session.c 42.2 KB
Newer Older
1 2
#define _FILE_OFFSET_BITS 64

3 4
#include <linux/kernel.h>

5
#include <byteswap.h>
6 7
#include <unistd.h>
#include <sys/types.h>
8
#include <sys/mman.h>
9

10 11
#include "evlist.h"
#include "evsel.h"
12
#include "session.h"
13
#include "tool.h"
14
#include "sort.h"
15
#include "util.h"
16
#include "cpumap.h"
17
#include "event-parse.h"
18 19 20 21 22

static int perf_session__open(struct perf_session *self, bool force)
{
	struct stat input_stat;

23 24 25 26
	if (!strcmp(self->filename, "-")) {
		self->fd_pipe = true;
		self->fd = STDIN_FILENO;

27
		if (perf_session__read_header(self, self->fd) < 0)
28
			pr_err("incompatible file format (rerun with -v to learn more)");
29 30 31 32

		return 0;
	}

33
	self->fd = open(self->filename, O_RDONLY);
34
	if (self->fd < 0) {
35 36 37 38
		int err = errno;

		pr_err("failed to open %s: %s", self->filename, strerror(err));
		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
			pr_err("  (try 'perf record' first)");
		pr_err("\n");
		return -errno;
	}

	if (fstat(self->fd, &input_stat) < 0)
		goto out_close;

	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
		pr_err("file %s not owned by current user or root\n",
		       self->filename);
		goto out_close;
	}

	if (!input_stat.st_size) {
		pr_info("zero-sized file (%s), nothing to do!\n",
			self->filename);
		goto out_close;
	}

59
	if (perf_session__read_header(self, self->fd) < 0) {
60
		pr_err("incompatible file format (rerun with -v to learn more)");
61 62 63
		goto out_close;
	}

64 65 66 67 68 69 70 71 72 73
	if (!perf_evlist__valid_sample_type(self->evlist)) {
		pr_err("non matching sample_type");
		goto out_close;
	}

	if (!perf_evlist__valid_sample_id_all(self->evlist)) {
		pr_err("non matching sample_id_all");
		goto out_close;
	}

74 75 76 77 78 79 80 81 82
	self->size = input_stat.st_size;
	return 0;

out_close:
	close(self->fd);
	self->fd = -1;
	return -1;
}

83 84
void perf_session__update_sample_type(struct perf_session *self)
{
85
	self->sample_type = perf_evlist__sample_type(self->evlist);
86
	self->sample_size = __perf_evsel__sample_size(self->sample_type);
87
	self->sample_id_all = perf_evlist__sample_id_all(self->evlist);
88
	self->id_hdr_size = perf_evlist__id_hdr_size(self->evlist);
89
	self->host_machine.id_hdr_size = self->id_hdr_size;
90 91
}

92 93
int perf_session__create_kernel_maps(struct perf_session *self)
{
94
	int ret = machine__create_kernel_maps(&self->host_machine);
95 96

	if (ret >= 0)
97
		ret = machines__create_guest_kernel_maps(&self->machines);
98 99 100
	return ret;
}

101 102 103 104 105 106
static void perf_session__destroy_kernel_maps(struct perf_session *self)
{
	machine__destroy_kernel_maps(&self->host_machine);
	machines__destroy_guest_kernel_maps(&self->machines);
}

107 108
struct perf_session *perf_session__new(const char *filename, int mode,
				       bool force, bool repipe,
109
				       struct perf_tool *tool)
110
{
111 112 113 114 115 116 117 118 119 120 121 122 123
	struct perf_session *self;
	struct stat st;
	size_t len;

	if (!filename || !strlen(filename)) {
		if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
			filename = "-";
		else
			filename = "perf.data";
	}

	len = strlen(filename);
	self = zalloc(sizeof(*self) + len);
124 125 126 127 128

	if (self == NULL)
		goto out;

	memcpy(self->filename, filename, len);
129 130 131 132 133 134 135 136 137
	/*
	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
	 * slices. On 32bit we use 32MB.
	 */
#if BITS_PER_LONG == 64
	self->mmap_window = ULLONG_MAX;
#else
	self->mmap_window = 32 * 1024 * 1024ULL;
#endif
138
	self->machines = RB_ROOT;
T
Tom Zanussi 已提交
139
	self->repipe = repipe;
140
	INIT_LIST_HEAD(&self->ordered_samples.samples);
141
	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
142
	INIT_LIST_HEAD(&self->ordered_samples.to_free);
143
	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
144
	hists__init(&self->hists);
145

146 147 148
	if (mode == O_RDONLY) {
		if (perf_session__open(self, force) < 0)
			goto out_delete;
149
		perf_session__update_sample_type(self);
150 151 152
	} else if (mode == O_WRONLY) {
		/*
		 * In O_RDONLY mode this will be performed when reading the
153
		 * kernel MMAP event, in perf_event__process_mmap().
154 155 156 157
		 */
		if (perf_session__create_kernel_maps(self) < 0)
			goto out_delete;
	}
158

159 160
	if (tool && tool->ordering_requires_timestamps &&
	    tool->ordered_samples && !self->sample_id_all) {
161
		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
162
		tool->ordered_samples = false;
163 164
	}

165 166
out:
	return self;
167 168 169
out_delete:
	perf_session__delete(self);
	return NULL;
170 171
}

172
static void machine__delete_dead_threads(struct machine *machine)
173 174 175
{
	struct thread *n, *t;

176
	list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
177 178 179 180 181
		list_del(&t->node);
		thread__delete(t);
	}
}

182 183 184 185 186 187
static void perf_session__delete_dead_threads(struct perf_session *session)
{
	machine__delete_dead_threads(&session->host_machine);
}

static void machine__delete_threads(struct machine *self)
188 189 190 191 192 193 194 195 196 197 198 199
{
	struct rb_node *nd = rb_first(&self->threads);

	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		rb_erase(&t->rb_node, &self->threads);
		nd = rb_next(nd);
		thread__delete(t);
	}
}

200 201 202 203 204
static void perf_session__delete_threads(struct perf_session *session)
{
	machine__delete_threads(&session->host_machine);
}

205 206
void perf_session__delete(struct perf_session *self)
{
207
	perf_session__destroy_kernel_maps(self);
208 209 210
	perf_session__delete_dead_threads(self);
	perf_session__delete_threads(self);
	machine__exit(&self->host_machine);
211 212 213
	close(self->fd);
	free(self);
}
214

215
void machine__remove_thread(struct machine *self, struct thread *th)
216
{
217
	self->last_match = NULL;
218 219 220 221 222 223 224 225
	rb_erase(&th->rb_node, &self->threads);
	/*
	 * We may have references to this thread, for instance in some hist_entry
	 * instances, so just move them to a separate list.
	 */
	list_add_tail(&th->node, &self->dead_threads);
}

226 227 228 229 230 231 232 233
static bool symbol__match_parent_regex(struct symbol *sym)
{
	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
		return 1;

	return 0;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static const u8 cpumodes[] = {
	PERF_RECORD_MISC_USER,
	PERF_RECORD_MISC_KERNEL,
	PERF_RECORD_MISC_GUEST_USER,
	PERF_RECORD_MISC_GUEST_KERNEL
};
#define NCPUMODES (sizeof(cpumodes)/sizeof(u8))

static void ip__resolve_ams(struct machine *self, struct thread *thread,
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;
	size_t i;
	u8 m;

	memset(&al, 0, sizeof(al));

	for (i = 0; i < NCPUMODES; i++) {
		m = cpumodes[i];
		/*
		 * We cannot use the header.misc hint to determine whether a
		 * branch stack address is user, kernel, guest, hypervisor.
		 * Branches may straddle the kernel/user/hypervisor boundaries.
		 * Thus, we have to try consecutively until we find a match
		 * or else, the symbol is unknown
		 */
		thread__find_addr_location(thread, self, m, MAP__FUNCTION,
				ip, &al, NULL);
		if (al.sym)
			goto found;
	}
found:
	ams->addr = ip;
268
	ams->al_addr = al.addr;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	ams->sym = al.sym;
	ams->map = al.map;
}

struct branch_info *machine__resolve_bstack(struct machine *self,
					    struct thread *thr,
					    struct branch_stack *bs)
{
	struct branch_info *bi;
	unsigned int i;

	bi = calloc(bs->nr, sizeof(struct branch_info));
	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
		ip__resolve_ams(self, thr, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(self, thr, &bi[i].from, bs->entries[i].from);
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

292
int machine__resolve_callchain(struct machine *self,
293 294 295
			       struct thread *thread,
			       struct ip_callchain *chain,
			       struct symbol **parent)
296 297 298
{
	u8 cpumode = PERF_RECORD_MISC_USER;
	unsigned int i;
299
	int err;
300

301
	callchain_cursor_reset(&callchain_cursor);
302

303 304 305 306 307
	if (chain->nr > PERF_MAX_STACK_DEPTH) {
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

308
	for (i = 0; i < chain->nr; i++) {
309
		u64 ip;
310 311
		struct addr_location al;

312 313 314 315 316
		if (callchain_param.order == ORDER_CALLEE)
			ip = chain->ips[i];
		else
			ip = chain->ips[chain->nr - i - 1];

317 318 319 320 321 322 323 324 325
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
			case PERF_CONTEXT_KERNEL:
				cpumode = PERF_RECORD_MISC_KERNEL;	break;
			case PERF_CONTEXT_USER:
				cpumode = PERF_RECORD_MISC_USER;	break;
			default:
326 327 328 329 330 331 332 333
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(&callchain_cursor);
				return 0;
334 335 336 337
			}
			continue;
		}

338
		al.filtered = false;
339
		thread__find_addr_location(thread, self, cpumode,
340
					   MAP__FUNCTION, ip, &al, NULL);
341 342 343 344
		if (al.sym != NULL) {
			if (sort__has_parent && !*parent &&
			    symbol__match_parent_regex(al.sym))
				*parent = al.sym;
345
			if (!symbol_conf.use_callchain)
346 347
				break;
		}
348

349
		err = callchain_cursor_append(&callchain_cursor,
350 351 352
					      ip, al.map, al.sym);
		if (err)
			return err;
353 354
	}

355
	return 0;
356
}
357

358 359 360 361 362 363 364
static int process_event_synth_tracing_data_stub(union perf_event *event __used,
						 struct perf_session *session __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

365 366 367 368 369 370 371
static int process_event_synth_attr_stub(union perf_event *event __used,
					 struct perf_evlist **pevlist __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

372
static int process_event_sample_stub(struct perf_tool *tool __used,
373
				     union perf_event *event __used,
374 375
				     struct perf_sample *sample __used,
				     struct perf_evsel *evsel __used,
376
				     struct machine *machine __used)
377 378 379 380 381
{
	dump_printf(": unhandled!\n");
	return 0;
}

382
static int process_event_stub(struct perf_tool *tool __used,
383
			      union perf_event *event __used,
384
			      struct perf_sample *sample __used,
385
			      struct machine *machine __used)
386 387 388 389 390
{
	dump_printf(": unhandled!\n");
	return 0;
}

391
static int process_finished_round_stub(struct perf_tool *tool __used,
392
				       union perf_event *event __used,
393 394 395 396 397 398
				       struct perf_session *perf_session __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

399
static int process_event_type_stub(struct perf_tool *tool __used,
400
				   union perf_event *event __used)
401 402 403 404 405
{
	dump_printf(": unhandled!\n");
	return 0;
}

406
static int process_finished_round(struct perf_tool *tool,
407 408
				  union perf_event *event,
				  struct perf_session *session);
409

410
static void perf_tool__fill_defaults(struct perf_tool *tool)
411
{
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	if (tool->sample == NULL)
		tool->sample = process_event_sample_stub;
	if (tool->mmap == NULL)
		tool->mmap = process_event_stub;
	if (tool->comm == NULL)
		tool->comm = process_event_stub;
	if (tool->fork == NULL)
		tool->fork = process_event_stub;
	if (tool->exit == NULL)
		tool->exit = process_event_stub;
	if (tool->lost == NULL)
		tool->lost = perf_event__process_lost;
	if (tool->read == NULL)
		tool->read = process_event_sample_stub;
	if (tool->throttle == NULL)
		tool->throttle = process_event_stub;
	if (tool->unthrottle == NULL)
		tool->unthrottle = process_event_stub;
	if (tool->attr == NULL)
		tool->attr = process_event_synth_attr_stub;
	if (tool->event_type == NULL)
		tool->event_type = process_event_type_stub;
	if (tool->tracing_data == NULL)
		tool->tracing_data = process_event_synth_tracing_data_stub;
	if (tool->build_id == NULL)
		tool->build_id = process_finished_round_stub;
	if (tool->finished_round == NULL) {
		if (tool->ordered_samples)
			tool->finished_round = process_finished_round;
441
		else
442
			tool->finished_round = process_finished_round_stub;
443
	}
444
}
445 446 447 448 449 450 451 452 453 454
 
void mem_bswap_32(void *src, int byte_size)
{
	u32 *m = src;
	while (byte_size > 0) {
		*m = bswap_32(*m);
		byte_size -= sizeof(u32);
		++m;
	}
}
455

456 457 458 459 460 461 462 463 464 465 466
void mem_bswap_64(void *src, int byte_size)
{
	u64 *m = src;

	while (byte_size > 0) {
		*m = bswap_64(*m);
		byte_size -= sizeof(u64);
		++m;
	}
}

467 468 469 470 471 472 473 474 475 476 477
static void swap_sample_id_all(union perf_event *event, void *data)
{
	void *end = (void *) event + event->header.size;
	int size = end - data;

	BUG_ON(size % sizeof(u64));
	mem_bswap_64(data, size);
}

static void perf_event__all64_swap(union perf_event *event,
				   bool sample_id_all __used)
478
{
479 480
	struct perf_event_header *hdr = &event->header;
	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
481 482
}

483
static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
484
{
485 486
	event->comm.pid = bswap_32(event->comm.pid);
	event->comm.tid = bswap_32(event->comm.tid);
487 488 489 490 491 492 493

	if (sample_id_all) {
		void *data = &event->comm.comm;

		data += ALIGN(strlen(data) + 1, sizeof(u64));
		swap_sample_id_all(event, data);
	}
494 495
}

496 497
static void perf_event__mmap_swap(union perf_event *event,
				  bool sample_id_all)
498
{
499 500 501 502 503
	event->mmap.pid	  = bswap_32(event->mmap.pid);
	event->mmap.tid	  = bswap_32(event->mmap.tid);
	event->mmap.start = bswap_64(event->mmap.start);
	event->mmap.len	  = bswap_64(event->mmap.len);
	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
504 505 506 507 508 509 510

	if (sample_id_all) {
		void *data = &event->mmap.filename;

		data += ALIGN(strlen(data) + 1, sizeof(u64));
		swap_sample_id_all(event, data);
	}
511 512
}

513
static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
514
{
515 516 517 518 519
	event->fork.pid	 = bswap_32(event->fork.pid);
	event->fork.tid	 = bswap_32(event->fork.tid);
	event->fork.ppid = bswap_32(event->fork.ppid);
	event->fork.ptid = bswap_32(event->fork.ptid);
	event->fork.time = bswap_64(event->fork.time);
520 521 522

	if (sample_id_all)
		swap_sample_id_all(event, &event->fork + 1);
523 524
}

525
static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
526
{
527 528 529 530 531 532
	event->read.pid		 = bswap_32(event->read.pid);
	event->read.tid		 = bswap_32(event->read.tid);
	event->read.value	 = bswap_64(event->read.value);
	event->read.time_enabled = bswap_64(event->read.time_enabled);
	event->read.time_running = bswap_64(event->read.time_running);
	event->read.id		 = bswap_64(event->read.id);
533 534 535

	if (sample_id_all)
		swap_sample_id_all(event, &event->read + 1);
536 537
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static u8 revbyte(u8 b)
{
	int rev = (b >> 4) | ((b & 0xf) << 4);
	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
	return (u8) rev;
}

/*
 * XXX this is hack in attempt to carry flags bitfield
 * throught endian village. ABI says:
 *
 * Bit-fields are allocated from right to left (least to most significant)
 * on little-endian implementations and from left to right (most to least
 * significant) on big-endian implementations.
 *
 * The above seems to be byte specific, so we need to reverse each
 * byte of the bitfield. 'Internet' also says this might be implementation
 * specific and we probably need proper fix and carry perf_event_attr
 * bitfield flags in separate data file FEAT_ section. Thought this seems
 * to work for now.
 */
static void swap_bitfield(u8 *p, unsigned len)
{
	unsigned i;

	for (i = 0; i < len; i++) {
		*p = revbyte(*p);
		p++;
	}
}

570 571 572 573 574 575 576 577 578 579 580 581 582
/* exported for swapping attributes in file header */
void perf_event__attr_swap(struct perf_event_attr *attr)
{
	attr->type		= bswap_32(attr->type);
	attr->size		= bswap_32(attr->size);
	attr->config		= bswap_64(attr->config);
	attr->sample_period	= bswap_64(attr->sample_period);
	attr->sample_type	= bswap_64(attr->sample_type);
	attr->read_format	= bswap_64(attr->read_format);
	attr->wakeup_events	= bswap_32(attr->wakeup_events);
	attr->bp_type		= bswap_32(attr->bp_type);
	attr->bp_addr		= bswap_64(attr->bp_addr);
	attr->bp_len		= bswap_64(attr->bp_len);
583 584

	swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
585 586
}

587 588
static void perf_event__hdr_attr_swap(union perf_event *event,
				      bool sample_id_all __used)
589 590 591
{
	size_t size;

592
	perf_event__attr_swap(&event->attr.attr);
593

594 595 596
	size = event->header.size;
	size -= (void *)&event->attr.id - (void *)event;
	mem_bswap_64(event->attr.id, size);
597 598
}

599 600
static void perf_event__event_type_swap(union perf_event *event,
					bool sample_id_all __used)
601
{
602 603
	event->event_type.event_type.event_id =
		bswap_64(event->event_type.event_type.event_id);
604 605
}

606 607
static void perf_event__tracing_data_swap(union perf_event *event,
					  bool sample_id_all __used)
608
{
609
	event->tracing_data.size = bswap_32(event->tracing_data.size);
610 611
}

612 613
typedef void (*perf_event__swap_op)(union perf_event *event,
				    bool sample_id_all);
614

615 616 617 618 619 620 621 622
static perf_event__swap_op perf_event__swap_ops[] = {
	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
	[PERF_RECORD_FORK]		  = perf_event__task_swap,
	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
	[PERF_RECORD_READ]		  = perf_event__read_swap,
	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
623
	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
624 625 626 627
	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
	[PERF_RECORD_HEADER_MAX]	  = NULL,
628 629
};

630 631
struct sample_queue {
	u64			timestamp;
632
	u64			file_offset;
633
	union perf_event	*event;
634 635 636
	struct list_head	list;
};

637 638 639 640
static void perf_session_free_sample_buffers(struct perf_session *session)
{
	struct ordered_samples *os = &session->ordered_samples;

641
	while (!list_empty(&os->to_free)) {
642 643
		struct sample_queue *sq;

644
		sq = list_entry(os->to_free.next, struct sample_queue, list);
645 646 647 648 649
		list_del(&sq->list);
		free(sq);
	}
}

650
static int perf_session_deliver_event(struct perf_session *session,
651
				      union perf_event *event,
652
				      struct perf_sample *sample,
653
				      struct perf_tool *tool,
654
				      u64 file_offset);
655

656
static void flush_sample_queue(struct perf_session *s,
657
			       struct perf_tool *tool)
658
{
659 660
	struct ordered_samples *os = &s->ordered_samples;
	struct list_head *head = &os->samples;
661
	struct sample_queue *tmp, *iter;
662
	struct perf_sample sample;
663 664
	u64 limit = os->next_flush;
	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
665
	unsigned idx = 0, progress_next = os->nr_samples / 16;
666
	int ret;
667

668
	if (!tool->ordered_samples || !limit)
669 670 671 672
		return;

	list_for_each_entry_safe(iter, tmp, head, list) {
		if (iter->timestamp > limit)
673
			break;
674

675 676 677 678
		ret = perf_session__parse_sample(s, iter->event, &sample);
		if (ret)
			pr_err("Can't parse sample, err = %d\n", ret);
		else
679
			perf_session_deliver_event(s, iter->event, &sample, tool,
680
						   iter->file_offset);
681

682
		os->last_flush = iter->timestamp;
683
		list_del(&iter->list);
684
		list_add(&iter->list, &os->sample_cache);
685 686 687 688 689
		if (++idx >= progress_next) {
			progress_next += os->nr_samples / 16;
			ui_progress__update(idx, os->nr_samples,
					    "Processing time ordered events...");
		}
690
	}
691 692 693 694 695 696 697

	if (list_empty(head)) {
		os->last_sample = NULL;
	} else if (last_ts <= limit) {
		os->last_sample =
			list_entry(head->prev, struct sample_queue, list);
	}
698 699

	os->nr_samples = 0;
700 701
}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
/*
 * When perf record finishes a pass on every buffers, it records this pseudo
 * event.
 * We record the max timestamp t found in the pass n.
 * Assuming these timestamps are monotonic across cpus, we know that if
 * a buffer still has events with timestamps below t, they will be all
 * available and then read in the pass n + 1.
 * Hence when we start to read the pass n + 2, we can safely flush every
 * events with timestamps below t.
 *
 *    ============ PASS n =================
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          1          |         2
 *          2          |         3
 *          -          |         4  <--- max recorded
 *
 *    ============ PASS n + 1 ==============
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          3          |         5
 *          4          |         6
 *          5          |         7 <---- max recorded
 *
 *      Flush every events below timestamp 4
 *
 *    ============ PASS n + 2 ==============
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          6          |         8
 *          7          |         9
 *          -          |         10
 *
 *      Flush every events below timestamp 7
 *      etc...
 */
741
static int process_finished_round(struct perf_tool *tool,
742 743
				  union perf_event *event __used,
				  struct perf_session *session)
744
{
745
	flush_sample_queue(session, tool);
746 747 748 749 750
	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;

	return 0;
}

751
/* The queue is ordered by time */
752
static void __queue_event(struct sample_queue *new, struct perf_session *s)
753
{
754 755 756 757
	struct ordered_samples *os = &s->ordered_samples;
	struct sample_queue *sample = os->last_sample;
	u64 timestamp = new->timestamp;
	struct list_head *p;
758

759
	++os->nr_samples;
760
	os->last_sample = new;
761

762 763 764
	if (!sample) {
		list_add(&new->list, &os->samples);
		os->max_timestamp = timestamp;
765 766 767 768
		return;
	}

	/*
769 770 771
	 * last_sample might point to some random place in the list as it's
	 * the last queued event. We expect that the new event is close to
	 * this.
772
	 */
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	if (sample->timestamp <= timestamp) {
		while (sample->timestamp <= timestamp) {
			p = sample->list.next;
			if (p == &os->samples) {
				list_add_tail(&new->list, &os->samples);
				os->max_timestamp = timestamp;
				return;
			}
			sample = list_entry(p, struct sample_queue, list);
		}
		list_add_tail(&new->list, &sample->list);
	} else {
		while (sample->timestamp > timestamp) {
			p = sample->list.prev;
			if (p == &os->samples) {
				list_add(&new->list, &os->samples);
				return;
			}
			sample = list_entry(p, struct sample_queue, list);
		}
		list_add(&new->list, &sample->list);
	}
795 796
}

797 798
#define MAX_SAMPLE_BUFFER	(64 * 1024 / sizeof(struct sample_queue))

799
static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
800
				    struct perf_sample *sample, u64 file_offset)
801
{
802 803
	struct ordered_samples *os = &s->ordered_samples;
	struct list_head *sc = &os->sample_cache;
804
	u64 timestamp = sample->time;
805 806
	struct sample_queue *new;

807
	if (!timestamp || timestamp == ~0ULL)
808 809
		return -ETIME;

810 811 812 813 814
	if (timestamp < s->ordered_samples.last_flush) {
		printf("Warning: Timestamp below last timeslice flush\n");
		return -EINVAL;
	}

815 816 817
	if (!list_empty(sc)) {
		new = list_entry(sc->next, struct sample_queue, list);
		list_del(&new->list);
818 819 820 821
	} else if (os->sample_buffer) {
		new = os->sample_buffer + os->sample_buffer_idx;
		if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
			os->sample_buffer = NULL;
822
	} else {
823 824
		os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
		if (!os->sample_buffer)
825
			return -ENOMEM;
826 827 828
		list_add(&os->sample_buffer->list, &os->to_free);
		os->sample_buffer_idx = 2;
		new = os->sample_buffer + 1;
829
	}
830 831

	new->timestamp = timestamp;
832
	new->file_offset = file_offset;
833
	new->event = event;
834

835
	__queue_event(new, s);
836 837 838

	return 0;
}
839

840
static void callchain__printf(struct perf_sample *sample)
841 842
{
	unsigned int i;
843

844
	printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
845 846

	for (i = 0; i < sample->callchain->nr; i++)
847 848
		printf("..... %2d: %016" PRIx64 "\n",
		       i, sample->callchain->ips[i]);
849 850
}

851 852 853 854 855 856 857 858 859 860 861 862
static void branch_stack__printf(struct perf_sample *sample)
{
	uint64_t i;

	printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);

	for (i = 0; i < sample->branch_stack->nr; i++)
		printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
			i, sample->branch_stack->entries[i].from,
			sample->branch_stack->entries[i].to);
}

863
static void perf_session__print_tstamp(struct perf_session *session,
864
				       union perf_event *event,
865
				       struct perf_sample *sample)
866 867 868 869 870 871 872 873 874 875 876
{
	if (event->header.type != PERF_RECORD_SAMPLE &&
	    !session->sample_id_all) {
		fputs("-1 -1 ", stdout);
		return;
	}

	if ((session->sample_type & PERF_SAMPLE_CPU))
		printf("%u ", sample->cpu);

	if (session->sample_type & PERF_SAMPLE_TIME)
877
		printf("%" PRIu64 " ", sample->time);
878 879
}

880
static void dump_event(struct perf_session *session, union perf_event *event,
881
		       u64 file_offset, struct perf_sample *sample)
882 883 884 885
{
	if (!dump_trace)
		return;

886 887
	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
	       file_offset, event->header.size, event->header.type);
888 889 890 891 892 893

	trace_event(event);

	if (sample)
		perf_session__print_tstamp(session, event, sample);

894
	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
895
	       event->header.size, perf_event__name(event->header.type));
896 897
}

898
static void dump_sample(struct perf_session *session, union perf_event *event,
899
			struct perf_sample *sample)
900
{
901 902 903
	if (!dump_trace)
		return;

904
	printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
905
	       event->header.misc, sample->pid, sample->tid, sample->ip,
906
	       sample->period, sample->addr);
907 908

	if (session->sample_type & PERF_SAMPLE_CALLCHAIN)
909
		callchain__printf(sample);
910 911 912

	if (session->sample_type & PERF_SAMPLE_BRANCH_STACK)
		branch_stack__printf(sample);
913 914
}

915 916 917 918 919 920
static struct machine *
	perf_session__find_machine_for_cpumode(struct perf_session *session,
					       union perf_event *event)
{
	const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;

921 922 923 924 925 926 927 928
	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL && perf_guest) {
		u32 pid;

		if (event->header.type == PERF_RECORD_MMAP)
			pid = event->mmap.pid;
		else
			pid = event->ip.pid;

929
		return perf_session__findnew_machine(session, pid);
930
	}
931 932 933 934

	return perf_session__find_host_machine(session);
}

935
static int perf_session_deliver_event(struct perf_session *session,
936
				      union perf_event *event,
937
				      struct perf_sample *sample,
938
				      struct perf_tool *tool,
939
				      u64 file_offset)
940
{
941
	struct perf_evsel *evsel;
942
	struct machine *machine;
943

944 945
	dump_event(session, event, file_offset, sample);

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	evsel = perf_evlist__id2evsel(session->evlist, sample->id);
	if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
		/*
		 * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
		 * because the tools right now may apply filters, discarding
		 * some of the samples. For consistency, in the future we
		 * should have something like nr_filtered_samples and remove
		 * the sample->period from total_sample_period, etc, KISS for
		 * now tho.
		 *
		 * Also testing against NULL allows us to handle files without
		 * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
		 * future probably it'll be a good idea to restrict event
		 * processing via perf_session to files with both set.
		 */
		hists__inc_nr_events(&evsel->hists, event->header.type);
	}

964 965
	machine = perf_session__find_machine_for_cpumode(session, event);

966 967
	switch (event->header.type) {
	case PERF_RECORD_SAMPLE:
968
		dump_sample(session, event, sample);
969 970
		if (evsel == NULL) {
			++session->hists.stats.nr_unknown_id;
971
			return 0;
972
		}
973 974
		if (machine == NULL) {
			++session->hists.stats.nr_unprocessable_samples;
975
			return 0;
976
		}
977
		return tool->sample(tool, event, sample, evsel, machine);
978
	case PERF_RECORD_MMAP:
979
		return tool->mmap(tool, event, sample, machine);
980
	case PERF_RECORD_COMM:
981
		return tool->comm(tool, event, sample, machine);
982
	case PERF_RECORD_FORK:
983
		return tool->fork(tool, event, sample, machine);
984
	case PERF_RECORD_EXIT:
985
		return tool->exit(tool, event, sample, machine);
986
	case PERF_RECORD_LOST:
987
		if (tool->lost == perf_event__process_lost)
988
			session->hists.stats.total_lost += event->lost.lost;
989
		return tool->lost(tool, event, sample, machine);
990
	case PERF_RECORD_READ:
991
		return tool->read(tool, event, sample, evsel, machine);
992
	case PERF_RECORD_THROTTLE:
993
		return tool->throttle(tool, event, sample, machine);
994
	case PERF_RECORD_UNTHROTTLE:
995
		return tool->unthrottle(tool, event, sample, machine);
996 997 998 999 1000 1001
	default:
		++session->hists.stats.nr_unknown_events;
		return -1;
	}
}

1002
static int perf_session__preprocess_sample(struct perf_session *session,
1003
					   union perf_event *event, struct perf_sample *sample)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
{
	if (event->header.type != PERF_RECORD_SAMPLE ||
	    !(session->sample_type & PERF_SAMPLE_CALLCHAIN))
		return 0;

	if (!ip_callchain__valid(sample->callchain, event)) {
		pr_debug("call-chain problem with event, skipping it.\n");
		++session->hists.stats.nr_invalid_chains;
		session->hists.stats.total_invalid_chains += sample->period;
		return -EINVAL;
	}
	return 0;
}

1018
static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
1019
					    struct perf_tool *tool, u64 file_offset)
1020
{
1021 1022
	int err;

1023
	dump_event(session, event, file_offset, NULL);
1024

1025
	/* These events are processed right away */
1026
	switch (event->header.type) {
1027
	case PERF_RECORD_HEADER_ATTR:
1028
		err = tool->attr(event, &session->evlist);
1029 1030 1031
		if (err == 0)
			perf_session__update_sample_type(session);
		return err;
1032
	case PERF_RECORD_HEADER_EVENT_TYPE:
1033
		return tool->event_type(tool, event);
1034 1035
	case PERF_RECORD_HEADER_TRACING_DATA:
		/* setup for reading amidst mmap */
1036
		lseek(session->fd, file_offset, SEEK_SET);
1037
		return tool->tracing_data(event, session);
1038
	case PERF_RECORD_HEADER_BUILD_ID:
1039
		return tool->build_id(tool, event, session);
1040
	case PERF_RECORD_FINISHED_ROUND:
1041
		return tool->finished_round(tool, event, session);
1042
	default:
1043
		return -EINVAL;
1044
	}
1045 1046
}

1047 1048 1049 1050 1051 1052 1053 1054 1055
static void event_swap(union perf_event *event, bool sample_id_all)
{
	perf_event__swap_op swap;

	swap = perf_event__swap_ops[event->header.type];
	if (swap)
		swap(event, sample_id_all);
}

1056
static int perf_session__process_event(struct perf_session *session,
1057
				       union perf_event *event,
1058
				       struct perf_tool *tool,
1059 1060
				       u64 file_offset)
{
1061
	struct perf_sample sample;
1062 1063
	int ret;

1064 1065
	if (session->header.needs_swap)
		event_swap(event, session->sample_id_all);
1066 1067 1068 1069 1070 1071 1072

	if (event->header.type >= PERF_RECORD_HEADER_MAX)
		return -EINVAL;

	hists__inc_nr_events(&session->hists, event->header.type);

	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1073
		return perf_session__process_user_event(session, event, tool, file_offset);
1074

1075 1076 1077
	/*
	 * For all kernel events we get the sample data
	 */
1078 1079 1080
	ret = perf_session__parse_sample(session, event, &sample);
	if (ret)
		return ret;
1081 1082 1083 1084 1085

	/* Preprocess sample records - precheck callchains */
	if (perf_session__preprocess_sample(session, event, &sample))
		return 0;

1086
	if (tool->ordered_samples) {
1087 1088
		ret = perf_session_queue_event(session, event, &sample,
					       file_offset);
1089 1090 1091 1092
		if (ret != -ETIME)
			return ret;
	}

1093
	return perf_session_deliver_event(session, event, &sample, tool,
1094
					  file_offset);
1095 1096
}

1097 1098 1099 1100 1101 1102 1103
void perf_event_header__bswap(struct perf_event_header *self)
{
	self->type = bswap_32(self->type);
	self->misc = bswap_16(self->misc);
	self->size = bswap_16(self->size);
}

1104 1105 1106 1107 1108
struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
{
	return machine__findnew_thread(&session->host_machine, pid);
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
static struct thread *perf_session__register_idle_thread(struct perf_session *self)
{
	struct thread *thread = perf_session__findnew(self, 0);

	if (thread == NULL || thread__set_comm(thread, "swapper")) {
		pr_err("problem inserting idle task.\n");
		thread = NULL;
	}

	return thread;
}

1121
static void perf_session__warn_about_errors(const struct perf_session *session,
1122
					    const struct perf_tool *tool)
1123
{
1124
	if (tool->lost == perf_event__process_lost &&
1125 1126 1127 1128 1129
	    session->hists.stats.nr_events[PERF_RECORD_LOST] != 0) {
		ui__warning("Processed %d events and lost %d chunks!\n\n"
			    "Check IO/CPU overload!\n\n",
			    session->hists.stats.nr_events[0],
			    session->hists.stats.nr_events[PERF_RECORD_LOST]);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	}

	if (session->hists.stats.nr_unknown_events != 0) {
		ui__warning("Found %u unknown events!\n\n"
			    "Is this an older tool processing a perf.data "
			    "file generated by a more recent tool?\n\n"
			    "If that is not the case, consider "
			    "reporting to linux-kernel@vger.kernel.org.\n\n",
			    session->hists.stats.nr_unknown_events);
	}

1141 1142 1143 1144 1145
	if (session->hists.stats.nr_unknown_id != 0) {
		ui__warning("%u samples with id not present in the header\n",
			    session->hists.stats.nr_unknown_id);
	}

1146 1147 1148 1149 1150 1151 1152
 	if (session->hists.stats.nr_invalid_chains != 0) {
 		ui__warning("Found invalid callchains!\n\n"
 			    "%u out of %u events were discarded for this reason.\n\n"
 			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
 			    session->hists.stats.nr_invalid_chains,
 			    session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
 	}
1153 1154 1155 1156 1157 1158

	if (session->hists.stats.nr_unprocessable_samples != 0) {
		ui__warning("%u unprocessable samples recorded.\n"
			    "Do you have a KVM guest running and not using 'perf kvm'?\n",
			    session->hists.stats.nr_unprocessable_samples);
	}
1159 1160
}

1161 1162 1163 1164
#define session_done()	(*(volatile int *)(&session_done))
volatile int session_done;

static int __perf_session__process_pipe_events(struct perf_session *self,
1165
					       struct perf_tool *tool)
1166
{
1167 1168 1169
	union perf_event *event;
	uint32_t size, cur_size = 0;
	void *buf = NULL;
1170 1171 1172 1173 1174
	int skip = 0;
	u64 head;
	int err;
	void *p;

1175
	perf_tool__fill_defaults(tool);
1176 1177

	head = 0;
1178 1179 1180 1181 1182
	cur_size = sizeof(union perf_event);

	buf = malloc(cur_size);
	if (!buf)
		return -errno;
1183
more:
1184 1185
	event = buf;
	err = readn(self->fd, event, sizeof(struct perf_event_header));
1186 1187 1188 1189 1190 1191 1192 1193 1194
	if (err <= 0) {
		if (err == 0)
			goto done;

		pr_err("failed to read event header\n");
		goto out_err;
	}

	if (self->header.needs_swap)
1195
		perf_event_header__bswap(&event->header);
1196

1197
	size = event->header.size;
1198 1199 1200
	if (size == 0)
		size = 8;

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	if (size > cur_size) {
		void *new = realloc(buf, size);
		if (!new) {
			pr_err("failed to allocate memory to read event\n");
			goto out_err;
		}
		buf = new;
		cur_size = size;
		event = buf;
	}
	p = event;
1212 1213
	p += sizeof(struct perf_event_header);

1214
	if (size - sizeof(struct perf_event_header)) {
1215
		err = readn(self->fd, p, size - sizeof(struct perf_event_header));
1216 1217 1218 1219 1220
		if (err <= 0) {
			if (err == 0) {
				pr_err("unexpected end of event stream\n");
				goto done;
			}
1221

1222 1223 1224
			pr_err("failed to read event data\n");
			goto out_err;
		}
1225 1226
	}

1227
	if ((skip = perf_session__process_event(self, event, tool, head)) < 0) {
1228
		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1229
		       head, event->header.size, event->header.type);
1230 1231
		err = -EINVAL;
		goto out_err;
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	}

	head += size;

	if (skip > 0)
		head += skip;

	if (!session_done())
		goto more;
done:
	err = 0;
out_err:
1244
	free(buf);
1245
	perf_session__warn_about_errors(self, tool);
1246
	perf_session_free_sample_buffers(self);
1247 1248 1249
	return err;
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static union perf_event *
fetch_mmaped_event(struct perf_session *session,
		   u64 head, size_t mmap_size, char *buf)
{
	union perf_event *event;

	/*
	 * Ensure we have enough space remaining to read
	 * the size of the event in the headers.
	 */
	if (head + sizeof(event->header) > mmap_size)
		return NULL;

	event = (union perf_event *)(buf + head);

	if (session->header.needs_swap)
		perf_event_header__bswap(&event->header);

	if (head + event->header.size > mmap_size)
		return NULL;

	return event;
}

1274
int __perf_session__process_events(struct perf_session *session,
1275
				   u64 data_offset, u64 data_size,
1276
				   u64 file_size, struct perf_tool *tool)
1277
{
1278
	u64 head, page_offset, file_offset, file_pos, progress_next;
1279
	int err, mmap_prot, mmap_flags, map_idx = 0;
1280
	size_t	page_size, mmap_size;
1281
	char *buf, *mmaps[8];
1282
	union perf_event *event;
1283
	uint32_t size;
1284

1285
	perf_tool__fill_defaults(tool);
1286

1287
	page_size = sysconf(_SC_PAGESIZE);
1288

1289 1290 1291
	page_offset = page_size * (data_offset / page_size);
	file_offset = page_offset;
	head = data_offset - page_offset;
1292

1293 1294 1295
	if (data_offset + data_size < file_size)
		file_size = data_offset + data_size;

1296 1297 1298 1299 1300 1301
	progress_next = file_size / 16;

	mmap_size = session->mmap_window;
	if (mmap_size > file_size)
		mmap_size = file_size;

1302 1303
	memset(mmaps, 0, sizeof(mmaps));

1304 1305 1306
	mmap_prot  = PROT_READ;
	mmap_flags = MAP_SHARED;

1307
	if (session->header.needs_swap) {
1308 1309 1310
		mmap_prot  |= PROT_WRITE;
		mmap_flags = MAP_PRIVATE;
	}
1311
remap:
1312 1313
	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
		   file_offset);
1314 1315 1316 1317 1318
	if (buf == MAP_FAILED) {
		pr_err("failed to mmap file\n");
		err = -errno;
		goto out_err;
	}
1319 1320
	mmaps[map_idx] = buf;
	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1321
	file_pos = file_offset + head;
1322 1323

more:
1324 1325
	event = fetch_mmaped_event(session, head, mmap_size, buf);
	if (!event) {
1326 1327 1328 1329
		if (mmaps[map_idx]) {
			munmap(mmaps[map_idx], mmap_size);
			mmaps[map_idx] = NULL;
		}
1330

1331 1332 1333
		page_offset = page_size * (head / page_size);
		file_offset += page_offset;
		head -= page_offset;
1334 1335 1336 1337 1338
		goto remap;
	}

	size = event->header.size;

1339
	if (size == 0 ||
1340
	    perf_session__process_event(session, event, tool, file_pos) < 0) {
1341 1342 1343 1344 1345
		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
		       file_offset + head, event->header.size,
		       event->header.type);
		err = -EINVAL;
		goto out_err;
1346 1347 1348
	}

	head += size;
1349
	file_pos += size;
1350

1351 1352
	if (file_pos >= progress_next) {
		progress_next += file_size / 16;
1353 1354
		ui_progress__update(file_pos, file_size,
				    "Processing events...");
1355 1356
	}

1357
	if (file_pos < file_size)
1358
		goto more;
1359

1360
	err = 0;
1361
	/* do the final flush for ordered samples */
1362
	session->ordered_samples.next_flush = ULLONG_MAX;
1363
	flush_sample_queue(session, tool);
1364
out_err:
1365
	perf_session__warn_about_errors(session, tool);
1366
	perf_session_free_sample_buffers(session);
1367 1368
	return err;
}
1369

1370
int perf_session__process_events(struct perf_session *self,
1371
				 struct perf_tool *tool)
1372 1373 1374 1375 1376 1377
{
	int err;

	if (perf_session__register_idle_thread(self) == NULL)
		return -ENOMEM;

1378 1379 1380 1381
	if (!self->fd_pipe)
		err = __perf_session__process_events(self,
						     self->header.data_offset,
						     self->header.data_size,
1382
						     self->size, tool);
1383
	else
1384
		err = __perf_session__process_pipe_events(self, tool);
1385

1386 1387 1388
	return err;
}

1389
bool perf_session__has_traces(struct perf_session *self, const char *msg)
1390 1391
{
	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
1392 1393
		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
		return false;
1394 1395
	}

1396
	return true;
1397
}
1398

1399 1400
int maps__set_kallsyms_ref_reloc_sym(struct map **maps,
				     const char *symbol_name, u64 addr)
1401 1402
{
	char *bracket;
1403
	enum map_type i;
1404 1405 1406 1407 1408
	struct ref_reloc_sym *ref;

	ref = zalloc(sizeof(struct ref_reloc_sym));
	if (ref == NULL)
		return -ENOMEM;
1409

1410 1411 1412
	ref->name = strdup(symbol_name);
	if (ref->name == NULL) {
		free(ref);
1413
		return -ENOMEM;
1414
	}
1415

1416
	bracket = strchr(ref->name, ']');
1417 1418 1419
	if (bracket)
		*bracket = '\0';

1420
	ref->addr = addr;
1421 1422

	for (i = 0; i < MAP__NR_TYPES; ++i) {
1423 1424
		struct kmap *kmap = map__kmap(maps[i]);
		kmap->ref_reloc_sym = ref;
1425 1426
	}

1427 1428
	return 0;
}
1429 1430 1431 1432 1433 1434 1435

size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
{
	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
	       machines__fprintf_dsos(&self->machines, fp);
}
1436 1437 1438 1439 1440 1441 1442

size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
					  bool with_hits)
{
	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
}
1443 1444 1445 1446 1447 1448 1449 1450 1451

size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
{
	struct perf_evsel *pos;
	size_t ret = fprintf(fp, "Aggregated stats:\n");

	ret += hists__fprintf_nr_events(&session->hists, fp);

	list_for_each_entry(pos, &session->evlist->entries, node) {
1452
		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
1453 1454 1455 1456 1457
		ret += hists__fprintf_nr_events(&pos->hists, fp);
	}

	return ret;
}
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
{
	/*
	 * FIXME: Here we have to actually print all the machines in this
	 * session, not just the host...
	 */
	return machine__fprintf(&session->host_machine, fp);
}

void perf_session__remove_thread(struct perf_session *session,
				 struct thread *th)
{
	/*
	 * FIXME: This one makes no sense, we need to remove the thread from
	 * the machine it belongs to, perf_session can have many machines, so
	 * doing it always on ->host_machine is wrong.  Fix when auditing all
	 * the 'perf kvm' code.
	 */
	machine__remove_thread(&session->host_machine, th);
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
					      unsigned int type)
{
	struct perf_evsel *pos;

	list_for_each_entry(pos, &session->evlist->entries, node) {
		if (pos->attr.type == type)
			return pos;
	}
	return NULL;
}

1492
void perf_event__print_ip(union perf_event *event, struct perf_sample *sample,
1493 1494
			  struct machine *machine, int print_sym,
			  int print_dso, int print_symoffset)
1495 1496 1497 1498
{
	struct addr_location al;
	struct callchain_cursor_node *node;

1499
	if (perf_event__preprocess_sample(event, machine, &al, sample,
1500 1501 1502 1503 1504 1505 1506 1507
					  NULL) < 0) {
		error("problem processing %d event, skipping it.\n",
			event->header.type);
		return;
	}

	if (symbol_conf.use_callchain && sample->callchain) {

1508
		if (machine__resolve_callchain(machine, al.thread,
1509 1510 1511 1512 1513
						sample->callchain, NULL) != 0) {
			if (verbose)
				error("Failed to resolve callchain. Skipping\n");
			return;
		}
1514
		callchain_cursor_commit(&callchain_cursor);
1515 1516

		while (1) {
1517
			node = callchain_cursor_current(&callchain_cursor);
1518 1519 1520
			if (!node)
				break;

1521 1522
			printf("\t%16" PRIx64, node->ip);
			if (print_sym) {
1523 1524
				printf(" ");
				symbol__fprintf_symname(node->sym, stdout);
1525 1526
			}
			if (print_dso) {
1527
				printf(" (");
1528
				map__fprintf_dsoname(node->map, stdout);
1529
				printf(")");
1530 1531
			}
			printf("\n");
1532

1533
			callchain_cursor_advance(&callchain_cursor);
1534 1535 1536
		}

	} else {
1537
		printf("%16" PRIx64, sample->ip);
1538
		if (print_sym) {
1539
			printf(" ");
1540 1541 1542 1543 1544
			if (print_symoffset)
				symbol__fprintf_symname_offs(al.sym, &al,
							     stdout);
			else
				symbol__fprintf_symname(al.sym, stdout);
1545 1546 1547
		}

		if (print_dso) {
1548 1549 1550
			printf(" (");
			map__fprintf_dsoname(al.map, stdout);
			printf(")");
1551
		}
1552 1553
	}
}
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

int perf_session__cpu_bitmap(struct perf_session *session,
			     const char *cpu_list, unsigned long *cpu_bitmap)
{
	int i;
	struct cpu_map *map;

	for (i = 0; i < PERF_TYPE_MAX; ++i) {
		struct perf_evsel *evsel;

		evsel = perf_session__find_first_evtype(session, i);
		if (!evsel)
			continue;

		if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
			pr_err("File does not contain CPU events. "
			       "Remove -c option to proceed.\n");
			return -1;
		}
	}

	map = cpu_map__new(cpu_list);
1576 1577 1578 1579
	if (map == NULL) {
		pr_err("Invalid cpu_list\n");
		return -1;
	}
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

	for (i = 0; i < map->nr; i++) {
		int cpu = map->map[i];

		if (cpu >= MAX_NR_CPUS) {
			pr_err("Requested CPU %d too large. "
			       "Consider raising MAX_NR_CPUS\n", cpu);
			return -1;
		}

		set_bit(cpu, cpu_bitmap);
	}

	return 0;
}
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
				bool full)
{
	struct stat st;
	int ret;

	if (session == NULL || fp == NULL)
		return;

	ret = fstat(session->fd, &st);
	if (ret == -1)
		return;

	fprintf(fp, "# ========\n");
	fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
	perf_header__fprintf_info(session, fp, full);
	fprintf(fp, "# ========\n#\n");
}
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668


int __perf_session__set_tracepoints_handlers(struct perf_session *session,
					     const struct perf_evsel_str_handler *assocs,
					     size_t nr_assocs)
{
	struct perf_evlist *evlist = session->evlist;
	struct event_format *format;
	struct perf_evsel *evsel;
	char *tracepoint, *name;
	size_t i;
	int err;

	for (i = 0; i < nr_assocs; i++) {
		err = -ENOMEM;
		tracepoint = strdup(assocs[i].name);
		if (tracepoint == NULL)
			goto out;

		err = -ENOENT;
		name = strchr(tracepoint, ':');
		if (name == NULL)
			goto out_free;

		*name++ = '\0';
		format = pevent_find_event_by_name(session->pevent,
						   tracepoint, name);
		if (format == NULL) {
			/*
			 * Adding a handler for an event not in the session,
			 * just ignore it.
			 */
			goto next;
		}

		evsel = perf_evlist__find_tracepoint_by_id(evlist, format->id);
		if (evsel == NULL)
			goto next;

		err = -EEXIST;
		if (evsel->handler.func != NULL)
			goto out_free;
		evsel->handler.func = assocs[i].handler;
next:
		free(tracepoint);
	}

	err = 0;
out:
	return err;

out_free:
	free(tracepoint);
	goto out;
}