efi.c 25.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * efi.c - EFI subsystem
 *
 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
 *
 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 * The existance of /sys/firmware/efi may also be used by userspace to
 * determine that the system supports EFI.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

17 18 19
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/debugfs.h>
21 22
#include <linux/device.h>
#include <linux/efi.h>
23
#include <linux/of.h>
24
#include <linux/io.h>
25
#include <linux/kexec.h>
L
Lee, Chun-Yi 已提交
26
#include <linux/platform_device.h>
27 28
#include <linux/random.h>
#include <linux/reboot.h>
29 30 31
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/ucs2_string.h>
32
#include <linux/memblock.h>
33
#include <linux/security.h>
34

35
#include <asm/early_ioremap.h>
36

37
struct efi __read_mostly efi = {
38
	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 40 41 42 43
	.acpi			= EFI_INVALID_TABLE_ADDR,
	.acpi20			= EFI_INVALID_TABLE_ADDR,
	.smbios			= EFI_INVALID_TABLE_ADDR,
	.smbios3		= EFI_INVALID_TABLE_ADDR,
	.esrt			= EFI_INVALID_TABLE_ADDR,
44
	.tpm_log		= EFI_INVALID_TABLE_ADDR,
45
	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
46 47
};
EXPORT_SYMBOL(efi);
48

49
unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
50
static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
51
static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
52

53 54 55 56
struct mm_struct efi_mm = {
	.mm_rb			= RB_ROOT,
	.mm_users		= ATOMIC_INIT(2),
	.mm_count		= ATOMIC_INIT(1),
57
	MMAP_LOCK_INITIALIZER(efi_mm)
58 59
	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
60
	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
61 62
};

63 64
struct workqueue_struct *efi_rts_wq;

65 66 67 68 69 70 71 72 73 74 75 76 77
static bool disable_runtime;
static int __init setup_noefi(char *arg)
{
	disable_runtime = true;
	return 0;
}
early_param("noefi", setup_noefi);

bool efi_runtime_disabled(void)
{
	return disable_runtime;
}

78 79 80 81 82
bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
}

D
Dave Young 已提交
83 84
static int __init parse_efi_cmdline(char *str)
{
85 86 87 88 89
	if (!str) {
		pr_warn("need at least one option\n");
		return -EINVAL;
	}

90 91 92
	if (parse_option_str(str, "debug"))
		set_bit(EFI_DBG, &efi.flags);

D
Dave Young 已提交
93 94 95
	if (parse_option_str(str, "noruntime"))
		disable_runtime = true;

96 97
	if (parse_option_str(str, "nosoftreserve"))
		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
D
Dave Young 已提交
98 99 100 101 102

	return 0;
}
early_param("efi", parse_efi_cmdline);

P
Peter Jones 已提交
103
struct kobject *efi_kobj;
104 105 106 107

/*
 * Let's not leave out systab information that snuck into
 * the efivars driver
108 109
 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 * one value per file rule!
110 111 112 113 114 115 116 117 118 119 120 121 122
 */
static ssize_t systab_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	char *str = buf;

	if (!kobj || !buf)
		return -EINVAL;

	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
123 124 125 126 127
	/*
	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
	 * SMBIOS3 entry point shall be preferred, so we list it first to
	 * let applications stop parsing after the first match.
	 */
128 129
	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
130 131
	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
132

133
	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
134 135
		str = efi_systab_show_arch(str);

136 137 138
	return str - buf;
}

139
static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
140

141 142 143 144 145 146
static ssize_t fw_platform_size_show(struct kobject *kobj,
				     struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
}

147 148 149
extern __weak struct kobj_attribute efi_attr_fw_vendor;
extern __weak struct kobj_attribute efi_attr_runtime;
extern __weak struct kobj_attribute efi_attr_config_table;
150 151
static struct kobj_attribute efi_attr_fw_platform_size =
	__ATTR_RO(fw_platform_size);
152

153 154
static struct attribute *efi_subsys_attrs[] = {
	&efi_attr_systab.attr,
155
	&efi_attr_fw_platform_size.attr,
156 157 158 159
	&efi_attr_fw_vendor.attr,
	&efi_attr_runtime.attr,
	&efi_attr_config_table.attr,
	NULL,
160 161
};

162 163
umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
				   int n)
164
{
D
Daniel Kiper 已提交
165
	return attr->mode;
166 167
}

168
static const struct attribute_group efi_subsys_attr_group = {
169
	.attrs = efi_subsys_attrs,
170
	.is_visible = efi_attr_is_visible,
171 172 173 174 175 176 177 178 179
};

static struct efivars generic_efivars;
static struct efivar_operations generic_ops;

static int generic_ops_register(void)
{
	generic_ops.get_variable = efi.get_variable;
	generic_ops.get_next_variable = efi.get_next_variable;
180
	generic_ops.query_variable_store = efi_query_variable_store;
181

182 183 184 185
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
		generic_ops.set_variable = efi.set_variable;
		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
	}
186 187 188 189 190 191 192 193
	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
}

static void generic_ops_unregister(void)
{
	efivars_unregister(&generic_efivars);
}

194
#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
195 196 197 198
#define EFIVAR_SSDT_NAME_MAX	16
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
static int __init efivar_ssdt_setup(char *str)
{
199 200 201 202 203
	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);

	if (ret)
		return ret;

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	if (strlen(str) < sizeof(efivar_ssdt))
		memcpy(efivar_ssdt, str, strlen(str));
	else
		pr_warn("efivar_ssdt: name too long: %s\n", str);
	return 0;
}
__setup("efivar_ssdt=", efivar_ssdt_setup);

static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
				   unsigned long name_size, void *data)
{
	struct efivar_entry *entry;
	struct list_head *list = data;
	char utf8_name[EFIVAR_SSDT_NAME_MAX];
	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);

	ucs2_as_utf8(utf8_name, name, limit - 1);
	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
		return 0;

	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return 0;

	memcpy(entry->var.VariableName, name, name_size);
	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));

	efivar_entry_add(entry, list);

	return 0;
}

static __init int efivar_ssdt_load(void)
{
	LIST_HEAD(entries);
	struct efivar_entry *entry, *aux;
	unsigned long size;
	void *data;
	int ret;

244 245 246
	if (!efivar_ssdt[0])
		return 0;

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);

	list_for_each_entry_safe(entry, aux, &entries, list) {
		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
			&entry->var.VendorGuid);

		list_del(&entry->list);

		ret = efivar_entry_size(entry, &size);
		if (ret) {
			pr_err("failed to get var size\n");
			goto free_entry;
		}

		data = kmalloc(size, GFP_KERNEL);
262 263
		if (!data) {
			ret = -ENOMEM;
264
			goto free_entry;
265
		}
266 267 268 269 270 271 272

		ret = efivar_entry_get(entry, NULL, &size, data);
		if (ret) {
			pr_err("failed to get var data\n");
			goto free_data;
		}

273
		ret = acpi_load_table(data, NULL);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
		if (ret) {
			pr_err("failed to load table: %d\n", ret);
			goto free_data;
		}

		goto free_entry;

free_data:
		kfree(data);

free_entry:
		kfree(entry);
	}

	return ret;
}
#else
static inline int efivar_ssdt_load(void) { return 0; }
#endif

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
#ifdef CONFIG_DEBUG_FS

#define EFI_DEBUGFS_MAX_BLOBS 32

static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];

static void __init efi_debugfs_init(void)
{
	struct dentry *efi_debugfs;
	efi_memory_desc_t *md;
	char name[32];
	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
	int i = 0;

	efi_debugfs = debugfs_create_dir("efi", NULL);
	if (IS_ERR_OR_NULL(efi_debugfs))
		return;

	for_each_efi_memory_desc(md) {
		switch (md->type) {
		case EFI_BOOT_SERVICES_CODE:
			snprintf(name, sizeof(name), "boot_services_code%d",
				 type_count[md->type]++);
			break;
		case EFI_BOOT_SERVICES_DATA:
			snprintf(name, sizeof(name), "boot_services_data%d",
				 type_count[md->type]++);
			break;
		default:
			continue;
		}

		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
			break;
		}

		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
		debugfs_blob[i].data = memremap(md->phys_addr,
						debugfs_blob[i].size,
						MEMREMAP_WB);
		if (!debugfs_blob[i].data)
			continue;

		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
		i++;
	}
}
#else
static inline void efi_debugfs_init(void) {}
#endif

347 348 349 350 351 352 353 354 355
/*
 * We register the efi subsystem with the firmware subsystem and the
 * efivars subsystem with the efi subsystem, if the system was booted with
 * EFI.
 */
static int __init efisubsys_init(void)
{
	int error;

356 357 358
	if (!efi_enabled(EFI_RUNTIME_SERVICES))
		efi.runtime_supported_mask = 0;

359 360 361
	if (!efi_enabled(EFI_BOOT))
		return 0;

362 363 364 365 366 367 368 369 370 371 372 373 374
	if (efi.runtime_supported_mask) {
		/*
		 * Since we process only one efi_runtime_service() at a time, an
		 * ordered workqueue (which creates only one execution context)
		 * should suffice for all our needs.
		 */
		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
		if (!efi_rts_wq) {
			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
			efi.runtime_supported_mask = 0;
			return 0;
		}
375 376
	}

377 378 379
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
		platform_device_register_simple("rtc-efi", 0, NULL, 0);

380 381 382 383
	/* We register the efi directory at /sys/firmware/efi */
	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
	if (!efi_kobj) {
		pr_err("efi: Firmware registration failed.\n");
384
		destroy_workqueue(efi_rts_wq);
385 386 387
		return -ENOMEM;
	}

388 389
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
390
		efivar_ssdt_load();
391 392 393 394 395
		error = generic_ops_register();
		if (error)
			goto err_put;
		platform_device_register_simple("efivars", 0, NULL, 0);
	}
396

397 398 399 400 401 402 403
	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
	if (error) {
		pr_err("efi: Sysfs attribute export failed with error %d.\n",
		       error);
		goto err_unregister;
	}

404 405 406 407
	error = efi_runtime_map_init(efi_kobj);
	if (error)
		goto err_remove_group;

408
	/* and the standard mountpoint for efivarfs */
409 410
	error = sysfs_create_mount_point(efi_kobj, "efivars");
	if (error) {
411 412 413 414
		pr_err("efivars: Subsystem registration failed.\n");
		goto err_remove_group;
	}

415 416 417
	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
		efi_debugfs_init();

418 419 420 421 422
	return 0;

err_remove_group:
	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
err_unregister:
423 424
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
425
		generic_ops_unregister();
426 427
err_put:
	kobject_put(efi_kobj);
428
	destroy_workqueue(efi_rts_wq);
429 430 431 432
	return error;
}

subsys_initcall(efisubsys_init);
433

P
Peter Jones 已提交
434 435
/*
 * Find the efi memory descriptor for a given physical address.  Given a
436
 * physical address, determine if it exists within an EFI Memory Map entry,
P
Peter Jones 已提交
437 438 439
 * and if so, populate the supplied memory descriptor with the appropriate
 * data.
 */
440
int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
P
Peter Jones 已提交
441
{
442
	efi_memory_desc_t *md;
P
Peter Jones 已提交
443 444 445 446 447 448 449 450 451 452 453

	if (!efi_enabled(EFI_MEMMAP)) {
		pr_err_once("EFI_MEMMAP is not enabled.\n");
		return -EINVAL;
	}

	if (!out_md) {
		pr_err_once("out_md is null.\n");
		return -EINVAL;
        }

454
	for_each_efi_memory_desc(md) {
P
Peter Jones 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		u64 size;
		u64 end;

		size = md->num_pages << EFI_PAGE_SHIFT;
		end = md->phys_addr + size;
		if (phys_addr >= md->phys_addr && phys_addr < end) {
			memcpy(out_md, md, sizeof(*out_md));
			return 0;
		}
	}
	return -ENOENT;
}

/*
 * Calculate the highest address of an efi memory descriptor.
 */
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
{
	u64 size = md->num_pages << EFI_PAGE_SHIFT;
	u64 end = md->phys_addr + size;
	return end;
}
477

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}

/**
 * efi_mem_reserve - Reserve an EFI memory region
 * @addr: Physical address to reserve
 * @size: Size of reservation
 *
 * Mark a region as reserved from general kernel allocation and
 * prevent it being released by efi_free_boot_services().
 *
 * This function should be called drivers once they've parsed EFI
 * configuration tables to figure out where their data lives, e.g.
 * efi_esrt_init().
 */
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
{
	if (!memblock_is_region_reserved(addr, size))
		memblock_reserve(addr, size);

	/*
	 * Some architectures (x86) reserve all boot services ranges
	 * until efi_free_boot_services() because of buggy firmware
	 * implementations. This means the above memblock_reserve() is
	 * superfluous on x86 and instead what it needs to do is
	 * ensure the @start, @size is not freed.
	 */
	efi_arch_mem_reserve(addr, size);
}

507
static const efi_config_table_type_t common_tables[] __initconst = {
508 509 510 511 512 513 514 515 516 517 518
	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
519
#ifdef CONFIG_EFI_RCI2_TABLE
520
	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
521
#endif
522
	{},
523 524
};

525
static __init int match_config_table(const efi_guid_t *guid,
526
				     unsigned long table,
527
				     const efi_config_table_type_t *table_types)
528 529 530
{
	int i;

531 532 533 534 535 536 537
	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
		if (!efi_guidcmp(*guid, table_types[i].guid)) {
			*(table_types[i].ptr) = table;
			if (table_types[i].name[0])
				pr_cont("%s=0x%lx ",
					table_types[i].name, table);
			return 1;
538 539 540 541 542 543
		}
	}

	return 0;
}

544 545 546
int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
				   int count,
				   const efi_config_table_type_t *arch_tables)
547
{
548 549 550 551
	const efi_config_table_64_t *tbl64 = (void *)config_tables;
	const efi_config_table_32_t *tbl32 = (void *)config_tables;
	const efi_guid_t *guid;
	unsigned long table;
552
	int i;
553 554

	pr_info("");
555
	for (i = 0; i < count; i++) {
556 557 558 559 560 561 562 563 564
		if (!IS_ENABLED(CONFIG_X86)) {
			guid = &config_tables[i].guid;
			table = (unsigned long)config_tables[i].table;
		} else if (efi_enabled(EFI_64BIT)) {
			guid = &tbl64[i].guid;
			table = tbl64[i].table;

			if (IS_ENABLED(CONFIG_X86_32) &&
			    tbl64[i].table > U32_MAX) {
565 566 567 568 569
				pr_cont("\n");
				pr_err("Table located above 4GB, disabling EFI.\n");
				return -EINVAL;
			}
		} else {
570 571
			guid = &tbl32[i].guid;
			table = tbl32[i].table;
572 573
		}

574
		if (!match_config_table(guid, table, common_tables) && arch_tables)
575
			match_config_table(guid, table, arch_tables);
576 577
	}
	pr_cont("\n");
578
	set_bit(EFI_CONFIG_TABLES, &efi.flags);
579

580
	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
581 582 583
		struct linux_efi_random_seed *seed;
		u32 size = 0;

584
		seed = early_memremap(efi_rng_seed, sizeof(*seed));
585
		if (seed != NULL) {
586
			size = READ_ONCE(seed->size);
587 588 589 590 591
			early_memunmap(seed, sizeof(*seed));
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
		if (size > 0) {
592 593
			seed = early_memremap(efi_rng_seed,
					      sizeof(*seed) + size);
594
			if (seed != NULL) {
595
				pr_notice("seeding entropy pool\n");
596
				add_bootloader_randomness(seed->bits, size);
597 598 599 600 601 602 603
				early_memunmap(seed, sizeof(*seed) + size);
			} else {
				pr_err("Could not map UEFI random seed!\n");
			}
		}
	}

604
	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
605
		efi_memattr_init();
606

607 608
	efi_tpm_eventlog_init();

609 610
	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
		unsigned long prsv = mem_reserve;
611 612 613

		while (prsv) {
			struct linux_efi_memreserve *rsv;
614 615 616 617 618 619 620 621 622 623
			u8 *p;

			/*
			 * Just map a full page: that is what we will get
			 * anyway, and it permits us to map the entire entry
			 * before knowing its size.
			 */
			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
					   PAGE_SIZE);
			if (p == NULL) {
624 625 626 627
				pr_err("Could not map UEFI memreserve entry!\n");
				return -ENOMEM;
			}

628 629 630
			rsv = (void *)(p + prsv % PAGE_SIZE);

			/* reserve the entry itself */
631 632
			memblock_reserve(prsv,
					 struct_size(rsv, entry, rsv->size));
633 634 635 636 637

			for (i = 0; i < atomic_read(&rsv->count); i++) {
				memblock_reserve(rsv->entry[i].base,
						 rsv->entry[i].size);
			}
638 639

			prsv = rsv->next;
640
			early_memunmap(p, PAGE_SIZE);
641 642 643
		}
	}

644 645 646 647 648 649 650 651 652 653
	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
		efi_rt_properties_table_t *tbl;

		tbl = early_memremap(rt_prop, sizeof(*tbl));
		if (tbl) {
			efi.runtime_supported_mask &= tbl->runtime_services_supported;
			early_memunmap(tbl, sizeof(*tbl));
		}
	}

654 655
	return 0;
}
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
				   int min_major_version)
{
	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
		pr_err("System table signature incorrect!\n");
		return -EINVAL;
	}

	if ((systab_hdr->revision >> 16) < min_major_version)
		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
		       systab_hdr->revision >> 16,
		       systab_hdr->revision & 0xffff,
		       min_major_version);

	return 0;
}

#ifndef CONFIG_IA64
static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
						size_t size)
{
	const efi_char16_t *ret;

	ret = early_memremap_ro(fw_vendor, size);
	if (!ret)
		pr_err("Could not map the firmware vendor!\n");
	return ret;
}

static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
{
	early_memunmap((void *)fw_vendor, size);
}
#else
#define map_fw_vendor(p, s)	__va(p)
#define unmap_fw_vendor(v, s)
#endif

void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
				     unsigned long fw_vendor)
{
	char vendor[100] = "unknown";
	const efi_char16_t *c16;
	size_t i;

	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
	if (c16) {
		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
			vendor[i] = c16[i];
		vendor[i] = '\0';

		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
	}

	pr_info("EFI v%u.%.02u by %s\n",
		systab_hdr->revision >> 16,
		systab_hdr->revision & 0xffff,
		vendor);
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730
static __initdata char memory_type_name[][20] = {
	"Reserved",
	"Loader Code",
	"Loader Data",
	"Boot Code",
	"Boot Data",
	"Runtime Code",
	"Runtime Data",
	"Conventional Memory",
	"Unusable Memory",
	"ACPI Reclaim Memory",
	"ACPI Memory NVS",
	"Memory Mapped I/O",
	"MMIO Port Space",
731 732
	"PAL Code",
	"Persistent Memory",
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
};

char * __init efi_md_typeattr_format(char *buf, size_t size,
				     const efi_memory_desc_t *md)
{
	char *pos;
	int type_len;
	u64 attr;

	pos = buf;
	if (md->type >= ARRAY_SIZE(memory_type_name))
		type_len = snprintf(pos, size, "[type=%u", md->type);
	else
		type_len = snprintf(pos, size, "[%-*s",
				    (int)(sizeof(memory_type_name[0]) - 1),
				    memory_type_name[md->type]);
	if (type_len >= size)
		return buf;

	pos += type_len;
	size -= type_len;

	attr = md->attribute;
	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
757 758
		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
D
Dan Williams 已提交
759
		     EFI_MEMORY_NV | EFI_MEMORY_SP |
760
		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
761 762 763
		snprintf(pos, size, "|attr=0x%016llx]",
			 (unsigned long long)attr);
	else
R
Robert Elliott 已提交
764
		snprintf(pos, size,
D
Dan Williams 已提交
765
			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
766
			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
767
			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
D
Dan Williams 已提交
768
			 attr & EFI_MEMORY_SP      ? "SP"  : "",
R
Robert Elliott 已提交
769
			 attr & EFI_MEMORY_NV      ? "NV"  : "",
770 771 772
			 attr & EFI_MEMORY_XP      ? "XP"  : "",
			 attr & EFI_MEMORY_RP      ? "RP"  : "",
			 attr & EFI_MEMORY_WP      ? "WP"  : "",
773
			 attr & EFI_MEMORY_RO      ? "RO"  : "",
774 775 776 777 778 779 780
			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
			 attr & EFI_MEMORY_WB      ? "WB"  : "",
			 attr & EFI_MEMORY_WT      ? "WT"  : "",
			 attr & EFI_MEMORY_WC      ? "WC"  : "",
			 attr & EFI_MEMORY_UC      ? "UC"  : "");
	return buf;
}
781

782 783 784 785 786
/*
 * IA64 has a funky EFI memory map that doesn't work the same way as
 * other architectures.
 */
#ifndef CONFIG_IA64
787 788 789 790 791 792 793 794
/*
 * efi_mem_attributes - lookup memmap attributes for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering
 * @phys_addr. Returns the EFI memory attributes if the region
 * was found in the memory map, 0 otherwise.
 */
795
u64 efi_mem_attributes(unsigned long phys_addr)
796 797 798 799 800 801
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return 0;

802
	for_each_efi_memory_desc(md) {
803 804 805 806 807 808 809
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
		    (md->num_pages << EFI_PAGE_SHIFT))))
			return md->attribute;
	}
	return 0;
}
810

811 812 813 814 815 816
/*
 * efi_mem_type - lookup memmap type for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering @phys_addr.
 * Returns the EFI memory type if the region was found in the memory
817
 * map, -EINVAL otherwise.
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
 */
int efi_mem_type(unsigned long phys_addr)
{
	const efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return -ENOTSUPP;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
				  (md->num_pages << EFI_PAGE_SHIFT))))
			return md->type;
	}
	return -EINVAL;
}
#endif

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
int efi_status_to_err(efi_status_t status)
{
	int err;

	switch (status) {
	case EFI_SUCCESS:
		err = 0;
		break;
	case EFI_INVALID_PARAMETER:
		err = -EINVAL;
		break;
	case EFI_OUT_OF_RESOURCES:
		err = -ENOSPC;
		break;
	case EFI_DEVICE_ERROR:
		err = -EIO;
		break;
	case EFI_WRITE_PROTECTED:
		err = -EROFS;
		break;
	case EFI_SECURITY_VIOLATION:
		err = -EACCES;
		break;
	case EFI_NOT_FOUND:
		err = -ENOENT;
		break;
862 863 864
	case EFI_ABORTED:
		err = -EINTR;
		break;
865 866 867 868 869
	default:
		err = -EINVAL;
	}

	return err;
870 871
}

872
static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
873
static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
874

875 876
static int __init efi_memreserve_map_root(void)
{
877
	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
878 879
		return -ENODEV;

880
	efi_memreserve_root = memremap(mem_reserve,
881 882 883 884 885 886 887
				       sizeof(*efi_memreserve_root),
				       MEMREMAP_WB);
	if (WARN_ON_ONCE(!efi_memreserve_root))
		return -ENOMEM;
	return 0;
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
{
	struct resource *res, *parent;

	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
	if (!res)
		return -ENOMEM;

	res->name	= "reserved";
	res->flags	= IORESOURCE_MEM;
	res->start	= addr;
	res->end	= addr + size - 1;

	/* we expect a conflict with a 'System RAM' region */
	parent = request_resource_conflict(&iomem_resource, res);
	return parent ? request_resource(parent, res) : 0;
}

906
int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
907
{
908
	struct linux_efi_memreserve *rsv;
909 910
	unsigned long prsv;
	int rc, index;
911

912
	if (efi_memreserve_root == (void *)ULONG_MAX)
913 914
		return -ENODEV;

915 916 917 918 919 920
	if (!efi_memreserve_root) {
		rc = efi_memreserve_map_root();
		if (rc)
			return rc;
	}

921 922
	/* first try to find a slot in an existing linked list entry */
	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
923
		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
924 925 926 927 928
		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
		if (index < rsv->size) {
			rsv->entry[index].base = addr;
			rsv->entry[index].size = size;

929
			memunmap(rsv);
930
			return efi_mem_reserve_iomem(addr, size);
931
		}
932
		memunmap(rsv);
933 934 935 936
	}

	/* no slot found - allocate a new linked list entry */
	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
937 938 939
	if (!rsv)
		return -ENOMEM;

940 941 942 943 944 945
	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
	if (rc) {
		free_page((unsigned long)rsv);
		return rc;
	}

946 947 948 949 950 951 952
	/*
	 * The memremap() call above assumes that a linux_efi_memreserve entry
	 * never crosses a page boundary, so let's ensure that this remains true
	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
	 * using SZ_4K explicitly in the size calculation below.
	 */
	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
953 954 955
	atomic_set(&rsv->count, 1);
	rsv->entry[0].base = addr;
	rsv->entry[0].size = size;
956 957

	spin_lock(&efi_mem_reserve_persistent_lock);
958 959
	rsv->next = efi_memreserve_root->next;
	efi_memreserve_root->next = __pa(rsv);
960 961
	spin_unlock(&efi_mem_reserve_persistent_lock);

962
	return efi_mem_reserve_iomem(addr, size);
963
}
964

965 966
static int __init efi_memreserve_root_init(void)
{
967 968 969 970
	if (efi_memreserve_root)
		return 0;
	if (efi_memreserve_map_root())
		efi_memreserve_root = (void *)ULONG_MAX;
971 972
	return 0;
}
973
early_initcall(efi_memreserve_root_init);
974

975 976 977 978 979 980 981 982 983 984
#ifdef CONFIG_KEXEC
static int update_efi_random_seed(struct notifier_block *nb,
				  unsigned long code, void *unused)
{
	struct linux_efi_random_seed *seed;
	u32 size = 0;

	if (!kexec_in_progress)
		return NOTIFY_DONE;

985
	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
986
	if (seed != NULL) {
987
		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
988 989 990 991 992
		memunmap(seed);
	} else {
		pr_err("Could not map UEFI random seed!\n");
	}
	if (size > 0) {
993 994
		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
				MEMREMAP_WB);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		if (seed != NULL) {
			seed->size = size;
			get_random_bytes(seed->bits, seed->size);
			memunmap(seed);
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block efi_random_seed_nb = {
	.notifier_call = update_efi_random_seed,
};

1010
static int __init register_update_efi_random_seed(void)
1011
{
1012
	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1013 1014 1015 1016 1017
		return 0;
	return register_reboot_notifier(&efi_random_seed_nb);
}
late_initcall(register_update_efi_random_seed);
#endif