) >> 1));

		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
			       ring->desc_num / 8 - 1);
	}
}

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
{
	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
	int i;

	for (i = 0; i < HNAE3_MAX_TC; i++) {
		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
		int j;

		if (!tc_info->enable)
			continue;

		for (j = 0; j < tc_info->tqp_count; j++) {
			struct hnae3_queue *q;

			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
				       tc_info->tc);
		}
	}
}

L
Lipeng 已提交
3641
int hns3_init_all_ring(struct hns3_nic_priv *priv)
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
{
	struct hnae3_handle *h = priv->ae_handle;
	int ring_num = h->kinfo.num_tqps * 2;
	int i, j;
	int ret;

	for (i = 0; i < ring_num; i++) {
		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
		if (ret) {
			dev_err(priv->dev,
				"Alloc ring memory fail! ret=%d\n", ret);
			goto out_when_alloc_ring_memory;
		}

		u64_stats_init(&priv->ring_data[i].ring->syncp);
	}

	return 0;

out_when_alloc_ring_memory:
	for (j = i - 1; j >= 0; j--)
3663
		hns3_fini_ring(priv->ring_data[j].ring);
3664 3665 3666 3667

	return -ENOMEM;
}

L
Lipeng 已提交
3668
int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
{
	struct hnae3_handle *h = priv->ae_handle;
	int i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		hns3_fini_ring(priv->ring_data[i].ring);
		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
	}
	return 0;
}

/* Set mac addr if it is configured. or leave it to the AE driver */
3681
static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3682 3683 3684 3685
{
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	struct hnae3_handle *h = priv->ae_handle;
	u8 mac_addr_temp[ETH_ALEN];
3686
	int ret = 0;
3687

3688
	if (h->ae_algo->ops->get_mac_addr && init) {
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
	}

	/* Check if the MAC address is valid, if not get a random one */
	if (!is_valid_ether_addr(netdev->dev_addr)) {
		eth_hw_addr_random(netdev);
		dev_warn(priv->dev, "using random MAC address %pM\n",
			 netdev->dev_addr);
	}
3699 3700

	if (h->ae_algo->ops->set_mac_addr)
3701
		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3702

3703
	return ret;
3704 3705
}

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
static int hns3_init_phy(struct net_device *netdev)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);
	int ret = 0;

	if (h->ae_algo->ops->mac_connect_phy)
		ret = h->ae_algo->ops->mac_connect_phy(h);

	return ret;
}

static void hns3_uninit_phy(struct net_device *netdev)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (h->ae_algo->ops->mac_disconnect_phy)
		h->ae_algo->ops->mac_disconnect_phy(h);
}

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
static int hns3_restore_fd_rules(struct net_device *netdev)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);
	int ret = 0;

	if (h->ae_algo->ops->restore_fd_rules)
		ret = h->ae_algo->ops->restore_fd_rules(h);

	return ret;
}

static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);

	if (h->ae_algo->ops->del_all_fd_entries)
		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
}

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
static int hns3_client_start(struct hnae3_handle *handle)
{
	if (!handle->ae_algo->ops->client_start)
		return 0;

	return handle->ae_algo->ops->client_start(handle);
}

static void hns3_client_stop(struct hnae3_handle *handle)
{
	if (!handle->ae_algo->ops->client_stop)
		return;

	handle->ae_algo->ops->client_stop(handle);
}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
static void hns3_info_show(struct hns3_nic_priv *priv)
{
	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;

	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
	dev_info(priv->dev, "Task queue pairs numbers: %d\n", kinfo->num_tqps);
	dev_info(priv->dev, "RSS size: %d\n", kinfo->rss_size);
	dev_info(priv->dev, "Allocated RSS size: %d\n", kinfo->req_rss_size);
	dev_info(priv->dev, "RX buffer length: %d\n", kinfo->rx_buf_len);
	dev_info(priv->dev, "Desc num per TX queue: %d\n", kinfo->num_tx_desc);
	dev_info(priv->dev, "Desc num per RX queue: %d\n", kinfo->num_rx_desc);
	dev_info(priv->dev, "Total number of enabled TCs: %d\n", kinfo->num_tc);
	dev_info(priv->dev, "Max mtu size: %d\n", priv->netdev->max_mtu);
}

3775 3776 3777
static int hns3_client_init(struct hnae3_handle *handle)
{
	struct pci_dev *pdev = handle->pdev;
3778
	u16 alloc_tqps, max_rss_size;
3779 3780 3781 3782
	struct hns3_nic_priv *priv;
	struct net_device *netdev;
	int ret;

3783 3784 3785
	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
						    &max_rss_size);
	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3786 3787 3788 3789 3790 3791 3792
	if (!netdev)
		return -ENOMEM;

	priv = netdev_priv(netdev);
	priv->dev = &pdev->dev;
	priv->netdev = netdev;
	priv->ae_handle = handle;
3793
	priv->tx_timeout_count = 0;
3794
	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3795

3796 3797
	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);

3798 3799 3800
	handle->kinfo.netdev = netdev;
	handle->priv = (void *)priv;

3801
	hns3_init_mac_addr(netdev, true);
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819

	hns3_set_default_feature(netdev);

	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
	netdev->priv_flags |= IFF_UNICAST_FLT;
	netdev->netdev_ops = &hns3_nic_netdev_ops;
	SET_NETDEV_DEV(netdev, &pdev->dev);
	hns3_ethtool_set_ops(netdev);

	/* Carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

	ret = hns3_get_ring_config(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_get_ring_cfg;
	}

3820 3821 3822 3823 3824 3825
	ret = hns3_nic_alloc_vector_data(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_alloc_vector_data;
	}

3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	ret = hns3_nic_init_vector_data(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_init_vector_data;
	}

	ret = hns3_init_all_ring(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_init_ring_data;
	}

3838 3839 3840 3841
	ret = hns3_init_phy(netdev);
	if (ret)
		goto out_init_phy;

3842 3843 3844 3845 3846 3847
	ret = register_netdev(netdev);
	if (ret) {
		dev_err(priv->dev, "probe register netdev fail!\n");
		goto out_reg_netdev_fail;
	}

3848 3849 3850
	ret = hns3_client_start(handle);
	if (ret) {
		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3851
			goto out_client_start;
3852 3853
	}

3854 3855
	hns3_dcbnl_setup(handle);

3856 3857
	hns3_dbg_init(handle);

3858
	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3859
	netdev->max_mtu = HNS3_MAX_MTU;
3860

3861 3862
	set_bit(HNS3_NIC_STATE_INITED, &priv->state);

3863 3864 3865
	if (netif_msg_drv(handle))
		hns3_info_show(priv);

3866 3867
	return ret;

3868 3869
out_client_start:
	unregister_netdev(netdev);
3870
out_reg_netdev_fail:
3871 3872 3873
	hns3_uninit_phy(netdev);
out_init_phy:
	hns3_uninit_all_ring(priv);
3874
out_init_ring_data:
3875
	hns3_nic_uninit_vector_data(priv);
3876
out_init_vector_data:
3877 3878 3879
	hns3_nic_dealloc_vector_data(priv);
out_alloc_vector_data:
	priv->ring_data = NULL;
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
out_get_ring_cfg:
	priv->ae_handle = NULL;
	free_netdev(netdev);
	return ret;
}

static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

3892 3893
	hns3_remove_hw_addr(netdev);

3894 3895 3896
	if (netdev->reg_state != NETREG_UNINITIALIZED)
		unregister_netdev(netdev);

3897 3898
	hns3_client_stop(handle);

3899 3900
	hns3_uninit_phy(netdev);

3901 3902 3903 3904 3905
	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
		netdev_warn(netdev, "already uninitialized\n");
		goto out_netdev_free;
	}

3906 3907
	hns3_del_all_fd_rules(netdev, true);

3908 3909
	hns3_force_clear_all_rx_ring(handle);

3910
	hns3_nic_uninit_vector_data(priv);
3911

3912 3913 3914 3915
	ret = hns3_nic_dealloc_vector_data(priv);
	if (ret)
		netdev_err(netdev, "dealloc vector error\n");

3916 3917 3918 3919
	ret = hns3_uninit_all_ring(priv);
	if (ret)
		netdev_err(netdev, "uninit ring error\n");

3920 3921
	hns3_put_ring_config(priv);

3922 3923
	hns3_dbg_uninit(handle);

3924
out_netdev_free:
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
	free_netdev(netdev);
}

static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
{
	struct net_device *netdev = handle->kinfo.netdev;

	if (!netdev)
		return;

	if (linkup) {
		netif_carrier_on(netdev);
		netif_tx_wake_all_queues(netdev);
3938 3939
		if (netif_msg_link(handle))
			netdev_info(netdev, "link up\n");
3940 3941 3942
	} else {
		netif_carrier_off(netdev);
		netif_tx_stop_all_queues(netdev);
3943 3944
		if (netif_msg_link(handle))
			netdev_info(netdev, "link down\n");
3945 3946 3947
	}
}

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct net_device *ndev = kinfo->netdev;

	if (tc > HNAE3_MAX_TC)
		return -EINVAL;

	if (!ndev)
		return -ENODEV;

3959
	return hns3_nic_set_real_num_queue(ndev);
3960 3961
}

3962
static int hns3_recover_hw_addr(struct net_device *ndev)
3963 3964 3965
{
	struct netdev_hw_addr_list *list;
	struct netdev_hw_addr *ha, *tmp;
3966
	int ret = 0;
3967

3968
	netif_addr_lock_bh(ndev);
3969 3970
	/* go through and sync uc_addr entries to the device */
	list = &ndev->uc;
3971 3972 3973
	list_for_each_entry_safe(ha, tmp, &list->list, list) {
		ret = hns3_nic_uc_sync(ndev, ha->addr);
		if (ret)
3974
			goto out;
3975
	}
3976 3977 3978

	/* go through and sync mc_addr entries to the device */
	list = &ndev->mc;
3979 3980 3981
	list_for_each_entry_safe(ha, tmp, &list->list, list) {
		ret = hns3_nic_mc_sync(ndev, ha->addr);
		if (ret)
3982
			goto out;
3983 3984
	}

3985 3986
out:
	netif_addr_unlock_bh(ndev);
3987
	return ret;
3988 3989
}

3990 3991 3992 3993 3994 3995 3996
static void hns3_remove_hw_addr(struct net_device *netdev)
{
	struct netdev_hw_addr_list *list;
	struct netdev_hw_addr *ha, *tmp;

	hns3_nic_uc_unsync(netdev, netdev->dev_addr);

3997
	netif_addr_lock_bh(netdev);
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
	/* go through and unsync uc_addr entries to the device */
	list = &netdev->uc;
	list_for_each_entry_safe(ha, tmp, &list->list, list)
		hns3_nic_uc_unsync(netdev, ha->addr);

	/* go through and unsync mc_addr entries to the device */
	list = &netdev->mc;
	list_for_each_entry_safe(ha, tmp, &list->list, list)
		if (ha->refcount > 1)
			hns3_nic_mc_unsync(netdev, ha->addr);
4008 4009

	netif_addr_unlock_bh(netdev);
4010 4011
}

4012
static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4013
{
4014
	while (ring->next_to_clean != ring->next_to_use) {
4015
		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4016 4017 4018 4019 4020
		hns3_free_buffer_detach(ring, ring->next_to_clean);
		ring_ptr_move_fw(ring, next_to_clean);
	}
}

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
{
	struct hns3_desc_cb res_cbs;
	int ret;

	while (ring->next_to_use != ring->next_to_clean) {
		/* When a buffer is not reused, it's memory has been
		 * freed in hns3_handle_rx_bd or will be freed by
		 * stack, so we need to replace the buffer here.
		 */
		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
			ret = hns3_reserve_buffer_map(ring, &res_cbs);
			if (ret) {
				u64_stats_update_begin(&ring->syncp);
				ring->stats.sw_err_cnt++;
				u64_stats_update_end(&ring->syncp);
				/* if alloc new buffer fail, exit directly
				 * and reclear in up flow.
				 */
				netdev_warn(ring->tqp->handle->kinfo.netdev,
					    "reserve buffer map failed, ret = %d\n",
					    ret);
				return ret;
			}
4045
			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4046 4047 4048 4049
		}
		ring_ptr_move_fw(ring, next_to_use);
	}

4050 4051 4052 4053 4054 4055 4056
	/* Free the pending skb in rx ring */
	if (ring->skb) {
		dev_kfree_skb_any(ring->skb);
		ring->skb = NULL;
		ring->pending_buf = 0;
	}

4057 4058 4059 4060
	return 0;
}

static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
{
	while (ring->next_to_use != ring->next_to_clean) {
		/* When a buffer is not reused, it's memory has been
		 * freed in hns3_handle_rx_bd or will be freed by
		 * stack, so only need to unmap the buffer here.
		 */
		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
			hns3_unmap_buffer(ring,
					  &ring->desc_cb[ring->next_to_use]);
			ring->desc_cb[ring->next_to_use].dma = 0;
		}

		ring_ptr_move_fw(ring, next_to_use);
	}
4075 4076
}

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct hns3_enet_ring *ring;
	u32 i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
		hns3_force_clear_rx_ring(ring);
	}
}

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
static void hns3_clear_all_ring(struct hnae3_handle *h)
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	u32 i;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
		struct netdev_queue *dev_queue;
		struct hns3_enet_ring *ring;

		ring = priv->ring_data[i].ring;
4101
		hns3_clear_tx_ring(ring);
4102 4103 4104 4105 4106
		dev_queue = netdev_get_tx_queue(ndev,
						priv->ring_data[i].queue_index);
		netdev_tx_reset_queue(dev_queue);

		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4107 4108 4109
		/* Continue to clear other rings even if clearing some
		 * rings failed.
		 */
4110
		hns3_clear_rx_ring(ring);
4111 4112 4113
	}
}

4114 4115 4116 4117 4118 4119 4120 4121 4122
int hns3_nic_reset_all_ring(struct hnae3_handle *h)
{
	struct net_device *ndev = h->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(ndev);
	struct hns3_enet_ring *rx_ring;
	int i, j;
	int ret;

	for (i = 0; i < h->kinfo.num_tqps; i++) {
4123 4124 4125 4126
		ret = h->ae_algo->ops->reset_queue(h, i);
		if (ret)
			return ret;

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
		hns3_init_ring_hw(priv->ring_data[i].ring);

		/* We need to clear tx ring here because self test will
		 * use the ring and will not run down before up
		 */
		hns3_clear_tx_ring(priv->ring_data[i].ring);
		priv->ring_data[i].ring->next_to_clean = 0;
		priv->ring_data[i].ring->next_to_use = 0;

		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
		hns3_init_ring_hw(rx_ring);
		ret = hns3_clear_rx_ring(rx_ring);
		if (ret)
			return ret;

		/* We can not know the hardware head and tail when this
		 * function is called in reset flow, so we reuse all desc.
		 */
		for (j = 0; j < rx_ring->desc_num; j++)
			hns3_reuse_buffer(rx_ring, j);

		rx_ring->next_to_clean = 0;
		rx_ring->next_to_use = 0;
	}

4152 4153
	hns3_init_tx_ring_tc(priv);

4154 4155 4156
	return 0;
}

4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
static void hns3_store_coal(struct hns3_nic_priv *priv)
{
	/* ethtool only support setting and querying one coal
	 * configuation for now, so save the vector 0' coal
	 * configuation here in order to restore it.
	 */
	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
	       sizeof(struct hns3_enet_coalesce));
	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
	       sizeof(struct hns3_enet_coalesce));
}

static void hns3_restore_coal(struct hns3_nic_priv *priv)
{
	u16 vector_num = priv->vector_num;
	int i;

	for (i = 0; i < vector_num; i++) {
		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
		       sizeof(struct hns3_enet_coalesce));
		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
		       sizeof(struct hns3_enet_coalesce));
	}
}

4182 4183
static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
{
4184
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4185 4186
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct net_device *ndev = kinfo->netdev;
4187 4188 4189 4190
	struct hns3_nic_priv *priv = netdev_priv(ndev);

	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
		return 0;
4191

4192 4193 4194 4195 4196 4197 4198 4199 4200
	/* it is cumbersome for hardware to pick-and-choose entries for deletion
	 * from table space. Hence, for function reset software intervention is
	 * required to delete the entries
	 */
	if (hns3_dev_ongoing_func_reset(ae_dev)) {
		hns3_remove_hw_addr(ndev);
		hns3_del_all_fd_rules(ndev, false);
	}

4201
	if (!netif_running(ndev))
4202
		return 0;
4203 4204 4205 4206 4207 4208 4209

	return hns3_nic_net_stop(ndev);
}

static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4210
	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4211 4212
	int ret = 0;

4213 4214
	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);

4215
	if (netif_running(kinfo->netdev)) {
4216
		ret = hns3_nic_net_open(kinfo->netdev);
4217
		if (ret) {
4218
			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4219
			netdev_err(kinfo->netdev,
4220
				   "net up fail, ret=%d!\n", ret);
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
			return ret;
		}
	}

	return ret;
}

static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

	/* Carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

4237
	ret = hns3_get_ring_config(priv);
4238 4239 4240
	if (ret)
		return ret;

4241 4242 4243 4244
	ret = hns3_nic_alloc_vector_data(priv);
	if (ret)
		goto err_put_ring;

4245 4246
	hns3_restore_coal(priv);

4247 4248
	ret = hns3_nic_init_vector_data(priv);
	if (ret)
4249
		goto err_dealloc_vector;
4250 4251

	ret = hns3_init_all_ring(priv);
4252 4253
	if (ret)
		goto err_uninit_vector;
4254

4255 4256 4257 4258 4259 4260
	ret = hns3_client_start(handle);
	if (ret) {
		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
		goto err_uninit_ring;
	}

4261 4262
	set_bit(HNS3_NIC_STATE_INITED, &priv->state);

4263 4264
	return ret;

4265 4266
err_uninit_ring:
	hns3_uninit_all_ring(priv);
4267 4268 4269 4270
err_uninit_vector:
	hns3_nic_uninit_vector_data(priv);
err_dealloc_vector:
	hns3_nic_dealloc_vector_data(priv);
4271 4272
err_put_ring:
	hns3_put_ring_config(priv);
4273

4274 4275 4276
	return ret;
}

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	bool vlan_filter_enable;
	int ret;

	ret = hns3_init_mac_addr(netdev, false);
	if (ret)
		return ret;

	ret = hns3_recover_hw_addr(netdev);
	if (ret)
		return ret;

	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
	if (ret)
		return ret;

	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
	hns3_enable_vlan_filter(netdev, vlan_filter_enable);

4298 4299
	if (handle->ae_algo->ops->restore_vlan_table)
		handle->ae_algo->ops->restore_vlan_table(handle);
4300 4301 4302 4303

	return hns3_restore_fd_rules(netdev);
}

4304 4305 4306 4307 4308 4309
static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
{
	struct net_device *netdev = handle->kinfo.netdev;
	struct hns3_nic_priv *priv = netdev_priv(netdev);
	int ret;

4310
	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4311 4312 4313 4314
		netdev_warn(netdev, "already uninitialized\n");
		return 0;
	}

4315
	hns3_force_clear_all_rx_ring(handle);
4316

4317
	hns3_nic_uninit_vector_data(priv);
4318

4319 4320
	hns3_store_coal(priv);

4321 4322 4323 4324
	ret = hns3_nic_dealloc_vector_data(priv);
	if (ret)
		netdev_err(netdev, "dealloc vector error\n");

4325 4326 4327 4328
	ret = hns3_uninit_all_ring(priv);
	if (ret)
		netdev_err(netdev, "uninit ring error\n");

4329 4330
	hns3_put_ring_config(priv);

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	return ret;
}

static int hns3_reset_notify(struct hnae3_handle *handle,
			     enum hnae3_reset_notify_type type)
{
	int ret = 0;

	switch (type) {
	case HNAE3_UP_CLIENT:
4341 4342
		ret = hns3_reset_notify_up_enet(handle);
		break;
4343 4344 4345 4346 4347 4348 4349 4350 4351
	case HNAE3_DOWN_CLIENT:
		ret = hns3_reset_notify_down_enet(handle);
		break;
	case HNAE3_INIT_CLIENT:
		ret = hns3_reset_notify_init_enet(handle);
		break;
	case HNAE3_UNINIT_CLIENT:
		ret = hns3_reset_notify_uninit_enet(handle);
		break;
4352 4353 4354
	case HNAE3_RESTORE_CLIENT:
		ret = hns3_reset_notify_restore_enet(handle);
		break;
4355 4356 4357 4358 4359 4360 4361
	default:
		break;
	}

	return ret;
}

4362 4363 4364 4365 4366
int hns3_set_channels(struct net_device *netdev,
		      struct ethtool_channels *ch)
{
	struct hnae3_handle *h = hns3_get_handle(netdev);
	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4367
	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4368 4369 4370 4371 4372 4373 4374
	u32 new_tqp_num = ch->combined_count;
	u16 org_tqp_num;
	int ret;

	if (ch->rx_count || ch->tx_count)
		return -EINVAL;

4375
	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4376
	    new_tqp_num < 1) {
4377
		dev_err(&netdev->dev,
4378
			"Change tqps fail, the tqp range is from 1 to %d",
4379
			hns3_get_max_available_channels(h));
4380 4381 4382
		return -EINVAL;
	}

4383
	if (kinfo->rss_size == new_tqp_num)
4384 4385
		return 0;

4386 4387 4388
	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;
4389

4390 4391 4392
	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
4393 4394

	org_tqp_num = h->kinfo.num_tqps;
4395
	ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4396
	if (ret) {
4397 4398
		ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
						    rxfh_configured);
4399 4400 4401 4402 4403 4404 4405 4406 4407
		if (ret) {
			/* If revert to old tqp failed, fatal error occurred */
			dev_err(&netdev->dev,
				"Revert to old tqp num fail, ret=%d", ret);
			return ret;
		}
		dev_info(&netdev->dev,
			 "Change tqp num fail, Revert to old tqp num");
	}
4408 4409 4410
	ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;
4411

4412
	return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4413 4414
}

4415
static const struct hnae3_client_ops client_ops = {
4416 4417 4418
	.init_instance = hns3_client_init,
	.uninit_instance = hns3_client_uninit,
	.link_status_change = hns3_link_status_change,
4419
	.setup_tc = hns3_client_setup_tc,
4420
	.reset_notify = hns3_reset_notify,
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
};

/* hns3_init_module - Driver registration routine
 * hns3_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 */
static int __init hns3_init_module(void)
{
	int ret;

	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);

	client.type = HNAE3_CLIENT_KNIC;
	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
		 hns3_driver_name);

	client.ops = &client_ops;

4440 4441
	INIT_LIST_HEAD(&client.node);

4442 4443
	hns3_dbg_register_debugfs(hns3_driver_name);

4444 4445
	ret = hnae3_register_client(&client);
	if (ret)
4446
		goto err_reg_client;
4447 4448 4449

	ret = pci_register_driver(&hns3_driver);
	if (ret)
4450
		goto err_reg_driver;
4451 4452

	return ret;
4453 4454 4455 4456 4457 4458

err_reg_driver:
	hnae3_unregister_client(&client);
err_reg_client:
	hns3_dbg_unregister_debugfs();
	return ret;
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
}
module_init(hns3_init_module);

/* hns3_exit_module - Driver exit cleanup routine
 * hns3_exit_module is called just before the driver is removed
 * from memory.
 */
static void __exit hns3_exit_module(void)
{
	pci_unregister_driver(&hns3_driver);
	hnae3_unregister_client(&client);
4470
	hns3_dbg_unregister_debugfs();
4471 4472 4473 4474 4475 4476 4477
}
module_exit(hns3_exit_module);

MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("pci:hns-nic");
4478
MODULE_VERSION(HNS3_MOD_VERSION);