session.c 44.3 KB
Newer Older
1 2
#define _FILE_OFFSET_BITS 64

3 4
#include <linux/kernel.h>

5
#include <byteswap.h>
6 7
#include <unistd.h>
#include <sys/types.h>
8
#include <sys/mman.h>
9

10 11
#include "evlist.h"
#include "evsel.h"
12
#include "session.h"
13
#include "tool.h"
14
#include "sort.h"
15
#include "util.h"
16
#include "cpumap.h"
17
#include "event-parse.h"
18
#include "perf_regs.h"
19
#include "unwind.h"
20 21 22 23 24

static int perf_session__open(struct perf_session *self, bool force)
{
	struct stat input_stat;

25 26 27 28
	if (!strcmp(self->filename, "-")) {
		self->fd_pipe = true;
		self->fd = STDIN_FILENO;

29
		if (perf_session__read_header(self, self->fd) < 0)
30
			pr_err("incompatible file format (rerun with -v to learn more)");
31 32 33 34

		return 0;
	}

35
	self->fd = open(self->filename, O_RDONLY);
36
	if (self->fd < 0) {
37 38 39 40
		int err = errno;

		pr_err("failed to open %s: %s", self->filename, strerror(err));
		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
			pr_err("  (try 'perf record' first)");
		pr_err("\n");
		return -errno;
	}

	if (fstat(self->fd, &input_stat) < 0)
		goto out_close;

	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
		pr_err("file %s not owned by current user or root\n",
		       self->filename);
		goto out_close;
	}

	if (!input_stat.st_size) {
		pr_info("zero-sized file (%s), nothing to do!\n",
			self->filename);
		goto out_close;
	}

61
	if (perf_session__read_header(self, self->fd) < 0) {
62
		pr_err("incompatible file format (rerun with -v to learn more)");
63 64 65
		goto out_close;
	}

66 67 68 69 70 71 72 73 74 75
	if (!perf_evlist__valid_sample_type(self->evlist)) {
		pr_err("non matching sample_type");
		goto out_close;
	}

	if (!perf_evlist__valid_sample_id_all(self->evlist)) {
		pr_err("non matching sample_id_all");
		goto out_close;
	}

76 77 78 79 80 81 82 83 84
	self->size = input_stat.st_size;
	return 0;

out_close:
	close(self->fd);
	self->fd = -1;
	return -1;
}

85
void perf_session__set_id_hdr_size(struct perf_session *session)
86
{
87 88 89 90
	u16 id_hdr_size = perf_evlist__id_hdr_size(session->evlist);

	session->host_machine.id_hdr_size = id_hdr_size;
	machines__set_id_hdr_size(&session->machines, id_hdr_size);
91 92
}

93 94
int perf_session__create_kernel_maps(struct perf_session *self)
{
95
	int ret = machine__create_kernel_maps(&self->host_machine);
96 97

	if (ret >= 0)
98
		ret = machines__create_guest_kernel_maps(&self->machines);
99 100 101
	return ret;
}

102 103 104 105 106 107
static void perf_session__destroy_kernel_maps(struct perf_session *self)
{
	machine__destroy_kernel_maps(&self->host_machine);
	machines__destroy_guest_kernel_maps(&self->machines);
}

108 109
struct perf_session *perf_session__new(const char *filename, int mode,
				       bool force, bool repipe,
110
				       struct perf_tool *tool)
111
{
112 113 114 115 116 117 118 119 120 121 122 123 124
	struct perf_session *self;
	struct stat st;
	size_t len;

	if (!filename || !strlen(filename)) {
		if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
			filename = "-";
		else
			filename = "perf.data";
	}

	len = strlen(filename);
	self = zalloc(sizeof(*self) + len);
125 126 127 128 129

	if (self == NULL)
		goto out;

	memcpy(self->filename, filename, len);
130 131 132 133 134 135 136 137 138
	/*
	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
	 * slices. On 32bit we use 32MB.
	 */
#if BITS_PER_LONG == 64
	self->mmap_window = ULLONG_MAX;
#else
	self->mmap_window = 32 * 1024 * 1024ULL;
#endif
139
	self->machines = RB_ROOT;
T
Tom Zanussi 已提交
140
	self->repipe = repipe;
141
	INIT_LIST_HEAD(&self->ordered_samples.samples);
142
	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
143
	INIT_LIST_HEAD(&self->ordered_samples.to_free);
144
	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
145
	hists__init(&self->hists);
146

147 148 149
	if (mode == O_RDONLY) {
		if (perf_session__open(self, force) < 0)
			goto out_delete;
150
		perf_session__set_id_hdr_size(self);
151 152 153
	} else if (mode == O_WRONLY) {
		/*
		 * In O_RDONLY mode this will be performed when reading the
154
		 * kernel MMAP event, in perf_event__process_mmap().
155 156 157 158
		 */
		if (perf_session__create_kernel_maps(self) < 0)
			goto out_delete;
	}
159

160
	if (tool && tool->ordering_requires_timestamps &&
161
	    tool->ordered_samples && !perf_evlist__sample_id_all(self->evlist)) {
162
		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
163
		tool->ordered_samples = false;
164 165
	}

166 167
out:
	return self;
168 169 170
out_delete:
	perf_session__delete(self);
	return NULL;
171 172
}

173
static void machine__delete_dead_threads(struct machine *machine)
174 175 176
{
	struct thread *n, *t;

177
	list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
178 179 180 181 182
		list_del(&t->node);
		thread__delete(t);
	}
}

183 184 185 186 187 188
static void perf_session__delete_dead_threads(struct perf_session *session)
{
	machine__delete_dead_threads(&session->host_machine);
}

static void machine__delete_threads(struct machine *self)
189 190 191 192 193 194 195 196 197 198 199 200
{
	struct rb_node *nd = rb_first(&self->threads);

	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		rb_erase(&t->rb_node, &self->threads);
		nd = rb_next(nd);
		thread__delete(t);
	}
}

201 202 203 204 205
static void perf_session__delete_threads(struct perf_session *session)
{
	machine__delete_threads(&session->host_machine);
}

206 207
void perf_session__delete(struct perf_session *self)
{
208
	perf_session__destroy_kernel_maps(self);
209 210 211
	perf_session__delete_dead_threads(self);
	perf_session__delete_threads(self);
	machine__exit(&self->host_machine);
212 213 214
	close(self->fd);
	free(self);
}
215

216
void machine__remove_thread(struct machine *self, struct thread *th)
217
{
218
	self->last_match = NULL;
219 220 221 222 223 224 225 226
	rb_erase(&th->rb_node, &self->threads);
	/*
	 * We may have references to this thread, for instance in some hist_entry
	 * instances, so just move them to a separate list.
	 */
	list_add_tail(&th->node, &self->dead_threads);
}

227 228 229 230 231 232 233 234
static bool symbol__match_parent_regex(struct symbol *sym)
{
	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
		return 1;

	return 0;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static const u8 cpumodes[] = {
	PERF_RECORD_MISC_USER,
	PERF_RECORD_MISC_KERNEL,
	PERF_RECORD_MISC_GUEST_USER,
	PERF_RECORD_MISC_GUEST_KERNEL
};
#define NCPUMODES (sizeof(cpumodes)/sizeof(u8))

static void ip__resolve_ams(struct machine *self, struct thread *thread,
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;
	size_t i;
	u8 m;

	memset(&al, 0, sizeof(al));

	for (i = 0; i < NCPUMODES; i++) {
		m = cpumodes[i];
		/*
		 * We cannot use the header.misc hint to determine whether a
		 * branch stack address is user, kernel, guest, hypervisor.
		 * Branches may straddle the kernel/user/hypervisor boundaries.
		 * Thus, we have to try consecutively until we find a match
		 * or else, the symbol is unknown
		 */
		thread__find_addr_location(thread, self, m, MAP__FUNCTION,
				ip, &al, NULL);
		if (al.sym)
			goto found;
	}
found:
	ams->addr = ip;
269
	ams->al_addr = al.addr;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	ams->sym = al.sym;
	ams->map = al.map;
}

struct branch_info *machine__resolve_bstack(struct machine *self,
					    struct thread *thr,
					    struct branch_stack *bs)
{
	struct branch_info *bi;
	unsigned int i;

	bi = calloc(bs->nr, sizeof(struct branch_info));
	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
		ip__resolve_ams(self, thr, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(self, thr, &bi[i].from, bs->entries[i].from);
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

293 294 295 296 297
static int machine__resolve_callchain_sample(struct machine *machine,
					     struct thread *thread,
					     struct ip_callchain *chain,
					     struct symbol **parent)

298 299 300
{
	u8 cpumode = PERF_RECORD_MISC_USER;
	unsigned int i;
301
	int err;
302

303
	callchain_cursor_reset(&callchain_cursor);
304

305 306 307 308 309
	if (chain->nr > PERF_MAX_STACK_DEPTH) {
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

310
	for (i = 0; i < chain->nr; i++) {
311
		u64 ip;
312 313
		struct addr_location al;

314 315 316 317 318
		if (callchain_param.order == ORDER_CALLEE)
			ip = chain->ips[i];
		else
			ip = chain->ips[chain->nr - i - 1];

319 320 321
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
322 323
				cpumode = PERF_RECORD_MISC_HYPERVISOR;
				break;
324
			case PERF_CONTEXT_KERNEL:
325 326
				cpumode = PERF_RECORD_MISC_KERNEL;
				break;
327
			case PERF_CONTEXT_USER:
328 329
				cpumode = PERF_RECORD_MISC_USER;
				break;
330
			default:
331 332 333 334 335 336 337 338
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(&callchain_cursor);
				return 0;
339 340 341 342
			}
			continue;
		}

343
		al.filtered = false;
344
		thread__find_addr_location(thread, machine, cpumode,
345
					   MAP__FUNCTION, ip, &al, NULL);
346 347 348 349
		if (al.sym != NULL) {
			if (sort__has_parent && !*parent &&
			    symbol__match_parent_regex(al.sym))
				*parent = al.sym;
350
			if (!symbol_conf.use_callchain)
351 352
				break;
		}
353

354
		err = callchain_cursor_append(&callchain_cursor,
355 356 357
					      ip, al.map, al.sym);
		if (err)
			return err;
358 359
	}

360
	return 0;
361
}
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

int machine__resolve_callchain(struct machine *machine,
			       struct perf_evsel *evsel,
			       struct thread *thread,
			       struct perf_sample *sample,
			       struct symbol **parent)

{
	int ret;

	callchain_cursor_reset(&callchain_cursor);

	ret = machine__resolve_callchain_sample(machine, thread,
						sample->callchain, parent);
	if (ret)
		return ret;

	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	return unwind__get_entries(unwind_entry, &callchain_cursor, machine,
				   thread, evsel->attr.sample_regs_user,
				   sample);

}

397 398 399 400 401 402 403
static int process_event_synth_tracing_data_stub(union perf_event *event __used,
						 struct perf_session *session __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

404 405 406 407 408 409 410
static int process_event_synth_attr_stub(union perf_event *event __used,
					 struct perf_evlist **pevlist __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

411
static int process_event_sample_stub(struct perf_tool *tool __used,
412
				     union perf_event *event __used,
413 414
				     struct perf_sample *sample __used,
				     struct perf_evsel *evsel __used,
415
				     struct machine *machine __used)
416 417 418 419 420
{
	dump_printf(": unhandled!\n");
	return 0;
}

421
static int process_event_stub(struct perf_tool *tool __used,
422
			      union perf_event *event __used,
423
			      struct perf_sample *sample __used,
424
			      struct machine *machine __used)
425 426 427 428 429
{
	dump_printf(": unhandled!\n");
	return 0;
}

430
static int process_finished_round_stub(struct perf_tool *tool __used,
431
				       union perf_event *event __used,
432 433 434 435 436 437
				       struct perf_session *perf_session __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

438
static int process_event_type_stub(struct perf_tool *tool __used,
439
				   union perf_event *event __used)
440 441 442 443 444
{
	dump_printf(": unhandled!\n");
	return 0;
}

445
static int process_finished_round(struct perf_tool *tool,
446 447
				  union perf_event *event,
				  struct perf_session *session);
448

449
static void perf_tool__fill_defaults(struct perf_tool *tool)
450
{
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
	if (tool->sample == NULL)
		tool->sample = process_event_sample_stub;
	if (tool->mmap == NULL)
		tool->mmap = process_event_stub;
	if (tool->comm == NULL)
		tool->comm = process_event_stub;
	if (tool->fork == NULL)
		tool->fork = process_event_stub;
	if (tool->exit == NULL)
		tool->exit = process_event_stub;
	if (tool->lost == NULL)
		tool->lost = perf_event__process_lost;
	if (tool->read == NULL)
		tool->read = process_event_sample_stub;
	if (tool->throttle == NULL)
		tool->throttle = process_event_stub;
	if (tool->unthrottle == NULL)
		tool->unthrottle = process_event_stub;
	if (tool->attr == NULL)
		tool->attr = process_event_synth_attr_stub;
	if (tool->event_type == NULL)
		tool->event_type = process_event_type_stub;
	if (tool->tracing_data == NULL)
		tool->tracing_data = process_event_synth_tracing_data_stub;
	if (tool->build_id == NULL)
		tool->build_id = process_finished_round_stub;
	if (tool->finished_round == NULL) {
		if (tool->ordered_samples)
			tool->finished_round = process_finished_round;
480
		else
481
			tool->finished_round = process_finished_round_stub;
482
	}
483
}
484 485 486 487 488 489 490 491 492 493
 
void mem_bswap_32(void *src, int byte_size)
{
	u32 *m = src;
	while (byte_size > 0) {
		*m = bswap_32(*m);
		byte_size -= sizeof(u32);
		++m;
	}
}
494

495 496 497 498 499 500 501 502 503 504 505
void mem_bswap_64(void *src, int byte_size)
{
	u64 *m = src;

	while (byte_size > 0) {
		*m = bswap_64(*m);
		byte_size -= sizeof(u64);
		++m;
	}
}

506 507 508 509 510 511 512 513 514 515 516
static void swap_sample_id_all(union perf_event *event, void *data)
{
	void *end = (void *) event + event->header.size;
	int size = end - data;

	BUG_ON(size % sizeof(u64));
	mem_bswap_64(data, size);
}

static void perf_event__all64_swap(union perf_event *event,
				   bool sample_id_all __used)
517
{
518 519
	struct perf_event_header *hdr = &event->header;
	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
520 521
}

522
static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
523
{
524 525
	event->comm.pid = bswap_32(event->comm.pid);
	event->comm.tid = bswap_32(event->comm.tid);
526 527 528 529

	if (sample_id_all) {
		void *data = &event->comm.comm;

530
		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
531 532
		swap_sample_id_all(event, data);
	}
533 534
}

535 536
static void perf_event__mmap_swap(union perf_event *event,
				  bool sample_id_all)
537
{
538 539 540 541 542
	event->mmap.pid	  = bswap_32(event->mmap.pid);
	event->mmap.tid	  = bswap_32(event->mmap.tid);
	event->mmap.start = bswap_64(event->mmap.start);
	event->mmap.len	  = bswap_64(event->mmap.len);
	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
543 544 545 546

	if (sample_id_all) {
		void *data = &event->mmap.filename;

547
		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
548 549
		swap_sample_id_all(event, data);
	}
550 551
}

552
static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
553
{
554 555 556 557 558
	event->fork.pid	 = bswap_32(event->fork.pid);
	event->fork.tid	 = bswap_32(event->fork.tid);
	event->fork.ppid = bswap_32(event->fork.ppid);
	event->fork.ptid = bswap_32(event->fork.ptid);
	event->fork.time = bswap_64(event->fork.time);
559 560 561

	if (sample_id_all)
		swap_sample_id_all(event, &event->fork + 1);
562 563
}

564
static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
565
{
566 567 568 569 570 571
	event->read.pid		 = bswap_32(event->read.pid);
	event->read.tid		 = bswap_32(event->read.tid);
	event->read.value	 = bswap_64(event->read.value);
	event->read.time_enabled = bswap_64(event->read.time_enabled);
	event->read.time_running = bswap_64(event->read.time_running);
	event->read.id		 = bswap_64(event->read.id);
572 573 574

	if (sample_id_all)
		swap_sample_id_all(event, &event->read + 1);
575 576
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
static u8 revbyte(u8 b)
{
	int rev = (b >> 4) | ((b & 0xf) << 4);
	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
	return (u8) rev;
}

/*
 * XXX this is hack in attempt to carry flags bitfield
 * throught endian village. ABI says:
 *
 * Bit-fields are allocated from right to left (least to most significant)
 * on little-endian implementations and from left to right (most to least
 * significant) on big-endian implementations.
 *
 * The above seems to be byte specific, so we need to reverse each
 * byte of the bitfield. 'Internet' also says this might be implementation
 * specific and we probably need proper fix and carry perf_event_attr
 * bitfield flags in separate data file FEAT_ section. Thought this seems
 * to work for now.
 */
static void swap_bitfield(u8 *p, unsigned len)
{
	unsigned i;

	for (i = 0; i < len; i++) {
		*p = revbyte(*p);
		p++;
	}
}

609 610 611 612 613 614 615 616 617 618 619 620 621
/* exported for swapping attributes in file header */
void perf_event__attr_swap(struct perf_event_attr *attr)
{
	attr->type		= bswap_32(attr->type);
	attr->size		= bswap_32(attr->size);
	attr->config		= bswap_64(attr->config);
	attr->sample_period	= bswap_64(attr->sample_period);
	attr->sample_type	= bswap_64(attr->sample_type);
	attr->read_format	= bswap_64(attr->read_format);
	attr->wakeup_events	= bswap_32(attr->wakeup_events);
	attr->bp_type		= bswap_32(attr->bp_type);
	attr->bp_addr		= bswap_64(attr->bp_addr);
	attr->bp_len		= bswap_64(attr->bp_len);
622 623

	swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
624 625
}

626 627
static void perf_event__hdr_attr_swap(union perf_event *event,
				      bool sample_id_all __used)
628 629 630
{
	size_t size;

631
	perf_event__attr_swap(&event->attr.attr);
632

633 634 635
	size = event->header.size;
	size -= (void *)&event->attr.id - (void *)event;
	mem_bswap_64(event->attr.id, size);
636 637
}

638 639
static void perf_event__event_type_swap(union perf_event *event,
					bool sample_id_all __used)
640
{
641 642
	event->event_type.event_type.event_id =
		bswap_64(event->event_type.event_type.event_id);
643 644
}

645 646
static void perf_event__tracing_data_swap(union perf_event *event,
					  bool sample_id_all __used)
647
{
648
	event->tracing_data.size = bswap_32(event->tracing_data.size);
649 650
}

651 652
typedef void (*perf_event__swap_op)(union perf_event *event,
				    bool sample_id_all);
653

654 655 656 657 658 659 660 661
static perf_event__swap_op perf_event__swap_ops[] = {
	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
	[PERF_RECORD_FORK]		  = perf_event__task_swap,
	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
	[PERF_RECORD_READ]		  = perf_event__read_swap,
	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
662
	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
663 664 665 666
	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
	[PERF_RECORD_HEADER_MAX]	  = NULL,
667 668
};

669 670
struct sample_queue {
	u64			timestamp;
671
	u64			file_offset;
672
	union perf_event	*event;
673 674 675
	struct list_head	list;
};

676 677 678 679
static void perf_session_free_sample_buffers(struct perf_session *session)
{
	struct ordered_samples *os = &session->ordered_samples;

680
	while (!list_empty(&os->to_free)) {
681 682
		struct sample_queue *sq;

683
		sq = list_entry(os->to_free.next, struct sample_queue, list);
684 685 686 687 688
		list_del(&sq->list);
		free(sq);
	}
}

689
static int perf_session_deliver_event(struct perf_session *session,
690
				      union perf_event *event,
691
				      struct perf_sample *sample,
692
				      struct perf_tool *tool,
693
				      u64 file_offset);
694

695
static int flush_sample_queue(struct perf_session *s,
696
			       struct perf_tool *tool)
697
{
698 699
	struct ordered_samples *os = &s->ordered_samples;
	struct list_head *head = &os->samples;
700
	struct sample_queue *tmp, *iter;
701
	struct perf_sample sample;
702 703
	u64 limit = os->next_flush;
	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
704
	unsigned idx = 0, progress_next = os->nr_samples / 16;
705
	int ret;
706

707
	if (!tool->ordered_samples || !limit)
708
		return 0;
709 710 711

	list_for_each_entry_safe(iter, tmp, head, list) {
		if (iter->timestamp > limit)
712
			break;
713

714 715
		ret = perf_evlist__parse_sample(s->evlist, iter->event, &sample,
						s->header.needs_swap);
716 717
		if (ret)
			pr_err("Can't parse sample, err = %d\n", ret);
718 719 720 721 722 723
		else {
			ret = perf_session_deliver_event(s, iter->event, &sample, tool,
							 iter->file_offset);
			if (ret)
				return ret;
		}
724

725
		os->last_flush = iter->timestamp;
726
		list_del(&iter->list);
727
		list_add(&iter->list, &os->sample_cache);
728 729 730 731 732
		if (++idx >= progress_next) {
			progress_next += os->nr_samples / 16;
			ui_progress__update(idx, os->nr_samples,
					    "Processing time ordered events...");
		}
733
	}
734 735 736 737 738 739 740

	if (list_empty(head)) {
		os->last_sample = NULL;
	} else if (last_ts <= limit) {
		os->last_sample =
			list_entry(head->prev, struct sample_queue, list);
	}
741 742

	os->nr_samples = 0;
743 744

	return 0;
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
/*
 * When perf record finishes a pass on every buffers, it records this pseudo
 * event.
 * We record the max timestamp t found in the pass n.
 * Assuming these timestamps are monotonic across cpus, we know that if
 * a buffer still has events with timestamps below t, they will be all
 * available and then read in the pass n + 1.
 * Hence when we start to read the pass n + 2, we can safely flush every
 * events with timestamps below t.
 *
 *    ============ PASS n =================
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          1          |         2
 *          2          |         3
 *          -          |         4  <--- max recorded
 *
 *    ============ PASS n + 1 ==============
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          3          |         5
 *          4          |         6
 *          5          |         7 <---- max recorded
 *
 *      Flush every events below timestamp 4
 *
 *    ============ PASS n + 2 ==============
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          6          |         8
 *          7          |         9
 *          -          |         10
 *
 *      Flush every events below timestamp 7
 *      etc...
 */
786
static int process_finished_round(struct perf_tool *tool,
787 788
				  union perf_event *event __used,
				  struct perf_session *session)
789
{
790 791 792
	int ret = flush_sample_queue(session, tool);
	if (!ret)
		session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
793

794
	return ret;
795 796
}

797
/* The queue is ordered by time */
798
static void __queue_event(struct sample_queue *new, struct perf_session *s)
799
{
800 801 802 803
	struct ordered_samples *os = &s->ordered_samples;
	struct sample_queue *sample = os->last_sample;
	u64 timestamp = new->timestamp;
	struct list_head *p;
804

805
	++os->nr_samples;
806
	os->last_sample = new;
807

808 809 810
	if (!sample) {
		list_add(&new->list, &os->samples);
		os->max_timestamp = timestamp;
811 812 813 814
		return;
	}

	/*
815 816 817
	 * last_sample might point to some random place in the list as it's
	 * the last queued event. We expect that the new event is close to
	 * this.
818
	 */
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	if (sample->timestamp <= timestamp) {
		while (sample->timestamp <= timestamp) {
			p = sample->list.next;
			if (p == &os->samples) {
				list_add_tail(&new->list, &os->samples);
				os->max_timestamp = timestamp;
				return;
			}
			sample = list_entry(p, struct sample_queue, list);
		}
		list_add_tail(&new->list, &sample->list);
	} else {
		while (sample->timestamp > timestamp) {
			p = sample->list.prev;
			if (p == &os->samples) {
				list_add(&new->list, &os->samples);
				return;
			}
			sample = list_entry(p, struct sample_queue, list);
		}
		list_add(&new->list, &sample->list);
	}
841 842
}

843 844
#define MAX_SAMPLE_BUFFER	(64 * 1024 / sizeof(struct sample_queue))

845
static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
846
				    struct perf_sample *sample, u64 file_offset)
847
{
848 849
	struct ordered_samples *os = &s->ordered_samples;
	struct list_head *sc = &os->sample_cache;
850
	u64 timestamp = sample->time;
851 852
	struct sample_queue *new;

853
	if (!timestamp || timestamp == ~0ULL)
854 855
		return -ETIME;

856 857 858 859 860
	if (timestamp < s->ordered_samples.last_flush) {
		printf("Warning: Timestamp below last timeslice flush\n");
		return -EINVAL;
	}

861 862 863
	if (!list_empty(sc)) {
		new = list_entry(sc->next, struct sample_queue, list);
		list_del(&new->list);
864 865 866 867
	} else if (os->sample_buffer) {
		new = os->sample_buffer + os->sample_buffer_idx;
		if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
			os->sample_buffer = NULL;
868
	} else {
869 870
		os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
		if (!os->sample_buffer)
871
			return -ENOMEM;
872 873 874
		list_add(&os->sample_buffer->list, &os->to_free);
		os->sample_buffer_idx = 2;
		new = os->sample_buffer + 1;
875
	}
876 877

	new->timestamp = timestamp;
878
	new->file_offset = file_offset;
879
	new->event = event;
880

881
	__queue_event(new, s);
882 883 884

	return 0;
}
885

886
static void callchain__printf(struct perf_sample *sample)
887 888
{
	unsigned int i;
889

890
	printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
891 892

	for (i = 0; i < sample->callchain->nr; i++)
893 894
		printf("..... %2d: %016" PRIx64 "\n",
		       i, sample->callchain->ips[i]);
895 896
}

897 898 899 900 901 902 903 904 905 906 907 908
static void branch_stack__printf(struct perf_sample *sample)
{
	uint64_t i;

	printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);

	for (i = 0; i < sample->branch_stack->nr; i++)
		printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
			i, sample->branch_stack->entries[i].from,
			sample->branch_stack->entries[i].to);
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
static void regs_dump__printf(u64 mask, u64 *regs)
{
	unsigned rid, i = 0;

	for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) {
		u64 val = regs[i++];

		printf(".... %-5s 0x%" PRIx64 "\n",
		       perf_reg_name(rid), val);
	}
}

static void regs_user__printf(struct perf_sample *sample, u64 mask)
{
	struct regs_dump *user_regs = &sample->user_regs;

	if (user_regs->regs) {
		printf("... user regs: mask 0x%" PRIx64 "\n", mask);
		regs_dump__printf(mask, user_regs->regs);
	}
}

static void stack_user__printf(struct stack_dump *dump)
{
	printf("... ustack: size %" PRIu64 ", offset 0x%x\n",
	       dump->size, dump->offset);
}

937
static void perf_session__print_tstamp(struct perf_session *session,
938
				       union perf_event *event,
939
				       struct perf_sample *sample)
940
{
941 942
	u64 sample_type = perf_evlist__sample_type(session->evlist);

943
	if (event->header.type != PERF_RECORD_SAMPLE &&
944
	    !perf_evlist__sample_id_all(session->evlist)) {
945 946 947 948
		fputs("-1 -1 ", stdout);
		return;
	}

949
	if ((sample_type & PERF_SAMPLE_CPU))
950 951
		printf("%u ", sample->cpu);

952
	if (sample_type & PERF_SAMPLE_TIME)
953
		printf("%" PRIu64 " ", sample->time);
954 955
}

956
static void dump_event(struct perf_session *session, union perf_event *event,
957
		       u64 file_offset, struct perf_sample *sample)
958 959 960 961
{
	if (!dump_trace)
		return;

962 963
	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
	       file_offset, event->header.size, event->header.type);
964 965 966 967 968 969

	trace_event(event);

	if (sample)
		perf_session__print_tstamp(session, event, sample);

970
	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
971
	       event->header.size, perf_event__name(event->header.type));
972 973
}

974
static void dump_sample(struct perf_evsel *evsel, union perf_event *event,
975
			struct perf_sample *sample)
976
{
977 978
	u64 sample_type;

979 980 981
	if (!dump_trace)
		return;

982
	printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
983
	       event->header.misc, sample->pid, sample->tid, sample->ip,
984
	       sample->period, sample->addr);
985

986
	sample_type = evsel->attr.sample_type;
987 988

	if (sample_type & PERF_SAMPLE_CALLCHAIN)
989
		callchain__printf(sample);
990

991
	if (sample_type & PERF_SAMPLE_BRANCH_STACK)
992
		branch_stack__printf(sample);
993 994 995 996 997 998

	if (sample_type & PERF_SAMPLE_REGS_USER)
		regs_user__printf(sample, evsel->attr.sample_regs_user);

	if (sample_type & PERF_SAMPLE_STACK_USER)
		stack_user__printf(&sample->user_stack);
999 1000
}

1001 1002 1003 1004 1005 1006
static struct machine *
	perf_session__find_machine_for_cpumode(struct perf_session *session,
					       union perf_event *event)
{
	const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;

1007 1008 1009
	if (perf_guest &&
	    ((cpumode == PERF_RECORD_MISC_GUEST_KERNEL) ||
	     (cpumode == PERF_RECORD_MISC_GUEST_USER))) {
1010 1011 1012 1013 1014 1015 1016
		u32 pid;

		if (event->header.type == PERF_RECORD_MMAP)
			pid = event->mmap.pid;
		else
			pid = event->ip.pid;

1017
		return perf_session__findnew_machine(session, pid);
1018
	}
1019 1020 1021 1022

	return perf_session__find_host_machine(session);
}

1023
static int perf_session_deliver_event(struct perf_session *session,
1024
				      union perf_event *event,
1025
				      struct perf_sample *sample,
1026
				      struct perf_tool *tool,
1027
				      u64 file_offset)
1028
{
1029
	struct perf_evsel *evsel;
1030
	struct machine *machine;
1031

1032 1033
	dump_event(session, event, file_offset, sample);

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	evsel = perf_evlist__id2evsel(session->evlist, sample->id);
	if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
		/*
		 * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
		 * because the tools right now may apply filters, discarding
		 * some of the samples. For consistency, in the future we
		 * should have something like nr_filtered_samples and remove
		 * the sample->period from total_sample_period, etc, KISS for
		 * now tho.
		 *
		 * Also testing against NULL allows us to handle files without
		 * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
		 * future probably it'll be a good idea to restrict event
		 * processing via perf_session to files with both set.
		 */
		hists__inc_nr_events(&evsel->hists, event->header.type);
	}

1052 1053
	machine = perf_session__find_machine_for_cpumode(session, event);

1054 1055
	switch (event->header.type) {
	case PERF_RECORD_SAMPLE:
1056
		dump_sample(evsel, event, sample);
1057 1058
		if (evsel == NULL) {
			++session->hists.stats.nr_unknown_id;
1059
			return 0;
1060
		}
1061 1062
		if (machine == NULL) {
			++session->hists.stats.nr_unprocessable_samples;
1063
			return 0;
1064
		}
1065
		return tool->sample(tool, event, sample, evsel, machine);
1066
	case PERF_RECORD_MMAP:
1067
		return tool->mmap(tool, event, sample, machine);
1068
	case PERF_RECORD_COMM:
1069
		return tool->comm(tool, event, sample, machine);
1070
	case PERF_RECORD_FORK:
1071
		return tool->fork(tool, event, sample, machine);
1072
	case PERF_RECORD_EXIT:
1073
		return tool->exit(tool, event, sample, machine);
1074
	case PERF_RECORD_LOST:
1075
		if (tool->lost == perf_event__process_lost)
1076
			session->hists.stats.total_lost += event->lost.lost;
1077
		return tool->lost(tool, event, sample, machine);
1078
	case PERF_RECORD_READ:
1079
		return tool->read(tool, event, sample, evsel, machine);
1080
	case PERF_RECORD_THROTTLE:
1081
		return tool->throttle(tool, event, sample, machine);
1082
	case PERF_RECORD_UNTHROTTLE:
1083
		return tool->unthrottle(tool, event, sample, machine);
1084 1085 1086 1087 1088 1089
	default:
		++session->hists.stats.nr_unknown_events;
		return -1;
	}
}

1090
static int perf_session__preprocess_sample(struct perf_session *session,
1091
					   union perf_event *event, struct perf_sample *sample)
1092 1093
{
	if (event->header.type != PERF_RECORD_SAMPLE ||
1094
	    !(perf_evlist__sample_type(session->evlist) & PERF_SAMPLE_CALLCHAIN))
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		return 0;

	if (!ip_callchain__valid(sample->callchain, event)) {
		pr_debug("call-chain problem with event, skipping it.\n");
		++session->hists.stats.nr_invalid_chains;
		session->hists.stats.total_invalid_chains += sample->period;
		return -EINVAL;
	}
	return 0;
}

1106
static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
1107
					    struct perf_tool *tool, u64 file_offset)
1108
{
1109 1110
	int err;

1111
	dump_event(session, event, file_offset, NULL);
1112

1113
	/* These events are processed right away */
1114
	switch (event->header.type) {
1115
	case PERF_RECORD_HEADER_ATTR:
1116
		err = tool->attr(event, &session->evlist);
1117
		if (err == 0)
1118
			perf_session__set_id_hdr_size(session);
1119
		return err;
1120
	case PERF_RECORD_HEADER_EVENT_TYPE:
1121
		return tool->event_type(tool, event);
1122 1123
	case PERF_RECORD_HEADER_TRACING_DATA:
		/* setup for reading amidst mmap */
1124
		lseek(session->fd, file_offset, SEEK_SET);
1125
		return tool->tracing_data(event, session);
1126
	case PERF_RECORD_HEADER_BUILD_ID:
1127
		return tool->build_id(tool, event, session);
1128
	case PERF_RECORD_FINISHED_ROUND:
1129
		return tool->finished_round(tool, event, session);
1130
	default:
1131
		return -EINVAL;
1132
	}
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143
static void event_swap(union perf_event *event, bool sample_id_all)
{
	perf_event__swap_op swap;

	swap = perf_event__swap_ops[event->header.type];
	if (swap)
		swap(event, sample_id_all);
}

1144
static int perf_session__process_event(struct perf_session *session,
1145
				       union perf_event *event,
1146
				       struct perf_tool *tool,
1147 1148
				       u64 file_offset)
{
1149
	struct perf_sample sample;
1150 1151
	int ret;

1152
	if (session->header.needs_swap)
1153
		event_swap(event, perf_evlist__sample_id_all(session->evlist));
1154 1155 1156 1157 1158 1159 1160

	if (event->header.type >= PERF_RECORD_HEADER_MAX)
		return -EINVAL;

	hists__inc_nr_events(&session->hists, event->header.type);

	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1161
		return perf_session__process_user_event(session, event, tool, file_offset);
1162

1163 1164 1165
	/*
	 * For all kernel events we get the sample data
	 */
1166 1167
	ret = perf_evlist__parse_sample(session->evlist, event, &sample,
					session->header.needs_swap);
1168 1169
	if (ret)
		return ret;
1170 1171 1172 1173 1174

	/* Preprocess sample records - precheck callchains */
	if (perf_session__preprocess_sample(session, event, &sample))
		return 0;

1175
	if (tool->ordered_samples) {
1176 1177
		ret = perf_session_queue_event(session, event, &sample,
					       file_offset);
1178 1179 1180 1181
		if (ret != -ETIME)
			return ret;
	}

1182
	return perf_session_deliver_event(session, event, &sample, tool,
1183
					  file_offset);
1184 1185
}

1186 1187 1188 1189 1190 1191 1192
void perf_event_header__bswap(struct perf_event_header *self)
{
	self->type = bswap_32(self->type);
	self->misc = bswap_16(self->misc);
	self->size = bswap_16(self->size);
}

1193 1194 1195 1196 1197
struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
{
	return machine__findnew_thread(&session->host_machine, pid);
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
static struct thread *perf_session__register_idle_thread(struct perf_session *self)
{
	struct thread *thread = perf_session__findnew(self, 0);

	if (thread == NULL || thread__set_comm(thread, "swapper")) {
		pr_err("problem inserting idle task.\n");
		thread = NULL;
	}

	return thread;
}

1210
static void perf_session__warn_about_errors(const struct perf_session *session,
1211
					    const struct perf_tool *tool)
1212
{
1213
	if (tool->lost == perf_event__process_lost &&
1214 1215 1216 1217 1218
	    session->hists.stats.nr_events[PERF_RECORD_LOST] != 0) {
		ui__warning("Processed %d events and lost %d chunks!\n\n"
			    "Check IO/CPU overload!\n\n",
			    session->hists.stats.nr_events[0],
			    session->hists.stats.nr_events[PERF_RECORD_LOST]);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	}

	if (session->hists.stats.nr_unknown_events != 0) {
		ui__warning("Found %u unknown events!\n\n"
			    "Is this an older tool processing a perf.data "
			    "file generated by a more recent tool?\n\n"
			    "If that is not the case, consider "
			    "reporting to linux-kernel@vger.kernel.org.\n\n",
			    session->hists.stats.nr_unknown_events);
	}

1230 1231 1232 1233 1234
	if (session->hists.stats.nr_unknown_id != 0) {
		ui__warning("%u samples with id not present in the header\n",
			    session->hists.stats.nr_unknown_id);
	}

1235 1236 1237 1238 1239 1240 1241
 	if (session->hists.stats.nr_invalid_chains != 0) {
 		ui__warning("Found invalid callchains!\n\n"
 			    "%u out of %u events were discarded for this reason.\n\n"
 			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
 			    session->hists.stats.nr_invalid_chains,
 			    session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
 	}
1242 1243 1244 1245 1246 1247

	if (session->hists.stats.nr_unprocessable_samples != 0) {
		ui__warning("%u unprocessable samples recorded.\n"
			    "Do you have a KVM guest running and not using 'perf kvm'?\n",
			    session->hists.stats.nr_unprocessable_samples);
	}
1248 1249
}

1250 1251 1252 1253
#define session_done()	(*(volatile int *)(&session_done))
volatile int session_done;

static int __perf_session__process_pipe_events(struct perf_session *self,
1254
					       struct perf_tool *tool)
1255
{
1256 1257 1258
	union perf_event *event;
	uint32_t size, cur_size = 0;
	void *buf = NULL;
1259 1260 1261 1262 1263
	int skip = 0;
	u64 head;
	int err;
	void *p;

1264
	perf_tool__fill_defaults(tool);
1265 1266

	head = 0;
1267 1268 1269 1270 1271
	cur_size = sizeof(union perf_event);

	buf = malloc(cur_size);
	if (!buf)
		return -errno;
1272
more:
1273 1274
	event = buf;
	err = readn(self->fd, event, sizeof(struct perf_event_header));
1275 1276 1277 1278 1279 1280 1281 1282 1283
	if (err <= 0) {
		if (err == 0)
			goto done;

		pr_err("failed to read event header\n");
		goto out_err;
	}

	if (self->header.needs_swap)
1284
		perf_event_header__bswap(&event->header);
1285

1286
	size = event->header.size;
1287 1288 1289
	if (size == 0)
		size = 8;

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	if (size > cur_size) {
		void *new = realloc(buf, size);
		if (!new) {
			pr_err("failed to allocate memory to read event\n");
			goto out_err;
		}
		buf = new;
		cur_size = size;
		event = buf;
	}
	p = event;
1301 1302
	p += sizeof(struct perf_event_header);

1303
	if (size - sizeof(struct perf_event_header)) {
1304
		err = readn(self->fd, p, size - sizeof(struct perf_event_header));
1305 1306 1307 1308 1309
		if (err <= 0) {
			if (err == 0) {
				pr_err("unexpected end of event stream\n");
				goto done;
			}
1310

1311 1312 1313
			pr_err("failed to read event data\n");
			goto out_err;
		}
1314 1315
	}

1316
	if ((skip = perf_session__process_event(self, event, tool, head)) < 0) {
1317
		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1318
		       head, event->header.size, event->header.type);
1319 1320
		err = -EINVAL;
		goto out_err;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	}

	head += size;

	if (skip > 0)
		head += skip;

	if (!session_done())
		goto more;
done:
	err = 0;
out_err:
1333
	free(buf);
1334
	perf_session__warn_about_errors(self, tool);
1335
	perf_session_free_sample_buffers(self);
1336 1337 1338
	return err;
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
static union perf_event *
fetch_mmaped_event(struct perf_session *session,
		   u64 head, size_t mmap_size, char *buf)
{
	union perf_event *event;

	/*
	 * Ensure we have enough space remaining to read
	 * the size of the event in the headers.
	 */
	if (head + sizeof(event->header) > mmap_size)
		return NULL;

	event = (union perf_event *)(buf + head);

	if (session->header.needs_swap)
		perf_event_header__bswap(&event->header);

	if (head + event->header.size > mmap_size)
		return NULL;

	return event;
}

1363
int __perf_session__process_events(struct perf_session *session,
1364
				   u64 data_offset, u64 data_size,
1365
				   u64 file_size, struct perf_tool *tool)
1366
{
1367
	u64 head, page_offset, file_offset, file_pos, progress_next;
1368
	int err, mmap_prot, mmap_flags, map_idx = 0;
1369
	size_t	page_size, mmap_size;
1370
	char *buf, *mmaps[8];
1371
	union perf_event *event;
1372
	uint32_t size;
1373

1374
	perf_tool__fill_defaults(tool);
1375

1376
	page_size = sysconf(_SC_PAGESIZE);
1377

1378 1379 1380
	page_offset = page_size * (data_offset / page_size);
	file_offset = page_offset;
	head = data_offset - page_offset;
1381

1382 1383 1384
	if (data_offset + data_size < file_size)
		file_size = data_offset + data_size;

1385 1386 1387 1388 1389 1390
	progress_next = file_size / 16;

	mmap_size = session->mmap_window;
	if (mmap_size > file_size)
		mmap_size = file_size;

1391 1392
	memset(mmaps, 0, sizeof(mmaps));

1393 1394 1395
	mmap_prot  = PROT_READ;
	mmap_flags = MAP_SHARED;

1396
	if (session->header.needs_swap) {
1397 1398 1399
		mmap_prot  |= PROT_WRITE;
		mmap_flags = MAP_PRIVATE;
	}
1400
remap:
1401 1402
	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
		   file_offset);
1403 1404 1405 1406 1407
	if (buf == MAP_FAILED) {
		pr_err("failed to mmap file\n");
		err = -errno;
		goto out_err;
	}
1408 1409
	mmaps[map_idx] = buf;
	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1410
	file_pos = file_offset + head;
1411 1412

more:
1413 1414
	event = fetch_mmaped_event(session, head, mmap_size, buf);
	if (!event) {
1415 1416 1417 1418
		if (mmaps[map_idx]) {
			munmap(mmaps[map_idx], mmap_size);
			mmaps[map_idx] = NULL;
		}
1419

1420 1421 1422
		page_offset = page_size * (head / page_size);
		file_offset += page_offset;
		head -= page_offset;
1423 1424 1425 1426 1427
		goto remap;
	}

	size = event->header.size;

1428
	if (size == 0 ||
1429
	    perf_session__process_event(session, event, tool, file_pos) < 0) {
1430 1431 1432 1433 1434
		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
		       file_offset + head, event->header.size,
		       event->header.type);
		err = -EINVAL;
		goto out_err;
1435 1436 1437
	}

	head += size;
1438
	file_pos += size;
1439

1440 1441
	if (file_pos >= progress_next) {
		progress_next += file_size / 16;
1442 1443
		ui_progress__update(file_pos, file_size,
				    "Processing events...");
1444 1445
	}

1446
	if (file_pos < file_size)
1447
		goto more;
1448

1449
	err = 0;
1450
	/* do the final flush for ordered samples */
1451
	session->ordered_samples.next_flush = ULLONG_MAX;
1452
	err = flush_sample_queue(session, tool);
1453
out_err:
1454
	perf_session__warn_about_errors(session, tool);
1455
	perf_session_free_sample_buffers(session);
1456 1457
	return err;
}
1458

1459
int perf_session__process_events(struct perf_session *self,
1460
				 struct perf_tool *tool)
1461 1462 1463 1464 1465 1466
{
	int err;

	if (perf_session__register_idle_thread(self) == NULL)
		return -ENOMEM;

1467 1468 1469 1470
	if (!self->fd_pipe)
		err = __perf_session__process_events(self,
						     self->header.data_offset,
						     self->header.data_size,
1471
						     self->size, tool);
1472
	else
1473
		err = __perf_session__process_pipe_events(self, tool);
1474

1475 1476 1477
	return err;
}

1478
bool perf_session__has_traces(struct perf_session *session, const char *msg)
1479
{
1480
	if (!(perf_evlist__sample_type(session->evlist) & PERF_SAMPLE_RAW)) {
1481 1482
		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
		return false;
1483 1484
	}

1485
	return true;
1486
}
1487

1488 1489
int maps__set_kallsyms_ref_reloc_sym(struct map **maps,
				     const char *symbol_name, u64 addr)
1490 1491
{
	char *bracket;
1492
	enum map_type i;
1493 1494 1495 1496 1497
	struct ref_reloc_sym *ref;

	ref = zalloc(sizeof(struct ref_reloc_sym));
	if (ref == NULL)
		return -ENOMEM;
1498

1499 1500 1501
	ref->name = strdup(symbol_name);
	if (ref->name == NULL) {
		free(ref);
1502
		return -ENOMEM;
1503
	}
1504

1505
	bracket = strchr(ref->name, ']');
1506 1507 1508
	if (bracket)
		*bracket = '\0';

1509
	ref->addr = addr;
1510 1511

	for (i = 0; i < MAP__NR_TYPES; ++i) {
1512 1513
		struct kmap *kmap = map__kmap(maps[i]);
		kmap->ref_reloc_sym = ref;
1514 1515
	}

1516 1517
	return 0;
}
1518 1519 1520 1521 1522 1523 1524

size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
{
	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
	       machines__fprintf_dsos(&self->machines, fp);
}
1525 1526 1527 1528 1529 1530 1531

size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
					  bool with_hits)
{
	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
}
1532 1533 1534 1535 1536 1537 1538 1539 1540

size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
{
	struct perf_evsel *pos;
	size_t ret = fprintf(fp, "Aggregated stats:\n");

	ret += hists__fprintf_nr_events(&session->hists, fp);

	list_for_each_entry(pos, &session->evlist->entries, node) {
1541
		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
1542 1543 1544 1545 1546
		ret += hists__fprintf_nr_events(&pos->hists, fp);
	}

	return ret;
}
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
{
	/*
	 * FIXME: Here we have to actually print all the machines in this
	 * session, not just the host...
	 */
	return machine__fprintf(&session->host_machine, fp);
}

void perf_session__remove_thread(struct perf_session *session,
				 struct thread *th)
{
	/*
	 * FIXME: This one makes no sense, we need to remove the thread from
	 * the machine it belongs to, perf_session can have many machines, so
	 * doing it always on ->host_machine is wrong.  Fix when auditing all
	 * the 'perf kvm' code.
	 */
	machine__remove_thread(&session->host_machine, th);
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
					      unsigned int type)
{
	struct perf_evsel *pos;

	list_for_each_entry(pos, &session->evlist->entries, node) {
		if (pos->attr.type == type)
			return pos;
	}
	return NULL;
}

1581 1582 1583
void perf_evsel__print_ip(struct perf_evsel *evsel, union perf_event *event,
			  struct perf_sample *sample, struct machine *machine,
			  int print_sym, int print_dso, int print_symoffset)
1584 1585 1586 1587
{
	struct addr_location al;
	struct callchain_cursor_node *node;

1588
	if (perf_event__preprocess_sample(event, machine, &al, sample,
1589 1590 1591 1592 1593 1594 1595 1596
					  NULL) < 0) {
		error("problem processing %d event, skipping it.\n",
			event->header.type);
		return;
	}

	if (symbol_conf.use_callchain && sample->callchain) {

1597 1598 1599

		if (machine__resolve_callchain(machine, evsel, al.thread,
					       sample, NULL) != 0) {
1600 1601 1602 1603
			if (verbose)
				error("Failed to resolve callchain. Skipping\n");
			return;
		}
1604
		callchain_cursor_commit(&callchain_cursor);
1605 1606

		while (1) {
1607
			node = callchain_cursor_current(&callchain_cursor);
1608 1609 1610
			if (!node)
				break;

1611 1612
			printf("\t%16" PRIx64, node->ip);
			if (print_sym) {
1613 1614
				printf(" ");
				symbol__fprintf_symname(node->sym, stdout);
1615 1616
			}
			if (print_dso) {
1617
				printf(" (");
1618
				map__fprintf_dsoname(node->map, stdout);
1619
				printf(")");
1620 1621
			}
			printf("\n");
1622

1623
			callchain_cursor_advance(&callchain_cursor);
1624 1625 1626
		}

	} else {
1627
		printf("%16" PRIx64, sample->ip);
1628
		if (print_sym) {
1629
			printf(" ");
1630 1631 1632 1633 1634
			if (print_symoffset)
				symbol__fprintf_symname_offs(al.sym, &al,
							     stdout);
			else
				symbol__fprintf_symname(al.sym, stdout);
1635 1636 1637
		}

		if (print_dso) {
1638 1639 1640
			printf(" (");
			map__fprintf_dsoname(al.map, stdout);
			printf(")");
1641
		}
1642 1643
	}
}
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

int perf_session__cpu_bitmap(struct perf_session *session,
			     const char *cpu_list, unsigned long *cpu_bitmap)
{
	int i;
	struct cpu_map *map;

	for (i = 0; i < PERF_TYPE_MAX; ++i) {
		struct perf_evsel *evsel;

		evsel = perf_session__find_first_evtype(session, i);
		if (!evsel)
			continue;

		if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
			pr_err("File does not contain CPU events. "
			       "Remove -c option to proceed.\n");
			return -1;
		}
	}

	map = cpu_map__new(cpu_list);
1666 1667 1668 1669
	if (map == NULL) {
		pr_err("Invalid cpu_list\n");
		return -1;
	}
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	for (i = 0; i < map->nr; i++) {
		int cpu = map->map[i];

		if (cpu >= MAX_NR_CPUS) {
			pr_err("Requested CPU %d too large. "
			       "Consider raising MAX_NR_CPUS\n", cpu);
			return -1;
		}

		set_bit(cpu, cpu_bitmap);
	}

	return 0;
}
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
				bool full)
{
	struct stat st;
	int ret;

	if (session == NULL || fp == NULL)
		return;

	ret = fstat(session->fd, &st);
	if (ret == -1)
		return;

	fprintf(fp, "# ========\n");
	fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
	perf_header__fprintf_info(session, fp, full);
	fprintf(fp, "# ========\n#\n");
}
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758


int __perf_session__set_tracepoints_handlers(struct perf_session *session,
					     const struct perf_evsel_str_handler *assocs,
					     size_t nr_assocs)
{
	struct perf_evlist *evlist = session->evlist;
	struct event_format *format;
	struct perf_evsel *evsel;
	char *tracepoint, *name;
	size_t i;
	int err;

	for (i = 0; i < nr_assocs; i++) {
		err = -ENOMEM;
		tracepoint = strdup(assocs[i].name);
		if (tracepoint == NULL)
			goto out;

		err = -ENOENT;
		name = strchr(tracepoint, ':');
		if (name == NULL)
			goto out_free;

		*name++ = '\0';
		format = pevent_find_event_by_name(session->pevent,
						   tracepoint, name);
		if (format == NULL) {
			/*
			 * Adding a handler for an event not in the session,
			 * just ignore it.
			 */
			goto next;
		}

		evsel = perf_evlist__find_tracepoint_by_id(evlist, format->id);
		if (evsel == NULL)
			goto next;

		err = -EEXIST;
		if (evsel->handler.func != NULL)
			goto out_free;
		evsel->handler.func = assocs[i].handler;
next:
		free(tracepoint);
	}

	err = 0;
out:
	return err;

out_free:
	free(tracepoint);
	goto out;
}