volumes.c 205.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */
5

6
#include <linux/sched.h>
7
#include <linux/sched/mm.h>
8
#include <linux/bio.h>
9
#include <linux/slab.h>
10
#include <linux/blkdev.h>
11
#include <linux/ratelimit.h>
I
Ilya Dryomov 已提交
12
#include <linux/kthread.h>
D
David Woodhouse 已提交
13
#include <linux/raid/pq.h>
S
Stefan Behrens 已提交
14
#include <linux/semaphore.h>
15
#include <linux/uuid.h>
A
Anand Jain 已提交
16
#include <linux/list_sort.h>
17
#include "misc.h"
18 19 20 21 22 23
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
D
David Woodhouse 已提交
24
#include "raid56.h"
25
#include "async-thread.h"
26
#include "check-integrity.h"
27
#include "rcu-string.h"
28
#include "dev-replace.h"
29
#include "sysfs.h"
30
#include "tree-checker.h"
31
#include "space-info.h"
32
#include "block-group.h"
33
#include "discard.h"
34

Z
Zhao Lei 已提交
35 36 37 38 39 40
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = {
		.sub_stripes	= 2,
		.dev_stripes	= 1,
		.devs_max	= 0,	/* 0 == as many as possible */
		.devs_min	= 4,
41
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
42 43
		.devs_increment	= 2,
		.ncopies	= 2,
44
		.nparity        = 0,
45
		.raid_name	= "raid10",
46
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47
		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
Z
Zhao Lei 已提交
48 49 50 51 52 53
	},
	[BTRFS_RAID_RAID1] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 2,
		.devs_min	= 2,
54
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
55 56
		.devs_increment	= 2,
		.ncopies	= 2,
57
		.nparity        = 0,
58
		.raid_name	= "raid1",
59
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60
		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
Z
Zhao Lei 已提交
61
	},
62 63 64
	[BTRFS_RAID_RAID1C3] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
65
		.devs_max	= 3,
66 67 68 69
		.devs_min	= 3,
		.tolerated_failures = 2,
		.devs_increment	= 3,
		.ncopies	= 3,
70
		.nparity        = 0,
71 72 73 74
		.raid_name	= "raid1c3",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
	},
75 76 77
	[BTRFS_RAID_RAID1C4] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
78
		.devs_max	= 4,
79 80 81 82
		.devs_min	= 4,
		.tolerated_failures = 3,
		.devs_increment	= 4,
		.ncopies	= 4,
83
		.nparity        = 0,
84 85 86 87
		.raid_name	= "raid1c4",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
	},
Z
Zhao Lei 已提交
88 89 90 91 92
	[BTRFS_RAID_DUP] = {
		.sub_stripes	= 1,
		.dev_stripes	= 2,
		.devs_max	= 1,
		.devs_min	= 1,
93
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
94 95
		.devs_increment	= 1,
		.ncopies	= 2,
96
		.nparity        = 0,
97
		.raid_name	= "dup",
98
		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99
		.mindev_error	= 0,
Z
Zhao Lei 已提交
100 101 102 103 104 105
	},
	[BTRFS_RAID_RAID0] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
106
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
107 108
		.devs_increment	= 1,
		.ncopies	= 1,
109
		.nparity        = 0,
110
		.raid_name	= "raid0",
111
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112
		.mindev_error	= 0,
Z
Zhao Lei 已提交
113 114 115 116 117 118
	},
	[BTRFS_RAID_SINGLE] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 1,
		.devs_min	= 1,
119
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
120 121
		.devs_increment	= 1,
		.ncopies	= 1,
122
		.nparity        = 0,
123
		.raid_name	= "single",
124
		.bg_flag	= 0,
125
		.mindev_error	= 0,
Z
Zhao Lei 已提交
126 127 128 129 130 131
	},
	[BTRFS_RAID_RAID5] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
132
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
133
		.devs_increment	= 1,
134
		.ncopies	= 1,
135
		.nparity        = 1,
136
		.raid_name	= "raid5",
137
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138
		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
Z
Zhao Lei 已提交
139 140 141 142 143 144
	},
	[BTRFS_RAID_RAID6] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 3,
145
		.tolerated_failures = 2,
Z
Zhao Lei 已提交
146
		.devs_increment	= 1,
147
		.ncopies	= 1,
148
		.nparity        = 2,
149
		.raid_name	= "raid6",
150
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151
		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
Z
Zhao Lei 已提交
152 153 154
	},
};

155
const char *btrfs_bg_type_to_raid_name(u64 flags)
156
{
157 158 159
	const int index = btrfs_bg_flags_to_raid_index(flags);

	if (index >= BTRFS_NR_RAID_TYPES)
160 161
		return NULL;

162
	return btrfs_raid_array[index].raid_name;
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 * bytes including terminating null byte.
 */
void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
{
	int i;
	int ret;
	char *bp = buf;
	u64 flags = bg_flags;
	u32 size_bp = size_buf;

	if (!flags) {
		strcpy(bp, "NONE");
		return;
	}

#define DESCRIBE_FLAG(flag, desc)						\
	do {								\
		if (flags & (flag)) {					\
			ret = snprintf(bp, size_bp, "%s|", (desc));	\
			if (ret < 0 || ret >= size_bp)			\
				goto out_overflow;			\
			size_bp -= ret;					\
			bp += ret;					\
			flags &= ~(flag);				\
		}							\
	} while (0)

	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");

	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
			      btrfs_raid_array[i].raid_name);
#undef DESCRIBE_FLAG

	if (flags) {
		ret = snprintf(bp, size_bp, "0x%llx|", flags);
		size_bp -= ret;
	}

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */

	/*
	 * The text is trimmed, it's up to the caller to provide sufficiently
	 * large buffer
	 */
out_overflow:;
}

219
static int init_first_rw_device(struct btrfs_trans_handle *trans);
220
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 224 225 226 227
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
			     u64 logical, u64 *length,
			     struct btrfs_bio **bbio_ret,
			     int mirror_num, int need_raid_map);
Y
Yan Zheng 已提交
228

D
David Sterba 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Device locking
 * ==============
 *
 * There are several mutexes that protect manipulation of devices and low-level
 * structures like chunks but not block groups, extents or files
 *
 * uuid_mutex (global lock)
 * ------------------------
 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 * device) or requested by the device= mount option
 *
 * the mutex can be very coarse and can cover long-running operations
 *
 * protects: updates to fs_devices counters like missing devices, rw devices,
245
 * seeding, structure cloning, opening/closing devices at mount/umount time
D
David Sterba 已提交
246 247 248
 *
 * global::fs_devs - add, remove, updates to the global list
 *
249 250 251
 * does not protect: manipulation of the fs_devices::devices list in general
 * but in mount context it could be used to exclude list modifications by eg.
 * scan ioctl
D
David Sterba 已提交
252 253 254 255 256 257 258 259 260 261 262 263
 *
 * btrfs_device::name - renames (write side), read is RCU
 *
 * fs_devices::device_list_mutex (per-fs, with RCU)
 * ------------------------------------------------
 * protects updates to fs_devices::devices, ie. adding and deleting
 *
 * simple list traversal with read-only actions can be done with RCU protection
 *
 * may be used to exclude some operations from running concurrently without any
 * modifications to the list (see write_all_supers)
 *
264 265 266
 * Is not required at mount and close times, because our device list is
 * protected by the uuid_mutex at that point.
 *
D
David Sterba 已提交
267 268 269 270 271 272 273 274
 * balance_mutex
 * -------------
 * protects balance structures (status, state) and context accessed from
 * several places (internally, ioctl)
 *
 * chunk_mutex
 * -----------
 * protects chunks, adding or removing during allocation, trim or when a new
275 276 277
 * device is added/removed. Additionally it also protects post_commit_list of
 * individual devices, since they can be added to the transaction's
 * post_commit_list only with chunk_mutex held.
D
David Sterba 已提交
278 279 280 281 282 283 284 285 286 287 288
 *
 * cleaner_mutex
 * -------------
 * a big lock that is held by the cleaner thread and prevents running subvolume
 * cleaning together with relocation or delayed iputs
 *
 *
 * Lock nesting
 * ============
 *
 * uuid_mutex
289 290 291
 *   device_list_mutex
 *     chunk_mutex
 *   balance_mutex
292 293
 *
 *
294 295
 * Exclusive operations
 * ====================
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
 *
 * Maintains the exclusivity of the following operations that apply to the
 * whole filesystem and cannot run in parallel.
 *
 * - Balance (*)
 * - Device add
 * - Device remove
 * - Device replace (*)
 * - Resize
 *
 * The device operations (as above) can be in one of the following states:
 *
 * - Running state
 * - Paused state
 * - Completed state
 *
 * Only device operations marked with (*) can go into the Paused state for the
 * following reasons:
 *
 * - ioctl (only Balance can be Paused through ioctl)
 * - filesystem remounted as read-only
 * - filesystem unmounted and mounted as read-only
 * - system power-cycle and filesystem mounted as read-only
 * - filesystem or device errors leading to forced read-only
 *
321 322
 * The status of exclusive operation is set and cleared atomically.
 * During the course of Paused state, fs_info::exclusive_operation remains set.
323 324
 * A device operation in Paused or Running state can be canceled or resumed
 * either by ioctl (Balance only) or when remounted as read-write.
325
 * The exclusive status is cleared when the device operation is canceled or
326
 * completed.
D
David Sterba 已提交
327 328
 */

329
DEFINE_MUTEX(uuid_mutex);
330
static LIST_HEAD(fs_uuids);
D
David Sterba 已提交
331
struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 333 334
{
	return &fs_uuids;
}
335

D
David Sterba 已提交
336 337
/*
 * alloc_fs_devices - allocate struct btrfs_fs_devices
338 339
 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
D
David Sterba 已提交
340 341 342 343 344
 *
 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 * The returned struct is not linked onto any lists and can be destroyed with
 * kfree() right away.
 */
345 346
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
						 const u8 *metadata_fsid)
347 348 349
{
	struct btrfs_fs_devices *fs_devs;

350
	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 352 353 354 355 356 357
	if (!fs_devs)
		return ERR_PTR(-ENOMEM);

	mutex_init(&fs_devs->device_list_mutex);

	INIT_LIST_HEAD(&fs_devs->devices);
	INIT_LIST_HEAD(&fs_devs->alloc_list);
358
	INIT_LIST_HEAD(&fs_devs->fs_list);
359
	INIT_LIST_HEAD(&fs_devs->seed_list);
360 361 362
	if (fsid)
		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);

363 364 365 366 367
	if (metadata_fsid)
		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
	else if (fsid)
		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);

368 369 370
	return fs_devs;
}

371
void btrfs_free_device(struct btrfs_device *device)
372
{
373
	WARN_ON(!list_empty(&device->post_commit_list));
374
	rcu_string_free(device->name);
375
	extent_io_tree_release(&device->alloc_state);
376 377 378 379
	bio_put(device->flush_bio);
	kfree(device);
}

Y
Yan Zheng 已提交
380 381 382 383 384 385 386 387
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;
	WARN_ON(fs_devices->opened);
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
388
		btrfs_free_device(device);
Y
Yan Zheng 已提交
389 390 391 392
	}
	kfree(fs_devices);
}

393
void __exit btrfs_cleanup_fs_uuids(void)
394 395 396
{
	struct btrfs_fs_devices *fs_devices;

Y
Yan Zheng 已提交
397 398
	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next,
399 400
					struct btrfs_fs_devices, fs_list);
		list_del(&fs_devices->fs_list);
Y
Yan Zheng 已提交
401
		free_fs_devices(fs_devices);
402 403 404
	}
}

405 406 407
/*
 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 * Returned struct is not linked onto any lists and must be destroyed using
408
 * btrfs_free_device.
409
 */
410
static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 412 413
{
	struct btrfs_device *dev;

414
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 416 417
	if (!dev)
		return ERR_PTR(-ENOMEM);

418 419 420 421 422 423 424 425 426 427
	/*
	 * Preallocate a bio that's always going to be used for flushing device
	 * barriers and matches the device lifespan
	 */
	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
	if (!dev->flush_bio) {
		kfree(dev);
		return ERR_PTR(-ENOMEM);
	}

428 429
	INIT_LIST_HEAD(&dev->dev_list);
	INIT_LIST_HEAD(&dev->dev_alloc_list);
430
	INIT_LIST_HEAD(&dev->post_commit_list);
431 432

	atomic_set(&dev->reada_in_flight, 0);
433
	atomic_set(&dev->dev_stats_ccnt, 0);
434
	btrfs_device_data_ordered_init(dev);
435
	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436
	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 438
	extent_io_tree_init(fs_info, &dev->alloc_state,
			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
439 440 441 442

	return dev;
}

443 444
static noinline struct btrfs_fs_devices *find_fsid(
		const u8 *fsid, const u8 *metadata_fsid)
445 446 447
{
	struct btrfs_fs_devices *fs_devices;

448 449
	ASSERT(fsid);

450
	/* Handle non-split brain cases */
451
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 453 454 455 456 457 458 459 460
		if (metadata_fsid) {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
				      BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		} else {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		}
461 462 463 464
	}
	return NULL;
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
				struct btrfs_super_block *disk_super)
{

	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by first scanning
	 * a device which didn't have its fsid/metadata_uuid changed
	 * at all and the CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}
	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by a device that
	 * has an outdated pair of fsid/metadata_uuid and
	 * CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(fs_devices->metadata_uuid,
			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}

	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
}


506 507 508
static int
btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
		      int flush, struct block_device **bdev,
509
		      struct btrfs_super_block **disk_super)
510 511 512 513 514 515 516 517 518 519 520 521
{
	int ret;

	*bdev = blkdev_get_by_path(device_path, flags, holder);

	if (IS_ERR(*bdev)) {
		ret = PTR_ERR(*bdev);
		goto error;
	}

	if (flush)
		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522
	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 524 525 526 527
	if (ret) {
		blkdev_put(*bdev, flags);
		goto error;
	}
	invalidate_bdev(*bdev);
528 529 530
	*disk_super = btrfs_read_dev_super(*bdev);
	if (IS_ERR(*disk_super)) {
		ret = PTR_ERR(*disk_super);
531 532 533 534 535 536 537 538 539 540 541
		blkdev_put(*bdev, flags);
		goto error;
	}

	return 0;

error:
	*bdev = NULL;
	return ret;
}

542 543 544 545 546 547 548 549 550 551 552
static bool device_path_matched(const char *path, struct btrfs_device *device)
{
	int found;

	rcu_read_lock();
	found = strcmp(rcu_str_deref(device->name), path);
	rcu_read_unlock();

	return found == 0;
}

553 554 555 556 557 558 559
/*
 *  Search and remove all stale (devices which are not mounted) devices.
 *  When both inputs are NULL, it will search and release all stale devices.
 *  path:	Optional. When provided will it release all unmounted devices
 *		matching this path only.
 *  skip_dev:	Optional. Will skip this device when searching for the stale
 *		devices.
560 561 562
 *  Return:	0 for success or if @path is NULL.
 * 		-EBUSY if @path is a mounted device.
 * 		-ENOENT if @path does not match any device in the list.
563
 */
564
static int btrfs_free_stale_devices(const char *path,
565
				     struct btrfs_device *skip_device)
A
Anand Jain 已提交
566
{
567 568
	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
	struct btrfs_device *device, *tmp_device;
569 570 571 572
	int ret = 0;

	if (path)
		ret = -ENOENT;
A
Anand Jain 已提交
573

574
	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
A
Anand Jain 已提交
575

576
		mutex_lock(&fs_devices->device_list_mutex);
577 578 579
		list_for_each_entry_safe(device, tmp_device,
					 &fs_devices->devices, dev_list) {
			if (skip_device && skip_device == device)
580
				continue;
581
			if (path && !device->name)
A
Anand Jain 已提交
582
				continue;
583
			if (path && !device_path_matched(path, device))
584
				continue;
585 586 587 588 589 590
			if (fs_devices->opened) {
				/* for an already deleted device return 0 */
				if (path && ret != 0)
					ret = -EBUSY;
				break;
			}
A
Anand Jain 已提交
591 592

			/* delete the stale device */
593 594 595 596
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);

597
			ret = 0;
598 599
		}
		mutex_unlock(&fs_devices->device_list_mutex);
600

601 602 603 604
		if (fs_devices->num_devices == 0) {
			btrfs_sysfs_remove_fsid(fs_devices);
			list_del(&fs_devices->fs_list);
			free_fs_devices(fs_devices);
A
Anand Jain 已提交
605 606
		}
	}
607 608

	return ret;
A
Anand Jain 已提交
609 610
}

611 612 613 614 615
/*
 * This is only used on mount, and we are protected from competing things
 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 * fs_devices->device_list_mutex here.
 */
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
			struct btrfs_device *device, fmode_t flags,
			void *holder)
{
	struct request_queue *q;
	struct block_device *bdev;
	struct btrfs_super_block *disk_super;
	u64 devid;
	int ret;

	if (device->bdev)
		return -EINVAL;
	if (!device->name)
		return -EINVAL;

	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632
				    &bdev, &disk_super);
633 634 635 636 637
	if (ret)
		return ret;

	devid = btrfs_stack_device_id(&disk_super->dev_item);
	if (devid != device->devid)
638
		goto error_free_page;
639 640

	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641
		goto error_free_page;
642 643 644 645

	device->generation = btrfs_super_generation(disk_super);

	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 647 648 649
		if (btrfs_super_incompat_flags(disk_super) &
		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
			pr_err(
		"BTRFS: Invalid seeding and uuid-changed device detected\n");
650
			goto error_free_page;
651 652
		}

653
		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654
		fs_devices->seeding = true;
655
	} else {
656 657 658 659
		if (bdev_read_only(bdev))
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
		else
			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 661 662 663
	}

	q = bdev_get_queue(bdev);
	if (!blk_queue_nonrot(q))
664
		fs_devices->rotating = true;
665 666

	device->bdev = bdev;
667
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 669 670
	device->mode = flags;

	fs_devices->open_devices++;
671 672
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
673
		fs_devices->rw_devices++;
674
		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675
	}
676
	btrfs_release_disk_super(disk_super);
677 678 679

	return 0;

680 681
error_free_page:
	btrfs_release_disk_super(disk_super);
682 683 684 685 686
	blkdev_put(bdev, flags);

	return -EINVAL;
}

687 688
/*
 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689 690 691
 * being created with a disk that has already completed its fsid change. Such
 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 * Handle both cases here.
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
 */
static struct btrfs_fs_devices *find_fsid_inprogress(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
			return fs_devices;
		}
	}

707
	return find_fsid(disk_super->fsid, NULL);
708 709
}

710 711 712 713 714 715 716 717 718

static struct btrfs_fs_devices *find_fsid_changed(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handles the case where scanned device is part of an fs that had
	 * multiple successful changes of FSID but curently device didn't
719 720 721 722 723
	 * observe it. Meaning our fsid will be different than theirs. We need
	 * to handle two subcases :
	 *  1 - The fs still continues to have different METADATA/FSID uuids.
	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
	 *  are equal).
724 725
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726
		/* Changed UUIDs */
727 728 729 730 731
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->fsid,
732 733 734 735 736 737 738 739
			   BTRFS_FSID_SIZE) != 0)
			return fs_devices;

		/* Unchanged UUIDs */
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0)
740 741 742 743 744
			return fs_devices;
	}

	return NULL;
}
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

static struct btrfs_fs_devices *find_fsid_reverted_metadata(
				struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle the case where the scanned device is part of an fs whose last
	 * metadata UUID change reverted it to the original FSID. At the same
	 * time * fs_devices was first created by another constitutent device
	 * which didn't fully observe the operation. This results in an
	 * btrfs_fs_devices created with metadata/fsid different AND
	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
	 * fs_devices equal to the FSID of the disk.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    fs_devices->fsid_change)
			return fs_devices;
	}

	return NULL;
}
771 772 773 774
/*
 * Add new device to list of registered devices
 *
 * Returns:
775 776
 * device pointer which was just added or updated when successful
 * error pointer when failed
777
 */
778
static noinline struct btrfs_device *device_list_add(const char *path,
779 780
			   struct btrfs_super_block *disk_super,
			   bool *new_device_added)
781 782
{
	struct btrfs_device *device;
783
	struct btrfs_fs_devices *fs_devices = NULL;
784
	struct rcu_string *name;
785
	u64 found_transid = btrfs_super_generation(disk_super);
786
	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 788
	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 790
	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791

792
	if (fsid_change_in_progress) {
793
		if (!has_metadata_uuid)
794
			fs_devices = find_fsid_inprogress(disk_super);
795
		else
796
			fs_devices = find_fsid_changed(disk_super);
797
	} else if (has_metadata_uuid) {
798
		fs_devices = find_fsid_with_metadata_uuid(disk_super);
799
	} else {
800 801 802
		fs_devices = find_fsid_reverted_metadata(disk_super);
		if (!fs_devices)
			fs_devices = find_fsid(disk_super->fsid, NULL);
803 804
	}

805 806

	if (!fs_devices) {
807 808 809 810 811 812
		if (has_metadata_uuid)
			fs_devices = alloc_fs_devices(disk_super->fsid,
						      disk_super->metadata_uuid);
		else
			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);

813
		if (IS_ERR(fs_devices))
814
			return ERR_CAST(fs_devices);
815

816 817
		fs_devices->fsid_change = fsid_change_in_progress;

818
		mutex_lock(&fs_devices->device_list_mutex);
819
		list_add(&fs_devices->fs_list, &fs_uuids);
820

821 822
		device = NULL;
	} else {
823
		mutex_lock(&fs_devices->device_list_mutex);
824 825
		device = btrfs_find_device(fs_devices, devid,
				disk_super->dev_item.uuid, NULL, false);
826 827 828 829 830 831

		/*
		 * If this disk has been pulled into an fs devices created by
		 * a device which had the CHANGING_FSID_V2 flag then replace the
		 * metadata_uuid/fsid values of the fs_devices.
		 */
832
		if (fs_devices->fsid_change &&
833 834 835
		    found_transid > fs_devices->latest_generation) {
			memcpy(fs_devices->fsid, disk_super->fsid,
					BTRFS_FSID_SIZE);
836 837 838 839 840 841 842 843

			if (has_metadata_uuid)
				memcpy(fs_devices->metadata_uuid,
				       disk_super->metadata_uuid,
				       BTRFS_FSID_SIZE);
			else
				memcpy(fs_devices->metadata_uuid,
				       disk_super->fsid, BTRFS_FSID_SIZE);
844 845 846

			fs_devices->fsid_change = false;
		}
847
	}
848

849
	if (!device) {
850 851
		if (fs_devices->opened) {
			mutex_unlock(&fs_devices->device_list_mutex);
852
			return ERR_PTR(-EBUSY);
853
		}
Y
Yan Zheng 已提交
854

855 856 857
		device = btrfs_alloc_device(NULL, &devid,
					    disk_super->dev_item.uuid);
		if (IS_ERR(device)) {
858
			mutex_unlock(&fs_devices->device_list_mutex);
859
			/* we can safely leave the fs_devices entry around */
860
			return device;
861
		}
862 863 864

		name = rcu_string_strdup(path, GFP_NOFS);
		if (!name) {
865
			btrfs_free_device(device);
866
			mutex_unlock(&fs_devices->device_list_mutex);
867
			return ERR_PTR(-ENOMEM);
868
		}
869
		rcu_assign_pointer(device->name, name);
870

871
		list_add_rcu(&device->dev_list, &fs_devices->devices);
872
		fs_devices->num_devices++;
873

Y
Yan Zheng 已提交
874
		device->fs_devices = fs_devices;
875
		*new_device_added = true;
876 877

		if (disk_super->label[0])
878 879 880 881
			pr_info(
	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->label, devid, found_transid, path,
				current->comm, task_pid_nr(current));
882
		else
883 884 885 886
			pr_info(
	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->fsid, devid, found_transid, path,
				current->comm, task_pid_nr(current));
887

888
	} else if (!device->name || strcmp(device->name->str, path)) {
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
		/*
		 * When FS is already mounted.
		 * 1. If you are here and if the device->name is NULL that
		 *    means this device was missing at time of FS mount.
		 * 2. If you are here and if the device->name is different
		 *    from 'path' that means either
		 *      a. The same device disappeared and reappeared with
		 *         different name. or
		 *      b. The missing-disk-which-was-replaced, has
		 *         reappeared now.
		 *
		 * We must allow 1 and 2a above. But 2b would be a spurious
		 * and unintentional.
		 *
		 * Further in case of 1 and 2a above, the disk at 'path'
		 * would have missed some transaction when it was away and
		 * in case of 2a the stale bdev has to be updated as well.
		 * 2b must not be allowed at all time.
		 */

		/*
910 911 912 913
		 * For now, we do allow update to btrfs_fs_device through the
		 * btrfs dev scan cli after FS has been mounted.  We're still
		 * tracking a problem where systems fail mount by subvolume id
		 * when we reject replacement on a mounted FS.
914
		 */
915
		if (!fs_devices->opened && found_transid < device->generation) {
916 917 918 919 920 921 922
			/*
			 * That is if the FS is _not_ mounted and if you
			 * are here, that means there is more than one
			 * disk with same uuid and devid.We keep the one
			 * with larger generation number or the last-in if
			 * generation are equal.
			 */
923
			mutex_unlock(&fs_devices->device_list_mutex);
924
			return ERR_PTR(-EEXIST);
925
		}
926

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
		/*
		 * We are going to replace the device path for a given devid,
		 * make sure it's the same device if the device is mounted
		 */
		if (device->bdev) {
			struct block_device *path_bdev;

			path_bdev = lookup_bdev(path);
			if (IS_ERR(path_bdev)) {
				mutex_unlock(&fs_devices->device_list_mutex);
				return ERR_CAST(path_bdev);
			}

			if (device->bdev != path_bdev) {
				bdput(path_bdev);
				mutex_unlock(&fs_devices->device_list_mutex);
				btrfs_warn_in_rcu(device->fs_info,
944 945 946 947
	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
						  path, devid, found_transid,
						  current->comm,
						  task_pid_nr(current));
948 949 950 951
				return ERR_PTR(-EEXIST);
			}
			bdput(path_bdev);
			btrfs_info_in_rcu(device->fs_info,
952 953 954 955
	"devid %llu device path %s changed to %s scanned by %s (%d)",
					  devid, rcu_str_deref(device->name),
					  path, current->comm,
					  task_pid_nr(current));
956 957
		}

958
		name = rcu_string_strdup(path, GFP_NOFS);
959 960
		if (!name) {
			mutex_unlock(&fs_devices->device_list_mutex);
961
			return ERR_PTR(-ENOMEM);
962
		}
963 964
		rcu_string_free(device->name);
		rcu_assign_pointer(device->name, name);
965
		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
966
			fs_devices->missing_devices--;
967
			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
968
		}
969 970
	}

971 972 973 974 975 976
	/*
	 * Unmount does not free the btrfs_device struct but would zero
	 * generation along with most of the other members. So just update
	 * it back. We need it to pick the disk with largest generation
	 * (as above).
	 */
977
	if (!fs_devices->opened) {
978
		device->generation = found_transid;
979 980 981
		fs_devices->latest_generation = max_t(u64, found_transid,
						fs_devices->latest_generation);
	}
982

983 984
	fs_devices->total_devices = btrfs_super_num_devices(disk_super);

985
	mutex_unlock(&fs_devices->device_list_mutex);
986
	return device;
987 988
}

Y
Yan Zheng 已提交
989 990 991 992 993
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
{
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_device *device;
	struct btrfs_device *orig_dev;
994
	int ret = 0;
Y
Yan Zheng 已提交
995

996
	fs_devices = alloc_fs_devices(orig->fsid, NULL);
997 998
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
999

1000
	mutex_lock(&orig->device_list_mutex);
J
Josef Bacik 已提交
1001
	fs_devices->total_devices = orig->total_devices;
Y
Yan Zheng 已提交
1002 1003

	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1004 1005
		struct rcu_string *name;

1006 1007
		device = btrfs_alloc_device(NULL, &orig_dev->devid,
					    orig_dev->uuid);
1008 1009
		if (IS_ERR(device)) {
			ret = PTR_ERR(device);
Y
Yan Zheng 已提交
1010
			goto error;
1011
		}
Y
Yan Zheng 已提交
1012

1013 1014 1015 1016
		/*
		 * This is ok to do without rcu read locked because we hold the
		 * uuid mutex so nothing we touch in here is going to disappear.
		 */
1017
		if (orig_dev->name) {
1018 1019
			name = rcu_string_strdup(orig_dev->name->str,
					GFP_KERNEL);
1020
			if (!name) {
1021
				btrfs_free_device(device);
1022
				ret = -ENOMEM;
1023 1024 1025
				goto error;
			}
			rcu_assign_pointer(device->name, name);
J
Julia Lawall 已提交
1026
		}
Y
Yan Zheng 已提交
1027 1028 1029 1030 1031

		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
		fs_devices->num_devices++;
	}
1032
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1033 1034
	return fs_devices;
error:
1035
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1036
	free_fs_devices(fs_devices);
1037
	return ERR_PTR(ret);
Y
Yan Zheng 已提交
1038 1039
}

1040 1041
static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
				      int step, struct btrfs_device **latest_dev)
1042
{
Q
Qinghuang Feng 已提交
1043
	struct btrfs_device *device, *next;
1044

1045
	/* This is the initialized path, it is safe to release the devices. */
Q
Qinghuang Feng 已提交
1046
	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1047
		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1048
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1049
				      &device->dev_state) &&
1050 1051
			    !test_bit(BTRFS_DEV_STATE_MISSING,
				      &device->dev_state) &&
1052 1053 1054
			    (!*latest_dev ||
			     device->generation > (*latest_dev)->generation)) {
				*latest_dev = device;
1055
			}
Y
Yan Zheng 已提交
1056
			continue;
1057
		}
Y
Yan Zheng 已提交
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
			/*
			 * In the first step, keep the device which has
			 * the correct fsid and the devid that is used
			 * for the dev_replace procedure.
			 * In the second step, the dev_replace state is
			 * read from the device tree and it is known
			 * whether the procedure is really active or
			 * not, which means whether this device is
			 * used or whether it should be removed.
			 */
1070 1071
			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
						  &device->dev_state)) {
1072 1073 1074
				continue;
			}
		}
Y
Yan Zheng 已提交
1075
		if (device->bdev) {
1076
			blkdev_put(device->bdev, device->mode);
Y
Yan Zheng 已提交
1077 1078 1079
			device->bdev = NULL;
			fs_devices->open_devices--;
		}
1080
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
1081
			list_del_init(&device->dev_alloc_list);
1082
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1083 1084
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
				      &device->dev_state))
1085
				fs_devices->rw_devices--;
Y
Yan Zheng 已提交
1086
		}
Y
Yan Zheng 已提交
1087 1088
		list_del_init(&device->dev_list);
		fs_devices->num_devices--;
1089
		btrfs_free_device(device);
1090
	}
Y
Yan Zheng 已提交
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100
}

/*
 * After we have read the system tree and know devids belonging to this
 * filesystem, remove the device which does not belong there.
 */
void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
{
	struct btrfs_device *latest_dev = NULL;
1101
	struct btrfs_fs_devices *seed_dev;
1102 1103 1104

	mutex_lock(&uuid_mutex);
	__btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1105 1106 1107

	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
		__btrfs_free_extra_devids(seed_dev, step, &latest_dev);
Y
Yan Zheng 已提交
1108

1109
	fs_devices->latest_bdev = latest_dev->bdev;
1110

1111 1112
	mutex_unlock(&uuid_mutex);
}
1113

1114 1115
static void btrfs_close_bdev(struct btrfs_device *device)
{
D
David Sterba 已提交
1116 1117 1118
	if (!device->bdev)
		return;

1119
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1120 1121 1122 1123
		sync_blockdev(device->bdev);
		invalidate_bdev(device->bdev);
	}

D
David Sterba 已提交
1124
	blkdev_put(device->bdev, device->mode);
1125 1126
}

1127
static void btrfs_close_one_device(struct btrfs_device *device)
1128 1129 1130
{
	struct btrfs_fs_devices *fs_devices = device->fs_devices;

1131
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1132 1133 1134 1135 1136
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
		list_del_init(&device->dev_alloc_list);
		fs_devices->rw_devices--;
	}

1137
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1138 1139
		fs_devices->missing_devices--;

1140
	btrfs_close_bdev(device);
1141
	if (device->bdev) {
1142
		fs_devices->open_devices--;
1143
		device->bdev = NULL;
1144
	}
1145
	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1146

1147 1148 1149
	device->fs_info = NULL;
	atomic_set(&device->dev_stats_ccnt, 0);
	extent_io_tree_release(&device->alloc_state);
1150

1151 1152 1153 1154 1155 1156
	/* Verify the device is back in a pristine state  */
	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
	ASSERT(list_empty(&device->dev_alloc_list));
	ASSERT(list_empty(&device->post_commit_list));
	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1157 1158
}

1159
static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160
{
1161
	struct btrfs_device *device, *tmp;
Y
Yan Zheng 已提交
1162

1163 1164
	lockdep_assert_held(&uuid_mutex);

Y
Yan Zheng 已提交
1165
	if (--fs_devices->opened > 0)
1166
		return;
1167

1168
	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169
		btrfs_close_one_device(device);
1170

Y
Yan Zheng 已提交
1171 1172
	WARN_ON(fs_devices->open_devices);
	WARN_ON(fs_devices->rw_devices);
Y
Yan Zheng 已提交
1173
	fs_devices->opened = 0;
1174
	fs_devices->seeding = false;
1175
	fs_devices->fs_info = NULL;
1176 1177
}

1178
void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
Y
Yan Zheng 已提交
1179
{
1180 1181
	LIST_HEAD(list);
	struct btrfs_fs_devices *tmp;
Y
Yan Zheng 已提交
1182 1183

	mutex_lock(&uuid_mutex);
1184
	close_fs_devices(fs_devices);
1185 1186
	if (!fs_devices->opened)
		list_splice_init(&fs_devices->seed_list, &list);
Y
Yan Zheng 已提交
1187

1188
	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1189
		close_fs_devices(fs_devices);
1190
		list_del(&fs_devices->seed_list);
Y
Yan Zheng 已提交
1191 1192
		free_fs_devices(fs_devices);
	}
1193
	mutex_unlock(&uuid_mutex);
Y
Yan Zheng 已提交
1194 1195
}

1196
static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
Y
Yan Zheng 已提交
1197
				fmode_t flags, void *holder)
1198 1199
{
	struct btrfs_device *device;
1200
	struct btrfs_device *latest_dev = NULL;
1201
	struct btrfs_device *tmp_device;
1202

1203 1204
	flags |= FMODE_EXCL;

1205 1206 1207
	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
				 dev_list) {
		int ret;
1208

1209 1210 1211
		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
		if (ret == 0 &&
		    (!latest_dev || device->generation > latest_dev->generation)) {
1212
			latest_dev = device;
1213 1214 1215 1216 1217
		} else if (ret == -ENODATA) {
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);
		}
1218
	}
1219 1220 1221
	if (fs_devices->open_devices == 0)
		return -EINVAL;

Y
Yan Zheng 已提交
1222
	fs_devices->opened = 1;
1223
	fs_devices->latest_bdev = latest_dev->bdev;
Y
Yan Zheng 已提交
1224
	fs_devices->total_rw_bytes = 0;
1225
	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1226 1227

	return 0;
Y
Yan Zheng 已提交
1228 1229
}

A
Anand Jain 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct btrfs_device *dev1, *dev2;

	dev1 = list_entry(a, struct btrfs_device, dev_list);
	dev2 = list_entry(b, struct btrfs_device, dev_list);

	if (dev1->devid < dev2->devid)
		return -1;
	else if (dev1->devid > dev2->devid)
		return 1;
	return 0;
}

Y
Yan Zheng 已提交
1244
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1245
		       fmode_t flags, void *holder)
Y
Yan Zheng 已提交
1246 1247 1248
{
	int ret;

1249
	lockdep_assert_held(&uuid_mutex);
1250 1251 1252 1253 1254 1255 1256
	/*
	 * The device_list_mutex cannot be taken here in case opening the
	 * underlying device takes further locks like bd_mutex.
	 *
	 * We also don't need the lock here as this is called during mount and
	 * exclusion is provided by uuid_mutex
	 */
1257

Y
Yan Zheng 已提交
1258
	if (fs_devices->opened) {
Y
Yan Zheng 已提交
1259 1260
		fs_devices->opened++;
		ret = 0;
Y
Yan Zheng 已提交
1261
	} else {
A
Anand Jain 已提交
1262
		list_sort(NULL, &fs_devices->devices, devid_cmp);
1263
		ret = open_fs_devices(fs_devices, flags, holder);
Y
Yan Zheng 已提交
1264
	}
1265

1266 1267 1268
	return ret;
}

1269
void btrfs_release_disk_super(struct btrfs_super_block *super)
1270
{
1271 1272
	struct page *page = virt_to_page(super);

1273 1274 1275
	put_page(page);
}

1276 1277
static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
						       u64 bytenr)
1278
{
1279 1280
	struct btrfs_super_block *disk_super;
	struct page *page;
1281 1282 1283 1284 1285
	void *p;
	pgoff_t index;

	/* make sure our super fits in the device */
	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1286
		return ERR_PTR(-EINVAL);
1287 1288

	/* make sure our super fits in the page */
1289 1290
	if (sizeof(*disk_super) > PAGE_SIZE)
		return ERR_PTR(-EINVAL);
1291 1292 1293

	/* make sure our super doesn't straddle pages on disk */
	index = bytenr >> PAGE_SHIFT;
1294 1295
	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
		return ERR_PTR(-EINVAL);
1296 1297

	/* pull in the page with our super */
1298
	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1299

1300 1301
	if (IS_ERR(page))
		return ERR_CAST(page);
1302

1303
	p = page_address(page);
1304 1305

	/* align our pointer to the offset of the super block */
1306
	disk_super = p + offset_in_page(bytenr);
1307

1308 1309
	if (btrfs_super_bytenr(disk_super) != bytenr ||
	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1310
		btrfs_release_disk_super(p);
1311
		return ERR_PTR(-EINVAL);
1312 1313
	}

1314 1315
	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1316

1317
	return disk_super;
1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
int btrfs_forget_devices(const char *path)
{
	int ret;

	mutex_lock(&uuid_mutex);
	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
	mutex_unlock(&uuid_mutex);

	return ret;
}

1331 1332 1333 1334 1335
/*
 * Look for a btrfs signature on a device. This may be called out of the mount path
 * and we are not allowed to call set_blocksize during the scan. The superblock
 * is read via pagecache
 */
1336 1337
struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
					   void *holder)
1338 1339
{
	struct btrfs_super_block *disk_super;
1340
	bool new_device_added = false;
1341
	struct btrfs_device *device = NULL;
1342
	struct block_device *bdev;
1343
	u64 bytenr;
1344

1345 1346
	lockdep_assert_held(&uuid_mutex);

1347 1348 1349 1350 1351 1352 1353
	/*
	 * we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	bytenr = btrfs_sb_offset(0);
1354
	flags |= FMODE_EXCL;
1355 1356

	bdev = blkdev_get_by_path(path, flags, holder);
1357
	if (IS_ERR(bdev))
1358
		return ERR_CAST(bdev);
1359

1360 1361 1362
	disk_super = btrfs_read_disk_super(bdev, bytenr);
	if (IS_ERR(disk_super)) {
		device = ERR_CAST(disk_super);
1363
		goto error_bdev_put;
1364
	}
1365

1366
	device = device_list_add(path, disk_super, &new_device_added);
1367
	if (!IS_ERR(device)) {
1368 1369 1370
		if (new_device_added)
			btrfs_free_stale_devices(path, device);
	}
1371

1372
	btrfs_release_disk_super(disk_super);
1373 1374

error_bdev_put:
1375
	blkdev_put(bdev, flags);
1376

1377
	return device;
1378
}
1379

1380 1381 1382 1383 1384 1385
/*
 * Try to find a chunk that intersects [start, start + len] range and when one
 * such is found, record the end of it in *start
 */
static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
				    u64 len)
1386
{
1387
	u64 physical_start, physical_end;
1388

1389
	lockdep_assert_held(&device->fs_info->chunk_mutex);
1390

1391 1392 1393
	if (!find_first_extent_bit(&device->alloc_state, *start,
				   &physical_start, &physical_end,
				   CHUNK_ALLOCATED, NULL)) {
1394

1395 1396 1397 1398 1399
		if (in_range(physical_start, *start, len) ||
		    in_range(*start, physical_start,
			     physical_end - physical_start)) {
			*start = physical_end + 1;
			return true;
1400 1401
		}
	}
1402
	return false;
1403 1404
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
{
	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/*
		 * We don't want to overwrite the superblock on the drive nor
		 * any area used by the boot loader (grub for example), so we
		 * make sure to start at an offset of at least 1MB.
		 */
		return max_t(u64, start, SZ_1M);
	default:
		BUG();
	}
}

/**
 * dev_extent_hole_check - check if specified hole is suitable for allocation
 * @device:	the device which we have the hole
 * @hole_start: starting position of the hole
 * @hole_size:	the size of the hole
 * @num_bytes:	the size of the free space that we need
 *
 * This function may modify @hole_start and @hole_end to reflect the suitable
 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
 */
static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
				  u64 *hole_size, u64 num_bytes)
{
	bool changed = false;
	u64 hole_end = *hole_start + *hole_size;

	/*
	 * Check before we set max_hole_start, otherwise we could end up
	 * sending back this offset anyway.
	 */
	if (contains_pending_extent(device, hole_start, *hole_size)) {
		if (hole_end >= *hole_start)
			*hole_size = hole_end - *hole_start;
		else
			*hole_size = 0;
		changed = true;
	}

	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/* No extra check */
		break;
	default:
		BUG();
	}

	return changed;
}
1458

1459
/*
1460 1461 1462 1463 1464 1465 1466
 * find_free_dev_extent_start - find free space in the specified device
 * @device:	  the device which we search the free space in
 * @num_bytes:	  the size of the free space that we need
 * @search_start: the position from which to begin the search
 * @start:	  store the start of the free space.
 * @len:	  the size of the free space. that we find, or the size
 *		  of the max free space if we don't find suitable free space
1467
 *
1468 1469 1470
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
1471 1472 1473 1474 1475 1476 1477 1478
 *
 * @start is used to store the start of the free space if we find. But if we
 * don't find suitable free space, it will be used to store the start position
 * of the max free space.
 *
 * @len is used to store the size of the free space that we find.
 * But if we don't find suitable free space, it is used to store the size of
 * the max free space.
1479 1480 1481 1482 1483 1484
 *
 * NOTE: This function will search *commit* root of device tree, and does extra
 * check to ensure dev extents are not double allocated.
 * This makes the function safe to allocate dev extents but may not report
 * correct usable device space, as device extent freed in current transaction
 * is not reported as avaiable.
1485
 */
1486 1487 1488
static int find_free_dev_extent_start(struct btrfs_device *device,
				u64 num_bytes, u64 search_start, u64 *start,
				u64 *len)
1489
{
1490 1491
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1492
	struct btrfs_key key;
1493
	struct btrfs_dev_extent *dev_extent;
Y
Yan Zheng 已提交
1494
	struct btrfs_path *path;
1495 1496 1497 1498
	u64 hole_size;
	u64 max_hole_start;
	u64 max_hole_size;
	u64 extent_end;
1499 1500
	u64 search_end = device->total_bytes;
	int ret;
1501
	int slot;
1502
	struct extent_buffer *l;
1503

1504
	search_start = dev_extent_search_start(device, search_start);
1505

1506 1507 1508
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1509

1510 1511 1512
	max_hole_start = search_start;
	max_hole_size = 0;

1513
again:
1514 1515
	if (search_start >= search_end ||
		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1516
		ret = -ENOSPC;
1517
		goto out;
1518 1519
	}

1520
	path->reada = READA_FORWARD;
1521 1522
	path->search_commit_root = 1;
	path->skip_locking = 1;
1523

1524 1525 1526
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
1527

1528
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1529
	if (ret < 0)
1530
		goto out;
1531 1532 1533
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid, key.type);
		if (ret < 0)
1534
			goto out;
1535
	}
1536

1537 1538 1539 1540 1541 1542 1543 1544
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
1545 1546 1547
				goto out;

			break;
1548 1549 1550 1551 1552 1553 1554
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
1555
			break;
1556

1557
		if (key.type != BTRFS_DEV_EXTENT_KEY)
1558
			goto next;
1559

1560 1561
		if (key.offset > search_start) {
			hole_size = key.offset - search_start;
1562 1563
			dev_extent_hole_check(device, &search_start, &hole_size,
					      num_bytes);
1564

1565 1566 1567 1568
			if (hole_size > max_hole_size) {
				max_hole_start = search_start;
				max_hole_size = hole_size;
			}
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
			/*
			 * If this free space is greater than which we need,
			 * it must be the max free space that we have found
			 * until now, so max_hole_start must point to the start
			 * of this free space and the length of this free space
			 * is stored in max_hole_size. Thus, we return
			 * max_hole_start and max_hole_size and go back to the
			 * caller.
			 */
			if (hole_size >= num_bytes) {
				ret = 0;
				goto out;
1582 1583 1584 1585
			}
		}

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1586 1587 1588 1589
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (extent_end > search_start)
			search_start = extent_end;
1590 1591 1592 1593 1594
next:
		path->slots[0]++;
		cond_resched();
	}

1595 1596 1597 1598 1599
	/*
	 * At this point, search_start should be the end of
	 * allocated dev extents, and when shrinking the device,
	 * search_end may be smaller than search_start.
	 */
1600
	if (search_end > search_start) {
1601
		hole_size = search_end - search_start;
1602 1603
		if (dev_extent_hole_check(device, &search_start, &hole_size,
					  num_bytes)) {
1604 1605 1606
			btrfs_release_path(path);
			goto again;
		}
1607

1608 1609 1610 1611
		if (hole_size > max_hole_size) {
			max_hole_start = search_start;
			max_hole_size = hole_size;
		}
1612 1613
	}

1614
	/* See above. */
1615
	if (max_hole_size < num_bytes)
1616 1617 1618 1619 1620
		ret = -ENOSPC;
	else
		ret = 0;

out:
Y
Yan Zheng 已提交
1621
	btrfs_free_path(path);
1622
	*start = max_hole_start;
1623
	if (len)
1624
		*len = max_hole_size;
1625 1626 1627
	return ret;
}

1628
int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1629 1630 1631
			 u64 *start, u64 *len)
{
	/* FIXME use last free of some kind */
1632
	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1633 1634
}

1635
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1636
			  struct btrfs_device *device,
M
Miao Xie 已提交
1637
			  u64 start, u64 *dev_extent_len)
1638
{
1639 1640
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1641 1642 1643
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
1644 1645 1646
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
1647 1648 1649 1650 1651 1652 1653 1654

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;
M
Miao Xie 已提交
1655
again:
1656
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1657 1658 1659
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
1660 1661
		if (ret)
			goto out;
1662 1663 1664 1665 1666 1667
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
M
Miao Xie 已提交
1668 1669 1670
		key = found_key;
		btrfs_release_path(path);
		goto again;
1671 1672 1673 1674
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
1675
	} else {
1676
		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1677
		goto out;
1678
	}
1679

M
Miao Xie 已提交
1680 1681
	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);

1682
	ret = btrfs_del_item(trans, root, path);
1683
	if (ret) {
1684 1685
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to remove dev extent item");
Z
Zhao Lei 已提交
1686
	} else {
1687
		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1688
	}
1689
out:
1690 1691 1692 1693
	btrfs_free_path(path);
	return ret;
}

1694 1695 1696
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
				  struct btrfs_device *device,
				  u64 chunk_offset, u64 start, u64 num_bytes)
1697 1698 1699
{
	int ret;
	struct btrfs_path *path;
1700 1701
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1702 1703 1704 1705
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

1706
	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1707
	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1708 1709 1710 1711 1712
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
Y
Yan Zheng 已提交
1713
	key.offset = start;
1714 1715 1716
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
1717 1718
	if (ret)
		goto out;
1719 1720 1721 1722

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
1723 1724
	btrfs_set_dev_extent_chunk_tree(leaf, extent,
					BTRFS_CHUNK_TREE_OBJECTID);
1725 1726
	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1727 1728
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

1729 1730
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
1731
out:
1732 1733 1734 1735
	btrfs_free_path(path);
	return ret;
}

1736
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1737
{
1738 1739 1740 1741
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct rb_node *n;
	u64 ret = 0;
1742

1743
	em_tree = &fs_info->mapping_tree;
1744
	read_lock(&em_tree->lock);
L
Liu Bo 已提交
1745
	n = rb_last(&em_tree->map.rb_root);
1746 1747 1748
	if (n) {
		em = rb_entry(n, struct extent_map, rb_node);
		ret = em->start + em->len;
1749
	}
1750 1751
	read_unlock(&em_tree->lock);

1752 1753 1754
	return ret;
}

1755 1756
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
				    u64 *devid_ret)
1757 1758 1759 1760
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
Y
Yan Zheng 已提交
1761 1762 1763 1764 1765
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1766 1767 1768 1769 1770

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

1771
	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1772 1773 1774
	if (ret < 0)
		goto error;

1775 1776 1777 1778 1779 1780
	if (ret == 0) {
		/* Corruption */
		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
		ret = -EUCLEAN;
		goto error;
	}
1781

1782 1783
	ret = btrfs_previous_item(fs_info->chunk_root, path,
				  BTRFS_DEV_ITEMS_OBJECTID,
1784 1785
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
1786
		*devid_ret = 1;
1787 1788 1789
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
1790
		*devid_ret = found_key.offset + 1;
1791 1792 1793
	}
	ret = 0;
error:
Y
Yan Zheng 已提交
1794
	btrfs_free_path(path);
1795 1796 1797 1798 1799 1800 1801
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
1802
static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1803
			    struct btrfs_device *device)
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
Y
Yan Zheng 已提交
1818
	key.offset = device->devid;
1819

1820 1821
	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
				      &key, sizeof(*dev_item));
1822 1823 1824 1825 1826 1827 1828
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
Y
Yan Zheng 已提交
1829
	btrfs_set_device_generation(leaf, dev_item, 0);
1830 1831 1832 1833
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1834 1835 1836 1837
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
1838 1839 1840
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1841
	btrfs_set_device_start_offset(leaf, dev_item, 0);
1842

1843
	ptr = btrfs_device_uuid(dev_item);
1844
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1845
	ptr = btrfs_device_fsid(dev_item);
1846 1847
	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
			    ptr, BTRFS_FSID_SIZE);
1848 1849
	btrfs_mark_buffer_dirty(leaf);

Y
Yan Zheng 已提交
1850
	ret = 0;
1851 1852 1853 1854
out:
	btrfs_free_path(path);
	return ret;
}
1855

1856 1857 1858 1859
/*
 * Function to update ctime/mtime for a given device path.
 * Mainly used for ctime/mtime based probe like libblkid.
 */
1860
static void update_dev_time(const char *path_name)
1861 1862 1863 1864
{
	struct file *filp;

	filp = filp_open(path_name, O_RDWR, 0);
1865
	if (IS_ERR(filp))
1866 1867 1868 1869 1870
		return;
	file_update_time(filp);
	filp_close(filp, NULL);
}

1871
static int btrfs_rm_dev_item(struct btrfs_device *device)
1872
{
1873
	struct btrfs_root *root = device->fs_info->chunk_root;
1874 1875 1876 1877 1878 1879 1880 1881 1882
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1883
	trans = btrfs_start_transaction(root, 0);
1884 1885 1886 1887
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}
1888 1889 1890 1891 1892
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1893 1894 1895 1896 1897
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
1898 1899 1900 1901
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
1902 1903 1904 1905 1906
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	}

1907 1908
out:
	btrfs_free_path(path);
1909 1910
	if (!ret)
		ret = btrfs_commit_transaction(trans);
1911 1912 1913
	return ret;
}

1914 1915 1916 1917 1918 1919 1920
/*
 * Verify that @num_devices satisfies the RAID profile constraints in the whole
 * filesystem. It's up to the caller to adjust that number regarding eg. device
 * replace.
 */
static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
		u64 num_devices)
1921 1922
{
	u64 all_avail;
1923
	unsigned seq;
1924
	int i;
1925

1926
	do {
1927
		seq = read_seqbegin(&fs_info->profiles_lock);
1928

1929 1930 1931 1932
		all_avail = fs_info->avail_data_alloc_bits |
			    fs_info->avail_system_alloc_bits |
			    fs_info->avail_metadata_alloc_bits;
	} while (read_seqretry(&fs_info->profiles_lock, seq));
1933

1934
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1935
		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1936
			continue;
1937

1938
		if (num_devices < btrfs_raid_array[i].devs_min) {
1939
			int ret = btrfs_raid_array[i].mindev_error;
1940

1941 1942 1943
			if (ret)
				return ret;
		}
D
David Woodhouse 已提交
1944 1945
	}

1946
	return 0;
1947 1948
}

1949 1950
static struct btrfs_device * btrfs_find_next_active_device(
		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1951
{
Y
Yan Zheng 已提交
1952
	struct btrfs_device *next_device;
1953 1954 1955

	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
		if (next_device != device &&
1956 1957
		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
		    && next_device->bdev)
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
			return next_device;
	}

	return NULL;
}

/*
 * Helper function to check if the given device is part of s_bdev / latest_bdev
 * and replace it with the provided or the next active device, in the context
 * where this function called, there should be always be another device (or
 * this_dev) which is active.
 */
1970
void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1971
					    struct btrfs_device *next_device)
1972
{
1973
	struct btrfs_fs_info *fs_info = device->fs_info;
1974

1975
	if (!next_device)
1976
		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1977
							    device);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	ASSERT(next_device);

	if (fs_info->sb->s_bdev &&
			(fs_info->sb->s_bdev == device->bdev))
		fs_info->sb->s_bdev = next_device->bdev;

	if (fs_info->fs_devices->latest_bdev == device->bdev)
		fs_info->fs_devices->latest_bdev = next_device->bdev;
}

1988 1989 1990 1991 1992 1993 1994 1995
/*
 * Return btrfs_fs_devices::num_devices excluding the device that's being
 * currently replaced.
 */
static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
{
	u64 num_devices = fs_info->fs_devices->num_devices;

1996
	down_read(&fs_info->dev_replace.rwsem);
1997 1998 1999 2000
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
		ASSERT(num_devices > 1);
		num_devices--;
	}
2001
	up_read(&fs_info->dev_replace.rwsem);
2002 2003 2004 2005

	return num_devices;
}

2006 2007 2008
void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
			       struct block_device *bdev,
			       const char *device_path)
2009 2010 2011 2012 2013 2014 2015 2016
{
	struct btrfs_super_block *disk_super;
	int copy_num;

	if (!bdev)
		return;

	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2017 2018
		struct page *page;
		int ret;
2019

2020 2021 2022
		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
		if (IS_ERR(disk_super))
			continue;
2023 2024

		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

		page = virt_to_page(disk_super);
		set_page_dirty(page);
		lock_page(page);
		/* write_on_page() unlocks the page */
		ret = write_one_page(page);
		if (ret)
			btrfs_warn(fs_info,
				"error clearing superblock number %d (%d)",
				copy_num, ret);
		btrfs_release_disk_super(disk_super);

2037 2038 2039 2040 2041 2042 2043 2044 2045
	}

	/* Notify udev that device has changed */
	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);

	/* Update ctime/mtime for device path for libblkid */
	update_dev_time(device_path);
}

2046
int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2047
		    u64 devid)
2048 2049
{
	struct btrfs_device *device;
2050
	struct btrfs_fs_devices *cur_devices;
2051
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2052
	u64 num_devices;
2053 2054 2055 2056
	int ret = 0;

	mutex_lock(&uuid_mutex);

2057
	num_devices = btrfs_num_devices(fs_info);
2058

2059
	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2060
	if (ret)
2061 2062
		goto out;

2063 2064 2065 2066 2067 2068 2069 2070
	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);

	if (IS_ERR(device)) {
		if (PTR_ERR(device) == -ENOENT &&
		    strcmp(device_path, "missing") == 0)
			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
		else
			ret = PTR_ERR(device);
D
David Woodhouse 已提交
2071
		goto out;
2072
	}
2073

2074 2075 2076 2077 2078 2079 2080 2081
	if (btrfs_pinned_by_swapfile(fs_info, device)) {
		btrfs_warn_in_rcu(fs_info,
		  "cannot remove device %s (devid %llu) due to active swapfile",
				  rcu_str_deref(device->name), device->devid);
		ret = -ETXTBSY;
		goto out;
	}

2082
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2083
		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2084
		goto out;
2085 2086
	}

2087 2088
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    fs_info->fs_devices->rw_devices == 1) {
2089
		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2090
		goto out;
Y
Yan Zheng 已提交
2091 2092
	}

2093
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2094
		mutex_lock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2095
		list_del_init(&device->dev_alloc_list);
2096
		device->fs_devices->rw_devices--;
2097
		mutex_unlock(&fs_info->chunk_mutex);
2098
	}
2099

2100
	mutex_unlock(&uuid_mutex);
2101
	ret = btrfs_shrink_device(device, 0);
2102
	mutex_lock(&uuid_mutex);
2103
	if (ret)
2104
		goto error_undo;
2105

2106 2107 2108 2109 2110
	/*
	 * TODO: the superblock still includes this device in its num_devices
	 * counter although write_all_supers() is not locked out. This
	 * could give a filesystem state which requires a degraded mount.
	 */
2111
	ret = btrfs_rm_dev_item(device);
2112
	if (ret)
2113
		goto error_undo;
2114

2115
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2116
	btrfs_scrub_cancel_dev(device);
2117 2118 2119 2120

	/*
	 * the device list mutex makes sure that we don't change
	 * the device list while someone else is writing out all
2121 2122 2123 2124 2125
	 * the device supers. Whoever is writing all supers, should
	 * lock the device list mutex before getting the number of
	 * devices in the super block (super_copy). Conversely,
	 * whoever updates the number of devices in the super block
	 * (super_copy) should hold the device list mutex.
2126
	 */
2127

2128 2129 2130 2131 2132
	/*
	 * In normal cases the cur_devices == fs_devices. But in case
	 * of deleting a seed device, the cur_devices should point to
	 * its own fs_devices listed under the fs_devices->seed.
	 */
2133
	cur_devices = device->fs_devices;
2134
	mutex_lock(&fs_devices->device_list_mutex);
2135
	list_del_rcu(&device->dev_list);
2136

2137 2138
	cur_devices->num_devices--;
	cur_devices->total_devices--;
2139 2140 2141
	/* Update total_devices of the parent fs_devices if it's seed */
	if (cur_devices != fs_devices)
		fs_devices->total_devices--;
Y
Yan Zheng 已提交
2142

2143
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2144
		cur_devices->missing_devices--;
2145

2146
	btrfs_assign_next_active_device(device, NULL);
Y
Yan Zheng 已提交
2147

2148
	if (device->bdev) {
2149
		cur_devices->open_devices--;
2150
		/* remove sysfs entry */
2151
		btrfs_sysfs_remove_device(device);
2152
	}
2153

2154 2155
	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2156
	mutex_unlock(&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
2157

2158 2159 2160 2161 2162
	/*
	 * at this point, the device is zero sized and detached from
	 * the devices list.  All that's left is to zero out the old
	 * supers and free the device.
	 */
2163
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2164 2165
		btrfs_scratch_superblocks(fs_info, device->bdev,
					  device->name->str);
2166 2167

	btrfs_close_bdev(device);
2168 2169
	synchronize_rcu();
	btrfs_free_device(device);
2170

2171
	if (cur_devices->open_devices == 0) {
2172
		list_del_init(&cur_devices->seed_list);
2173
		close_fs_devices(cur_devices);
2174
		free_fs_devices(cur_devices);
Y
Yan Zheng 已提交
2175 2176
	}

2177 2178 2179
out:
	mutex_unlock(&uuid_mutex);
	return ret;
2180

2181
error_undo:
2182
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2183
		mutex_lock(&fs_info->chunk_mutex);
2184
		list_add(&device->dev_alloc_list,
2185
			 &fs_devices->alloc_list);
2186
		device->fs_devices->rw_devices++;
2187
		mutex_unlock(&fs_info->chunk_mutex);
2188
	}
2189
	goto out;
2190 2191
}

2192
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2193
{
2194 2195
	struct btrfs_fs_devices *fs_devices;

2196
	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2197

2198 2199 2200 2201 2202 2203 2204
	/*
	 * in case of fs with no seed, srcdev->fs_devices will point
	 * to fs_devices of fs_info. However when the dev being replaced is
	 * a seed dev it will point to the seed's local fs_devices. In short
	 * srcdev will have its correct fs_devices in both the cases.
	 */
	fs_devices = srcdev->fs_devices;
2205

2206
	list_del_rcu(&srcdev->dev_list);
2207
	list_del(&srcdev->dev_alloc_list);
2208
	fs_devices->num_devices--;
2209
	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2210
		fs_devices->missing_devices--;
2211

2212
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2213
		fs_devices->rw_devices--;
2214

2215
	if (srcdev->bdev)
2216
		fs_devices->open_devices--;
2217 2218
}

2219
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2220 2221
{
	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2222

2223 2224
	mutex_lock(&uuid_mutex);

2225
	btrfs_close_bdev(srcdev);
2226 2227
	synchronize_rcu();
	btrfs_free_device(srcdev);
2228 2229 2230

	/* if this is no devs we rather delete the fs_devices */
	if (!fs_devices->num_devices) {
2231 2232 2233 2234 2235 2236 2237 2238
		/*
		 * On a mounted FS, num_devices can't be zero unless it's a
		 * seed. In case of a seed device being replaced, the replace
		 * target added to the sprout FS, so there will be no more
		 * device left under the seed FS.
		 */
		ASSERT(fs_devices->seeding);

2239
		list_del_init(&fs_devices->seed_list);
2240
		close_fs_devices(fs_devices);
2241
		free_fs_devices(fs_devices);
2242
	}
2243
	mutex_unlock(&uuid_mutex);
2244 2245
}

2246
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2247
{
2248
	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2249 2250

	mutex_lock(&fs_devices->device_list_mutex);
2251

2252
	btrfs_sysfs_remove_device(tgtdev);
2253

2254
	if (tgtdev->bdev)
2255
		fs_devices->open_devices--;
2256

2257
	fs_devices->num_devices--;
2258

2259
	btrfs_assign_next_active_device(tgtdev, NULL);
2260 2261 2262

	list_del_rcu(&tgtdev->dev_list);

2263
	mutex_unlock(&fs_devices->device_list_mutex);
2264 2265 2266 2267 2268 2269 2270 2271

	/*
	 * The update_dev_time() with in btrfs_scratch_superblocks()
	 * may lead to a call to btrfs_show_devname() which will try
	 * to hold device_list_mutex. And here this device
	 * is already out of device list, so we don't have to hold
	 * the device_list_mutex lock.
	 */
2272 2273
	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
				  tgtdev->name->str);
2274 2275

	btrfs_close_bdev(tgtdev);
2276 2277
	synchronize_rcu();
	btrfs_free_device(tgtdev);
2278 2279
}

2280 2281
static struct btrfs_device *btrfs_find_device_by_path(
		struct btrfs_fs_info *fs_info, const char *device_path)
2282 2283 2284 2285 2286 2287
{
	int ret = 0;
	struct btrfs_super_block *disk_super;
	u64 devid;
	u8 *dev_uuid;
	struct block_device *bdev;
2288
	struct btrfs_device *device;
2289 2290

	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2291
				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2292
	if (ret)
2293
		return ERR_PTR(ret);
2294

2295 2296
	devid = btrfs_stack_device_id(&disk_super->dev_item);
	dev_uuid = disk_super->dev_item.uuid;
2297
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2298
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2299
					   disk_super->metadata_uuid, true);
2300
	else
2301
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2302
					   disk_super->fsid, true);
2303

2304
	btrfs_release_disk_super(disk_super);
2305 2306
	if (!device)
		device = ERR_PTR(-ENOENT);
2307
	blkdev_put(bdev, FMODE_READ);
2308
	return device;
2309 2310
}

2311 2312 2313
/*
 * Lookup a device given by device id, or the path if the id is 0.
 */
2314
struct btrfs_device *btrfs_find_device_by_devspec(
2315 2316
		struct btrfs_fs_info *fs_info, u64 devid,
		const char *device_path)
2317
{
2318
	struct btrfs_device *device;
2319

2320
	if (devid) {
2321
		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2322
					   NULL, true);
2323 2324
		if (!device)
			return ERR_PTR(-ENOENT);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		return device;
	}

	if (!device_path || !device_path[0])
		return ERR_PTR(-EINVAL);

	if (strcmp(device_path, "missing") == 0) {
		/* Find first missing device */
		list_for_each_entry(device, &fs_info->fs_devices->devices,
				    dev_list) {
			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				     &device->dev_state) && !device->bdev)
				return device;
2338
		}
2339
		return ERR_PTR(-ENOENT);
2340
	}
2341 2342

	return btrfs_find_device_by_path(fs_info, device_path);
2343 2344
}

Y
Yan Zheng 已提交
2345 2346 2347
/*
 * does all the dirty work required for changing file system's UUID.
 */
2348
static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
2349
{
2350
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2351
	struct btrfs_fs_devices *old_devices;
Y
Yan Zheng 已提交
2352
	struct btrfs_fs_devices *seed_devices;
2353
	struct btrfs_super_block *disk_super = fs_info->super_copy;
Y
Yan Zheng 已提交
2354 2355 2356
	struct btrfs_device *device;
	u64 super_flags;

2357
	lockdep_assert_held(&uuid_mutex);
Y
Yan Zheng 已提交
2358
	if (!fs_devices->seeding)
Y
Yan Zheng 已提交
2359 2360
		return -EINVAL;

2361 2362 2363 2364
	/*
	 * Private copy of the seed devices, anchored at
	 * fs_info->fs_devices->seed_list
	 */
2365
	seed_devices = alloc_fs_devices(NULL, NULL);
2366 2367
	if (IS_ERR(seed_devices))
		return PTR_ERR(seed_devices);
Y
Yan Zheng 已提交
2368

2369 2370 2371 2372 2373 2374
	/*
	 * It's necessary to retain a copy of the original seed fs_devices in
	 * fs_uuids so that filesystems which have been seeded can successfully
	 * reference the seed device from open_seed_devices. This also supports
	 * multiple fs seed.
	 */
Y
Yan Zheng 已提交
2375 2376 2377 2378
	old_devices = clone_fs_devices(fs_devices);
	if (IS_ERR(old_devices)) {
		kfree(seed_devices);
		return PTR_ERR(old_devices);
Y
Yan Zheng 已提交
2379
	}
Y
Yan Zheng 已提交
2380

2381
	list_add(&old_devices->fs_list, &fs_uuids);
Y
Yan Zheng 已提交
2382

Y
Yan Zheng 已提交
2383 2384 2385 2386
	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
	seed_devices->opened = 1;
	INIT_LIST_HEAD(&seed_devices->devices);
	INIT_LIST_HEAD(&seed_devices->alloc_list);
2387
	mutex_init(&seed_devices->device_list_mutex);
2388

2389
	mutex_lock(&fs_devices->device_list_mutex);
2390 2391
	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
			      synchronize_rcu);
M
Miao Xie 已提交
2392 2393
	list_for_each_entry(device, &seed_devices->devices, dev_list)
		device->fs_devices = seed_devices;
2394

2395
	fs_devices->seeding = false;
Y
Yan Zheng 已提交
2396 2397
	fs_devices->num_devices = 0;
	fs_devices->open_devices = 0;
2398
	fs_devices->missing_devices = 0;
2399
	fs_devices->rotating = false;
2400
	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
Y
Yan Zheng 已提交
2401 2402

	generate_random_uuid(fs_devices->fsid);
2403
	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
2404
	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2405
	mutex_unlock(&fs_devices->device_list_mutex);
2406

Y
Yan Zheng 已提交
2407 2408 2409 2410 2411 2412 2413 2414
	super_flags = btrfs_super_flags(disk_super) &
		      ~BTRFS_SUPER_FLAG_SEEDING;
	btrfs_set_super_flags(disk_super, super_flags);

	return 0;
}

/*
2415
 * Store the expected generation for seed devices in device items.
Y
Yan Zheng 已提交
2416
 */
2417
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
2418
{
2419
	struct btrfs_fs_info *fs_info = trans->fs_info;
2420
	struct btrfs_root *root = fs_info->chunk_root;
Y
Yan Zheng 已提交
2421 2422 2423 2424 2425
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_dev_item *dev_item;
	struct btrfs_device *device;
	struct btrfs_key key;
2426
	u8 fs_uuid[BTRFS_FSID_SIZE];
Y
Yan Zheng 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	u8 dev_uuid[BTRFS_UUID_SIZE];
	u64 devid;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = BTRFS_DEV_ITEM_KEY;

	while (1) {
		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
		if (ret < 0)
			goto error;

		leaf = path->nodes[0];
next_slot:
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret > 0)
				break;
			if (ret < 0)
				goto error;
			leaf = path->nodes[0];
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2454
			btrfs_release_path(path);
Y
Yan Zheng 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
		    key.type != BTRFS_DEV_ITEM_KEY)
			break;

		dev_item = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_dev_item);
		devid = btrfs_device_id(leaf, dev_item);
2466
		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
Y
Yan Zheng 已提交
2467
				   BTRFS_UUID_SIZE);
2468
		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2469
				   BTRFS_FSID_SIZE);
2470
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2471
					   fs_uuid, true);
2472
		BUG_ON(!device); /* Logic error */
Y
Yan Zheng 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

		if (device->fs_devices->seeding) {
			btrfs_set_device_generation(leaf, dev_item,
						    device->generation);
			btrfs_mark_buffer_dirty(leaf);
		}

		path->slots[0]++;
		goto next_slot;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

2489
int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2490
{
2491
	struct btrfs_root *root = fs_info->dev_root;
2492
	struct request_queue *q;
2493 2494 2495
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
2496
	struct super_block *sb = fs_info->sb;
2497
	struct rcu_string *name;
2498
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2499 2500
	u64 orig_super_total_bytes;
	u64 orig_super_num_devices;
Y
Yan Zheng 已提交
2501
	int seeding_dev = 0;
2502
	int ret = 0;
2503
	bool locked = false;
2504

2505
	if (sb_rdonly(sb) && !fs_devices->seeding)
2506
		return -EROFS;
2507

2508
	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2509
				  fs_info->bdev_holder);
2510 2511
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);
2512

2513
	if (fs_devices->seeding) {
Y
Yan Zheng 已提交
2514 2515 2516
		seeding_dev = 1;
		down_write(&sb->s_umount);
		mutex_lock(&uuid_mutex);
2517
		locked = true;
Y
Yan Zheng 已提交
2518 2519
	}

2520
	sync_blockdev(bdev);
2521

2522 2523
	rcu_read_lock();
	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2524 2525
		if (device->bdev == bdev) {
			ret = -EEXIST;
2526
			rcu_read_unlock();
Y
Yan Zheng 已提交
2527
			goto error;
2528 2529
		}
	}
2530
	rcu_read_unlock();
2531

2532
	device = btrfs_alloc_device(fs_info, NULL, NULL);
2533
	if (IS_ERR(device)) {
2534
		/* we can safely leave the fs_devices entry around */
2535
		ret = PTR_ERR(device);
Y
Yan Zheng 已提交
2536
		goto error;
2537 2538
	}

2539
	name = rcu_string_strdup(device_path, GFP_KERNEL);
2540
	if (!name) {
Y
Yan Zheng 已提交
2541
		ret = -ENOMEM;
2542
		goto error_free_device;
2543
	}
2544
	rcu_assign_pointer(device->name, name);
Y
Yan Zheng 已提交
2545

2546
	trans = btrfs_start_transaction(root, 0);
2547 2548
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
2549
		goto error_free_device;
2550 2551
	}

2552
	q = bdev_get_queue(bdev);
2553
	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
Y
Yan Zheng 已提交
2554
	device->generation = trans->transid;
2555 2556 2557
	device->io_width = fs_info->sectorsize;
	device->io_align = fs_info->sectorsize;
	device->sector_size = fs_info->sectorsize;
2558 2559
	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
					 fs_info->sectorsize);
2560
	device->disk_total_bytes = device->total_bytes;
2561
	device->commit_total_bytes = device->total_bytes;
2562
	device->fs_info = fs_info;
2563
	device->bdev = bdev;
2564
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2565
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2566
	device->mode = FMODE_EXCL;
2567
	device->dev_stats_valid = 1;
2568
	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2569

Y
Yan Zheng 已提交
2570
	if (seeding_dev) {
2571
		sb->s_flags &= ~SB_RDONLY;
2572
		ret = btrfs_prepare_sprout(fs_info);
2573 2574 2575 2576
		if (ret) {
			btrfs_abort_transaction(trans, ret);
			goto error_trans;
		}
Y
Yan Zheng 已提交
2577
	}
2578

2579
	device->fs_devices = fs_devices;
2580

2581
	mutex_lock(&fs_devices->device_list_mutex);
2582
	mutex_lock(&fs_info->chunk_mutex);
2583 2584 2585 2586 2587 2588 2589
	list_add_rcu(&device->dev_list, &fs_devices->devices);
	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
	fs_devices->num_devices++;
	fs_devices->open_devices++;
	fs_devices->rw_devices++;
	fs_devices->total_devices++;
	fs_devices->total_rw_bytes += device->total_bytes;
2590

2591
	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2592

2593
	if (!blk_queue_nonrot(q))
2594
		fs_devices->rotating = true;
C
Chris Mason 已提交
2595

2596
	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2597
	btrfs_set_super_total_bytes(fs_info->super_copy,
2598 2599
		round_down(orig_super_total_bytes + device->total_bytes,
			   fs_info->sectorsize));
2600

2601 2602 2603
	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices + 1);
2604

M
Miao Xie 已提交
2605 2606 2607 2608
	/*
	 * we've got more storage, clear any full flags on the space
	 * infos
	 */
2609
	btrfs_clear_space_info_full(fs_info);
M
Miao Xie 已提交
2610

2611
	mutex_unlock(&fs_info->chunk_mutex);
2612 2613

	/* Add sysfs device entry */
2614
	btrfs_sysfs_add_device(device);
2615

2616
	mutex_unlock(&fs_devices->device_list_mutex);
2617

Y
Yan Zheng 已提交
2618
	if (seeding_dev) {
2619
		mutex_lock(&fs_info->chunk_mutex);
2620
		ret = init_first_rw_device(trans);
2621
		mutex_unlock(&fs_info->chunk_mutex);
2622
		if (ret) {
2623
			btrfs_abort_transaction(trans, ret);
2624
			goto error_sysfs;
2625
		}
M
Miao Xie 已提交
2626 2627
	}

2628
	ret = btrfs_add_dev_item(trans, device);
M
Miao Xie 已提交
2629
	if (ret) {
2630
		btrfs_abort_transaction(trans, ret);
2631
		goto error_sysfs;
M
Miao Xie 已提交
2632 2633 2634
	}

	if (seeding_dev) {
2635
		ret = btrfs_finish_sprout(trans);
2636
		if (ret) {
2637
			btrfs_abort_transaction(trans, ret);
2638
			goto error_sysfs;
2639
		}
2640

2641 2642 2643 2644 2645
		/*
		 * fs_devices now represents the newly sprouted filesystem and
		 * its fsid has been changed by btrfs_prepare_sprout
		 */
		btrfs_sysfs_update_sprout_fsid(fs_devices);
Y
Yan Zheng 已提交
2646 2647
	}

2648
	ret = btrfs_commit_transaction(trans);
2649

Y
Yan Zheng 已提交
2650 2651 2652
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
2653
		locked = false;
2654

2655 2656 2657
		if (ret) /* transaction commit */
			return ret;

2658
		ret = btrfs_relocate_sys_chunks(fs_info);
2659
		if (ret < 0)
2660
			btrfs_handle_fs_error(fs_info, ret,
J
Jeff Mahoney 已提交
2661
				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2662 2663 2664 2665
		trans = btrfs_attach_transaction(root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) == -ENOENT)
				return 0;
2666 2667 2668
			ret = PTR_ERR(trans);
			trans = NULL;
			goto error_sysfs;
2669
		}
2670
		ret = btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
2671
	}
2672

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	/*
	 * Now that we have written a new super block to this device, check all
	 * other fs_devices list if device_path alienates any other scanned
	 * device.
	 * We can ignore the return value as it typically returns -EINVAL and
	 * only succeeds if the device was an alien.
	 */
	btrfs_forget_devices(device_path);

	/* Update ctime/mtime for blkid or udev */
2683
	update_dev_time(device_path);
2684

Y
Yan Zheng 已提交
2685
	return ret;
2686

2687
error_sysfs:
2688
	btrfs_sysfs_remove_device(device);
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	mutex_lock(&fs_info->chunk_mutex);
	list_del_rcu(&device->dev_list);
	list_del(&device->dev_alloc_list);
	fs_info->fs_devices->num_devices--;
	fs_info->fs_devices->open_devices--;
	fs_info->fs_devices->rw_devices--;
	fs_info->fs_devices->total_devices--;
	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
	btrfs_set_super_total_bytes(fs_info->super_copy,
				    orig_super_total_bytes);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices);
	mutex_unlock(&fs_info->chunk_mutex);
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2705
error_trans:
2706
	if (seeding_dev)
2707
		sb->s_flags |= SB_RDONLY;
2708 2709
	if (trans)
		btrfs_end_transaction(trans);
2710
error_free_device:
2711
	btrfs_free_device(device);
Y
Yan Zheng 已提交
2712
error:
2713
	blkdev_put(bdev, FMODE_EXCL);
2714
	if (locked) {
Y
Yan Zheng 已提交
2715 2716 2717
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
	}
2718
	return ret;
2719 2720
}

C
Chris Mason 已提交
2721 2722
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
					struct btrfs_device *device)
2723 2724 2725
{
	int ret;
	struct btrfs_path *path;
2726
	struct btrfs_root *root = device->fs_info->chunk_root;
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2756 2757 2758 2759
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
2760 2761 2762 2763 2764 2765 2766
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

M
Miao Xie 已提交
2767
int btrfs_grow_device(struct btrfs_trans_handle *trans,
2768 2769
		      struct btrfs_device *device, u64 new_size)
{
2770 2771
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_super_block *super_copy = fs_info->super_copy;
M
Miao Xie 已提交
2772 2773
	u64 old_total;
	u64 diff;
2774

2775
	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
Y
Yan Zheng 已提交
2776
		return -EACCES;
M
Miao Xie 已提交
2777

2778 2779
	new_size = round_down(new_size, fs_info->sectorsize);

2780
	mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2781
	old_total = btrfs_super_total_bytes(super_copy);
2782
	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
M
Miao Xie 已提交
2783

2784
	if (new_size <= device->total_bytes ||
2785
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2786
		mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2787
		return -EINVAL;
M
Miao Xie 已提交
2788
	}
Y
Yan Zheng 已提交
2789

2790 2791
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total + diff, fs_info->sectorsize));
Y
Yan Zheng 已提交
2792 2793
	device->fs_devices->total_rw_bytes += diff;

2794 2795
	btrfs_device_set_total_bytes(device, new_size);
	btrfs_device_set_disk_total_bytes(device, new_size);
2796
	btrfs_clear_space_info_full(device->fs_info);
2797 2798 2799
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
2800
	mutex_unlock(&fs_info->chunk_mutex);
2801

2802 2803 2804
	return btrfs_update_device(trans, device);
}

2805
static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2806
{
2807
	struct btrfs_fs_info *fs_info = trans->fs_info;
2808
	struct btrfs_root *root = fs_info->chunk_root;
2809 2810 2811 2812 2813 2814 2815 2816
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2817
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2818 2819 2820 2821
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2822 2823 2824
	if (ret < 0)
		goto out;
	else if (ret > 0) { /* Logic error or corruption */
2825 2826
		btrfs_handle_fs_error(fs_info, -ENOENT,
				      "Failed lookup while freeing chunk.");
2827 2828 2829
		ret = -ENOENT;
		goto out;
	}
2830 2831

	ret = btrfs_del_item(trans, root, path);
2832
	if (ret < 0)
2833 2834
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to delete chunk item.");
2835
out:
2836
	btrfs_free_path(path);
2837
	return ret;
2838 2839
}

2840
static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2841
{
2842
	struct btrfs_super_block *super_copy = fs_info->super_copy;
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

2853
	mutex_lock(&fs_info->chunk_mutex);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
2873
		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2874 2875 2876 2877 2878 2879 2880 2881 2882
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
2883
	mutex_unlock(&fs_info->chunk_mutex);
2884 2885 2886
	return ret;
}

2887 2888 2889 2890 2891 2892 2893 2894 2895
/*
 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
 * @logical: Logical block offset in bytes.
 * @length: Length of extent in bytes.
 *
 * Return: Chunk mapping or ERR_PTR.
 */
struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
				       u64 logical, u64 length)
2896 2897 2898 2899
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;

2900
	em_tree = &fs_info->mapping_tree;
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, length);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
			   logical, length);
		return ERR_PTR(-EINVAL);
	}

	if (em->start > logical || em->start + em->len < logical) {
		btrfs_crit(fs_info,
			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
			   logical, length, em->start, em->start + em->len);
		free_extent_map(em);
		return ERR_PTR(-EINVAL);
	}

	/* callers are responsible for dropping em's ref. */
	return em;
}

2923
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2924
{
2925
	struct btrfs_fs_info *fs_info = trans->fs_info;
2926 2927
	struct extent_map *em;
	struct map_lookup *map;
M
Miao Xie 已提交
2928
	u64 dev_extent_len = 0;
2929
	int i, ret = 0;
2930
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2931

2932
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2933
	if (IS_ERR(em)) {
2934 2935
		/*
		 * This is a logic error, but we don't want to just rely on the
2936
		 * user having built with ASSERT enabled, so if ASSERT doesn't
2937 2938 2939
		 * do anything we still error out.
		 */
		ASSERT(0);
2940
		return PTR_ERR(em);
2941
	}
2942
	map = em->map_lookup;
2943
	mutex_lock(&fs_info->chunk_mutex);
2944
	check_system_chunk(trans, map->type);
2945
	mutex_unlock(&fs_info->chunk_mutex);
2946

2947 2948 2949 2950 2951 2952
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
	mutex_lock(&fs_devices->device_list_mutex);
2953
	for (i = 0; i < map->num_stripes; i++) {
2954
		struct btrfs_device *device = map->stripes[i].dev;
M
Miao Xie 已提交
2955 2956 2957
		ret = btrfs_free_dev_extent(trans, device,
					    map->stripes[i].physical,
					    &dev_extent_len);
2958
		if (ret) {
2959
			mutex_unlock(&fs_devices->device_list_mutex);
2960
			btrfs_abort_transaction(trans, ret);
2961 2962
			goto out;
		}
2963

M
Miao Xie 已提交
2964
		if (device->bytes_used > 0) {
2965
			mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2966 2967
			btrfs_device_set_bytes_used(device,
					device->bytes_used - dev_extent_len);
2968
			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2969
			btrfs_clear_space_info_full(fs_info);
2970
			mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2971
		}
2972

2973 2974 2975 2976 2977
		ret = btrfs_update_device(trans, device);
		if (ret) {
			mutex_unlock(&fs_devices->device_list_mutex);
			btrfs_abort_transaction(trans, ret);
			goto out;
2978
		}
2979
	}
2980 2981
	mutex_unlock(&fs_devices->device_list_mutex);

2982
	ret = btrfs_free_chunk(trans, chunk_offset);
2983
	if (ret) {
2984
		btrfs_abort_transaction(trans, ret);
2985 2986
		goto out;
	}
2987

2988
	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2989

2990
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2991
		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2992
		if (ret) {
2993
			btrfs_abort_transaction(trans, ret);
2994 2995
			goto out;
		}
2996 2997
	}

2998
	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2999
	if (ret) {
3000
		btrfs_abort_transaction(trans, ret);
3001 3002
		goto out;
	}
Y
Yan Zheng 已提交
3003

3004
out:
Y
Yan Zheng 已提交
3005 3006
	/* once for us */
	free_extent_map(em);
3007 3008
	return ret;
}
Y
Yan Zheng 已提交
3009

3010
static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3011
{
3012
	struct btrfs_root *root = fs_info->chunk_root;
3013
	struct btrfs_trans_handle *trans;
3014
	struct btrfs_block_group *block_group;
3015
	int ret;
Y
Yan Zheng 已提交
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
	/*
	 * Prevent races with automatic removal of unused block groups.
	 * After we relocate and before we remove the chunk with offset
	 * chunk_offset, automatic removal of the block group can kick in,
	 * resulting in a failure when calling btrfs_remove_chunk() below.
	 *
	 * Make sure to acquire this mutex before doing a tree search (dev
	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
	 * we release the path used to search the chunk/dev tree and before
	 * the current task acquires this mutex and calls us.
	 */
3029
	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3030

3031
	/* step one, relocate all the extents inside this chunk */
3032
	btrfs_scrub_pause(fs_info);
3033
	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3034
	btrfs_scrub_continue(fs_info);
3035 3036 3037
	if (ret)
		return ret;

3038 3039 3040 3041 3042 3043
	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
	if (!block_group)
		return -ENOENT;
	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
	btrfs_put_block_group(block_group);

3044 3045 3046 3047 3048 3049 3050 3051
	trans = btrfs_start_trans_remove_block_group(root->fs_info,
						     chunk_offset);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		btrfs_handle_fs_error(root->fs_info, ret, NULL);
		return ret;
	}

3052
	/*
3053 3054
	 * step two, delete the device extents and the
	 * chunk tree entries
3055
	 */
3056
	ret = btrfs_remove_chunk(trans, chunk_offset);
3057
	btrfs_end_transaction(trans);
3058
	return ret;
Y
Yan Zheng 已提交
3059 3060
}

3061
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
3062
{
3063
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
3064 3065 3066 3067 3068 3069
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	struct btrfs_key found_key;
	u64 chunk_type;
3070 3071
	bool retried = false;
	int failed = 0;
Y
Yan Zheng 已提交
3072 3073 3074 3075 3076 3077
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3078
again:
Y
Yan Zheng 已提交
3079 3080 3081 3082 3083
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while (1) {
3084
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3085
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3086
		if (ret < 0) {
3087
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3088
			goto error;
3089
		}
3090
		BUG_ON(ret == 0); /* Corruption */
Y
Yan Zheng 已提交
3091 3092 3093

		ret = btrfs_previous_item(chunk_root, path, key.objectid,
					  key.type);
3094
		if (ret)
3095
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3096 3097 3098 3099
		if (ret < 0)
			goto error;
		if (ret > 0)
			break;
Z
Zheng Yan 已提交
3100

Y
Yan Zheng 已提交
3101 3102
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
Z
Zheng Yan 已提交
3103

Y
Yan Zheng 已提交
3104 3105 3106
		chunk = btrfs_item_ptr(leaf, path->slots[0],
				       struct btrfs_chunk);
		chunk_type = btrfs_chunk_type(leaf, chunk);
3107
		btrfs_release_path(path);
3108

Y
Yan Zheng 已提交
3109
		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3110
			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3111 3112
			if (ret == -ENOSPC)
				failed++;
H
HIMANGI SARAOGI 已提交
3113 3114
			else
				BUG_ON(ret);
Y
Yan Zheng 已提交
3115
		}
3116
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3117

Y
Yan Zheng 已提交
3118 3119 3120 3121 3122
		if (found_key.offset == 0)
			break;
		key.offset = found_key.offset - 1;
	}
	ret = 0;
3123 3124 3125 3126
	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
3127
	} else if (WARN_ON(failed && retried)) {
3128 3129
		ret = -ENOSPC;
	}
Y
Yan Zheng 已提交
3130 3131 3132
error:
	btrfs_free_path(path);
	return ret;
3133 3134
}

3135 3136 3137 3138 3139 3140 3141 3142
/*
 * return 1 : allocate a data chunk successfully,
 * return <0: errors during allocating a data chunk,
 * return 0 : no need to allocate a data chunk.
 */
static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
				      u64 chunk_offset)
{
3143
	struct btrfs_block_group *cache;
3144 3145 3146 3147 3148 3149 3150 3151
	u64 bytes_used;
	u64 chunk_type;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
	ASSERT(cache);
	chunk_type = cache->flags;
	btrfs_put_block_group(cache);

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
		return 0;

	spin_lock(&fs_info->data_sinfo->lock);
	bytes_used = fs_info->data_sinfo->bytes_used;
	spin_unlock(&fs_info->data_sinfo->lock);

	if (!bytes_used) {
		struct btrfs_trans_handle *trans;
		int ret;

		trans =	btrfs_join_transaction(fs_info->tree_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);

		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
		btrfs_end_transaction(trans);
		if (ret < 0)
			return ret;
		return 1;
3172
	}
3173

3174 3175 3176
	return 0;
}

3177
static int insert_balance_item(struct btrfs_fs_info *fs_info,
3178 3179
			       struct btrfs_balance_control *bctl)
{
3180
	struct btrfs_root *root = fs_info->tree_root;
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	struct btrfs_trans_handle *trans;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3200
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	key.offset = 0;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*item));
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

3211
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224

	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
	btrfs_set_balance_data(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
	btrfs_set_balance_meta(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
	btrfs_set_balance_sys(leaf, item, &disk_bargs);

	btrfs_set_balance_flags(leaf, item, bctl->flags);

	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
3225
	err = btrfs_commit_transaction(trans);
3226 3227 3228 3229 3230
	if (err && !ret)
		ret = err;
	return ret;
}

3231
static int del_balance_item(struct btrfs_fs_info *fs_info)
3232
{
3233
	struct btrfs_root *root = fs_info->tree_root;
3234 3235 3236 3237 3238 3239 3240 3241 3242
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3243
	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3244 3245 3246 3247 3248 3249
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3250
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	key.offset = 0;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
out:
	btrfs_free_path(path);
3264
	err = btrfs_commit_transaction(trans);
3265 3266 3267 3268 3269
	if (err && !ret)
		ret = err;
	return ret;
}

I
Ilya Dryomov 已提交
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
/*
 * This is a heuristic used to reduce the number of chunks balanced on
 * resume after balance was interrupted.
 */
static void update_balance_args(struct btrfs_balance_control *bctl)
{
	/*
	 * Turn on soft mode for chunk types that were being converted.
	 */
	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;

	/*
	 * Turn on usage filter if is not already used.  The idea is
	 * that chunks that we have already balanced should be
	 * reasonably full.  Don't do it for chunks that are being
	 * converted - that will keep us from relocating unconverted
	 * (albeit full) chunks.
	 */
	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3294
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3295 3296 3297 3298 3299
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->data.usage = 90;
	}
	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3300
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3301 3302 3303 3304 3305
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->sys.usage = 90;
	}
	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3306
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3307 3308 3309 3310 3311 3312
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->meta.usage = 90;
	}
}

3313 3314 3315 3316
/*
 * Clear the balance status in fs_info and delete the balance item from disk.
 */
static void reset_balance_state(struct btrfs_fs_info *fs_info)
3317 3318
{
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3319
	int ret;
3320 3321 3322 3323 3324 3325 3326 3327

	BUG_ON(!fs_info->balance_ctl);

	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = NULL;
	spin_unlock(&fs_info->balance_lock);

	kfree(bctl);
3328 3329 3330
	ret = del_balance_item(fs_info);
	if (ret)
		btrfs_handle_fs_error(fs_info, ret, NULL);
3331 3332
}

I
Ilya Dryomov 已提交
3333 3334 3335 3336
/*
 * Balance filters.  Return 1 if chunk should be filtered out
 * (should not be balanced).
 */
3337
static int chunk_profiles_filter(u64 chunk_type,
I
Ilya Dryomov 已提交
3338 3339
				 struct btrfs_balance_args *bargs)
{
3340 3341
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
I
Ilya Dryomov 已提交
3342

3343
	if (bargs->profiles & chunk_type)
I
Ilya Dryomov 已提交
3344 3345 3346 3347 3348
		return 0;

	return 1;
}

3349
static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
I
Ilya Dryomov 已提交
3350
			      struct btrfs_balance_args *bargs)
3351
{
3352
	struct btrfs_block_group *cache;
3353 3354 3355 3356 3357 3358
	u64 chunk_used;
	u64 user_thresh_min;
	u64 user_thresh_max;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3359
	chunk_used = cache->used;
3360 3361 3362 3363

	if (bargs->usage_min == 0)
		user_thresh_min = 0;
	else
3364 3365
		user_thresh_min = div_factor_fine(cache->length,
						  bargs->usage_min);
3366 3367 3368 3369

	if (bargs->usage_max == 0)
		user_thresh_max = 1;
	else if (bargs->usage_max > 100)
3370
		user_thresh_max = cache->length;
3371
	else
3372 3373
		user_thresh_max = div_factor_fine(cache->length,
						  bargs->usage_max);
3374 3375 3376 3377 3378 3379 3380 3381

	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

3382
static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3383
		u64 chunk_offset, struct btrfs_balance_args *bargs)
I
Ilya Dryomov 已提交
3384
{
3385
	struct btrfs_block_group *cache;
I
Ilya Dryomov 已提交
3386 3387 3388 3389
	u64 chunk_used, user_thresh;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3390
	chunk_used = cache->used;
I
Ilya Dryomov 已提交
3391

3392
	if (bargs->usage_min == 0)
3393
		user_thresh = 1;
3394
	else if (bargs->usage > 100)
3395
		user_thresh = cache->length;
3396
	else
3397
		user_thresh = div_factor_fine(cache->length, bargs->usage);
3398

I
Ilya Dryomov 已提交
3399 3400 3401 3402 3403 3404 3405
	if (chunk_used < user_thresh)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

I
Ilya Dryomov 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
static int chunk_devid_filter(struct extent_buffer *leaf,
			      struct btrfs_chunk *chunk,
			      struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	int i;

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
			return 0;
	}

	return 1;
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
static u64 calc_data_stripes(u64 type, int num_stripes)
{
	const int index = btrfs_bg_flags_to_raid_index(type);
	const int ncopies = btrfs_raid_array[index].ncopies;
	const int nparity = btrfs_raid_array[index].nparity;

	if (nparity)
		return num_stripes - nparity;
	else
		return num_stripes / ncopies;
}

I
Ilya Dryomov 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443
/* [pstart, pend) */
static int chunk_drange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	u64 stripe_offset;
	u64 stripe_length;
3444
	u64 type;
I
Ilya Dryomov 已提交
3445 3446 3447 3448 3449 3450
	int factor;
	int i;

	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
		return 0;

3451 3452
	type = btrfs_chunk_type(leaf, chunk);
	factor = calc_data_stripes(type, num_stripes);
I
Ilya Dryomov 已提交
3453 3454 3455 3456 3457 3458 3459 3460

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
			continue;

		stripe_offset = btrfs_stripe_offset(leaf, stripe);
		stripe_length = btrfs_chunk_length(leaf, chunk);
3461
		stripe_length = div_u64(stripe_length, factor);
I
Ilya Dryomov 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470

		if (stripe_offset < bargs->pend &&
		    stripe_offset + stripe_length > bargs->pstart)
			return 0;
	}

	return 1;
}

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
/* [vstart, vend) */
static int chunk_vrange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       u64 chunk_offset,
			       struct btrfs_balance_args *bargs)
{
	if (chunk_offset < bargs->vend &&
	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
		/* at least part of the chunk is inside this vrange */
		return 0;

	return 1;
}

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
static int chunk_stripes_range_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

	if (bargs->stripes_min <= num_stripes
			&& num_stripes <= bargs->stripes_max)
		return 0;

	return 1;
}

3498
static int chunk_soft_convert_filter(u64 chunk_type,
3499 3500 3501 3502 3503
				     struct btrfs_balance_args *bargs)
{
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return 0;

3504 3505
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
3506

3507
	if (bargs->target == chunk_type)
3508 3509 3510 3511 3512
		return 1;

	return 0;
}

3513
static int should_balance_chunk(struct extent_buffer *leaf,
3514 3515
				struct btrfs_chunk *chunk, u64 chunk_offset)
{
3516
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3517
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	struct btrfs_balance_args *bargs = NULL;
	u64 chunk_type = btrfs_chunk_type(leaf, chunk);

	/* type filter */
	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
		return 0;
	}

	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
		bargs = &bctl->data;
	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
		bargs = &bctl->sys;
	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
		bargs = &bctl->meta;

I
Ilya Dryomov 已提交
3534 3535 3536 3537
	/* profiles filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
	    chunk_profiles_filter(chunk_type, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3538 3539 3540 3541
	}

	/* usage filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3542
	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
I
Ilya Dryomov 已提交
3543
		return 0;
3544
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3545
	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3546
		return 0;
I
Ilya Dryomov 已提交
3547 3548 3549 3550 3551 3552
	}

	/* devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
	    chunk_devid_filter(leaf, chunk, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3553 3554 3555 3556
	}

	/* drange filter, makes sense only with devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3557
	    chunk_drange_filter(leaf, chunk, bargs)) {
I
Ilya Dryomov 已提交
3558
		return 0;
3559 3560 3561 3562 3563 3564
	}

	/* vrange filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3565 3566
	}

3567 3568 3569 3570 3571 3572
	/* stripes filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
		return 0;
	}

3573 3574 3575 3576 3577 3578
	/* soft profile changing mode */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
	    chunk_soft_convert_filter(chunk_type, bargs)) {
		return 0;
	}

3579 3580 3581 3582 3583 3584 3585 3586
	/*
	 * limited by count, must be the last filter
	 */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
		if (bargs->limit == 0)
			return 0;
		else
			bargs->limit--;
3587 3588 3589
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
		/*
		 * Same logic as the 'limit' filter; the minimum cannot be
3590
		 * determined here because we do not have the global information
3591 3592 3593 3594 3595 3596
		 * about the count of all chunks that satisfy the filters.
		 */
		if (bargs->limit_max == 0)
			return 0;
		else
			bargs->limit_max--;
3597 3598
	}

3599 3600 3601
	return 1;
}

3602
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3603
{
3604
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3605
	struct btrfs_root *chunk_root = fs_info->chunk_root;
3606
	u64 chunk_type;
3607
	struct btrfs_chunk *chunk;
3608
	struct btrfs_path *path = NULL;
3609 3610
	struct btrfs_key key;
	struct btrfs_key found_key;
3611 3612
	struct extent_buffer *leaf;
	int slot;
3613 3614
	int ret;
	int enospc_errors = 0;
3615
	bool counting = true;
3616
	/* The single value limit and min/max limits use the same bytes in the */
3617 3618 3619
	u64 limit_data = bctl->data.limit;
	u64 limit_meta = bctl->meta.limit;
	u64 limit_sys = bctl->sys.limit;
3620 3621 3622
	u32 count_data = 0;
	u32 count_meta = 0;
	u32 count_sys = 0;
3623
	int chunk_reserved = 0;
3624 3625

	path = btrfs_alloc_path();
3626 3627 3628 3629
	if (!path) {
		ret = -ENOMEM;
		goto error;
	}
3630 3631 3632 3633 3634 3635

	/* zero out stat counters */
	spin_lock(&fs_info->balance_lock);
	memset(&bctl->stat, 0, sizeof(bctl->stat));
	spin_unlock(&fs_info->balance_lock);
again:
3636
	if (!counting) {
3637 3638 3639 3640
		/*
		 * The single value limit and min/max limits use the same bytes
		 * in the
		 */
3641 3642 3643 3644
		bctl->data.limit = limit_data;
		bctl->meta.limit = limit_meta;
		bctl->sys.limit = limit_sys;
	}
3645 3646 3647 3648
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

C
Chris Mason 已提交
3649
	while (1) {
3650
		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3651
		    atomic_read(&fs_info->balance_cancel_req)) {
3652 3653 3654 3655
			ret = -ECANCELED;
			goto error;
		}

3656
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3657
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3658 3659
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3660
			goto error;
3661
		}
3662 3663 3664 3665 3666 3667

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
3668
			BUG(); /* FIXME break ? */
3669 3670 3671

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
3672
		if (ret) {
3673
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674
			ret = 0;
3675
			break;
3676
		}
3677

3678 3679 3680
		leaf = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3681

3682 3683
		if (found_key.objectid != key.objectid) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3684
			break;
3685
		}
3686

3687
		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3688
		chunk_type = btrfs_chunk_type(leaf, chunk);
3689

3690 3691 3692 3693 3694 3695
		if (!counting) {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.considered++;
			spin_unlock(&fs_info->balance_lock);
		}

3696
		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3697

3698
		btrfs_release_path(path);
3699 3700
		if (!ret) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3701
			goto loop;
3702
		}
3703

3704
		if (counting) {
3705
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3706 3707 3708
			spin_lock(&fs_info->balance_lock);
			bctl->stat.expected++;
			spin_unlock(&fs_info->balance_lock);
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
				count_data++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
				count_sys++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
				count_meta++;

			goto loop;
		}

		/*
		 * Apply limit_min filter, no need to check if the LIMITS
		 * filter is used, limit_min is 0 by default
		 */
		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
					count_data < bctl->data.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
					count_meta < bctl->meta.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
					count_sys < bctl->sys.limit_min)) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3731 3732 3733
			goto loop;
		}

3734 3735 3736 3737 3738 3739 3740 3741 3742
		if (!chunk_reserved) {
			/*
			 * We may be relocating the only data chunk we have,
			 * which could potentially end up with losing data's
			 * raid profile, so lets allocate an empty one in
			 * advance.
			 */
			ret = btrfs_may_alloc_data_chunk(fs_info,
							 found_key.offset);
3743 3744 3745
			if (ret < 0) {
				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
				goto error;
3746 3747
			} else if (ret == 1) {
				chunk_reserved = 1;
3748 3749 3750
			}
		}

3751
		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3752
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3753
		if (ret == -ENOSPC) {
3754
			enospc_errors++;
3755 3756 3757 3758 3759 3760 3761
		} else if (ret == -ETXTBSY) {
			btrfs_info(fs_info,
	   "skipping relocation of block group %llu due to active swapfile",
				   found_key.offset);
			ret = 0;
		} else if (ret) {
			goto error;
3762 3763 3764 3765 3766
		} else {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.completed++;
			spin_unlock(&fs_info->balance_lock);
		}
3767
loop:
3768 3769
		if (found_key.offset == 0)
			break;
3770
		key.offset = found_key.offset - 1;
3771
	}
3772

3773 3774 3775 3776 3777
	if (counting) {
		btrfs_release_path(path);
		counting = false;
		goto again;
	}
3778 3779
error:
	btrfs_free_path(path);
3780
	if (enospc_errors) {
3781
		btrfs_info(fs_info, "%d enospc errors during balance",
J
Jeff Mahoney 已提交
3782
			   enospc_errors);
3783 3784 3785 3786
		if (!ret)
			ret = -ENOSPC;
	}

3787 3788 3789
	return ret;
}

3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
/**
 * alloc_profile_is_valid - see if a given profile is valid and reduced
 * @flags: profile to validate
 * @extended: if true @flags is treated as an extended profile
 */
static int alloc_profile_is_valid(u64 flags, int extended)
{
	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
			       BTRFS_BLOCK_GROUP_PROFILE_MASK);

	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;

	/* 1) check that all other bits are zeroed */
	if (flags & ~mask)
		return 0;

	/* 2) see if profile is reduced */
	if (flags == 0)
		return !extended; /* "0" is valid for usual profiles */

3810
	return has_single_bit_set(flags);
3811 3812
}

3813 3814
static inline int balance_need_close(struct btrfs_fs_info *fs_info)
{
3815 3816 3817 3818
	/* cancel requested || normal exit path */
	return atomic_read(&fs_info->balance_cancel_req) ||
		(atomic_read(&fs_info->balance_pause_req) == 0 &&
		 atomic_read(&fs_info->balance_cancel_req) == 0);
3819 3820
}

3821 3822 3823 3824 3825 3826 3827
/*
 * Validate target profile against allowed profiles and return true if it's OK.
 * Otherwise print the error message and return false.
 */
static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
		const struct btrfs_balance_args *bargs,
		u64 allowed, const char *type)
3828
{
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return true;

	/* Profile is valid and does not have bits outside of the allowed set */
	if (alloc_profile_is_valid(bargs->target, 1) &&
	    (bargs->target & ~allowed) == 0)
		return true;

	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
			type, btrfs_bg_type_to_raid_name(bargs->target));
	return false;
3840 3841
}

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
/*
 * Fill @buf with textual description of balance filter flags @bargs, up to
 * @size_buf including the terminating null. The output may be trimmed if it
 * does not fit into the provided buffer.
 */
static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
				 u32 size_buf)
{
	int ret;
	u32 size_bp = size_buf;
	char *bp = buf;
	u64 flags = bargs->flags;
	char tmp_buf[128] = {'\0'};

	if (!flags)
		return;

#define CHECK_APPEND_NOARG(a)						\
	do {								\
		ret = snprintf(bp, size_bp, (a));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_2ARG(a, v1, v2)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

3886 3887 3888
	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
		CHECK_APPEND_1ARG("convert=%s,",
				  btrfs_bg_type_to_raid_name(bargs->target));
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

	if (flags & BTRFS_BALANCE_ARGS_SOFT)
		CHECK_APPEND_NOARG("soft,");

	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
					    sizeof(tmp_buf));
		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
	}

	if (flags & BTRFS_BALANCE_ARGS_USAGE)
		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);

	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
		CHECK_APPEND_2ARG("usage=%u..%u,",
				  bargs->usage_min, bargs->usage_max);

	if (flags & BTRFS_BALANCE_ARGS_DEVID)
		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);

	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
		CHECK_APPEND_2ARG("drange=%llu..%llu,",
				  bargs->pstart, bargs->pend);

	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
				  bargs->vstart, bargs->vend);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
		CHECK_APPEND_2ARG("limit=%u..%u,",
				bargs->limit_min, bargs->limit_max);

	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
		CHECK_APPEND_2ARG("stripes=%u..%u,",
				  bargs->stripes_min, bargs->stripes_max);

#undef CHECK_APPEND_2ARG
#undef CHECK_APPEND_1ARG
#undef CHECK_APPEND_NOARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
	else
		buf[0] = '\0';
}

static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
{
	u32 size_buf = 1024;
	char tmp_buf[192] = {'\0'};
	char *buf;
	char *bp;
	u32 size_bp = size_buf;
	int ret;
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;

	buf = kzalloc(size_buf, GFP_KERNEL);
	if (!buf)
		return;

	bp = buf;

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

	if (bctl->flags & BTRFS_BALANCE_FORCE)
		CHECK_APPEND_1ARG("%s", "-f ");

	if (bctl->flags & BTRFS_BALANCE_DATA) {
		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_METADATA) {
		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
	}

#undef CHECK_APPEND_1ARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
	btrfs_info(fs_info, "balance: %s %s",
		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
		   "resume" : "start", buf);

	kfree(buf);
}

3996
/*
3997
 * Should be called with balance mutexe held
3998
 */
3999 4000
int btrfs_balance(struct btrfs_fs_info *fs_info,
		  struct btrfs_balance_control *bctl,
4001 4002
		  struct btrfs_ioctl_balance_args *bargs)
{
4003
	u64 meta_target, data_target;
4004
	u64 allowed;
4005
	int mixed = 0;
4006
	int ret;
4007
	u64 num_devices;
4008
	unsigned seq;
4009
	bool reducing_redundancy;
4010
	int i;
4011

4012
	if (btrfs_fs_closing(fs_info) ||
4013
	    atomic_read(&fs_info->balance_pause_req) ||
4014
	    btrfs_should_cancel_balance(fs_info)) {
4015 4016 4017 4018
		ret = -EINVAL;
		goto out;
	}

4019 4020 4021 4022
	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
		mixed = 1;

4023 4024 4025 4026
	/*
	 * In case of mixed groups both data and meta should be picked,
	 * and identical options should be given for both of them.
	 */
4027 4028
	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
	if (mixed && (bctl->flags & allowed)) {
4029 4030 4031
		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
J
Jeff Mahoney 已提交
4032
			btrfs_err(fs_info,
4033
	  "balance: mixed groups data and metadata options must be the same");
4034 4035 4036 4037 4038
			ret = -EINVAL;
			goto out;
		}
	}

4039 4040
	/*
	 * rw_devices will not change at the moment, device add/delete/replace
4041
	 * are exclusive
4042 4043
	 */
	num_devices = fs_info->fs_devices->rw_devices;
4044 4045 4046 4047 4048 4049 4050

	/*
	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
	 * special bit for it, to make it easier to distinguish.  Thus we need
	 * to set it manually, or balance would refuse the profile.
	 */
	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4051 4052 4053
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
		if (num_devices >= btrfs_raid_array[i].devs_min)
			allowed |= btrfs_raid_array[i].bg_flag;
4054

4055 4056 4057
	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4058 4059 4060 4061
		ret = -EINVAL;
		goto out;
	}

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	/*
	 * Allow to reduce metadata or system integrity only if force set for
	 * profiles with redundancy (copies, parity)
	 */
	allowed = 0;
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
		if (btrfs_raid_array[i].ncopies >= 2 ||
		    btrfs_raid_array[i].tolerated_failures >= 1)
			allowed |= btrfs_raid_array[i].bg_flag;
	}
4072 4073 4074 4075 4076 4077 4078 4079
	do {
		seq = read_seqbegin(&fs_info->profiles_lock);

		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_system_alloc_bits & allowed) &&
		     !(bctl->sys.target & allowed)) ||
		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4080
		     !(bctl->meta.target & allowed)))
4081
			reducing_redundancy = true;
4082
		else
4083
			reducing_redundancy = false;
4084 4085 4086 4087 4088 4089

		/* if we're not converting, the target field is uninitialized */
		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->data.target : fs_info->avail_data_alloc_bits;
4090
	} while (read_seqretry(&fs_info->profiles_lock, seq));
4091

4092
	if (reducing_redundancy) {
4093 4094
		if (bctl->flags & BTRFS_BALANCE_FORCE) {
			btrfs_info(fs_info,
4095
			   "balance: force reducing metadata redundancy");
4096 4097
		} else {
			btrfs_err(fs_info,
4098
	"balance: reduces metadata redundancy, use --force if you want this");
4099 4100 4101 4102 4103
			ret = -EINVAL;
			goto out;
		}
	}

4104 4105
	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4106
		btrfs_warn(fs_info,
4107
	"balance: metadata profile %s has lower redundancy than data profile %s",
4108 4109
				btrfs_bg_type_to_raid_name(meta_target),
				btrfs_bg_type_to_raid_name(data_target));
4110 4111
	}

4112 4113 4114 4115 4116 4117 4118 4119
	if (fs_info->send_in_progress) {
		btrfs_warn_rl(fs_info,
"cannot run balance while send operations are in progress (%d in progress)",
			      fs_info->send_in_progress);
		ret = -EAGAIN;
		goto out;
	}

4120
	ret = insert_balance_item(fs_info, bctl);
I
Ilya Dryomov 已提交
4121
	if (ret && ret != -EEXIST)
4122 4123
		goto out;

I
Ilya Dryomov 已提交
4124 4125
	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
		BUG_ON(ret == -EEXIST);
4126 4127 4128 4129
		BUG_ON(fs_info->balance_ctl);
		spin_lock(&fs_info->balance_lock);
		fs_info->balance_ctl = bctl;
		spin_unlock(&fs_info->balance_lock);
I
Ilya Dryomov 已提交
4130 4131 4132 4133 4134 4135
	} else {
		BUG_ON(ret != -EEXIST);
		spin_lock(&fs_info->balance_lock);
		update_balance_args(bctl);
		spin_unlock(&fs_info->balance_lock);
	}
4136

4137 4138
	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4139
	describe_balance_start_or_resume(fs_info);
4140 4141 4142 4143 4144
	mutex_unlock(&fs_info->balance_mutex);

	ret = __btrfs_balance(fs_info);

	mutex_lock(&fs_info->balance_mutex);
4145 4146
	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
		btrfs_info(fs_info, "balance: paused");
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
	/*
	 * Balance can be canceled by:
	 *
	 * - Regular cancel request
	 *   Then ret == -ECANCELED and balance_cancel_req > 0
	 *
	 * - Fatal signal to "btrfs" process
	 *   Either the signal caught by wait_reserve_ticket() and callers
	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
	 *   got -ECANCELED.
	 *   Either way, in this case balance_cancel_req = 0, and
	 *   ret == -EINTR or ret == -ECANCELED.
	 *
	 * So here we only check the return value to catch canceled balance.
	 */
	else if (ret == -ECANCELED || ret == -EINTR)
4163 4164 4165 4166
		btrfs_info(fs_info, "balance: canceled");
	else
		btrfs_info(fs_info, "balance: ended with status: %d", ret);

4167
	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4168 4169 4170

	if (bargs) {
		memset(bargs, 0, sizeof(*bargs));
4171
		btrfs_update_ioctl_balance_args(fs_info, bargs);
4172 4173
	}

4174 4175
	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
	    balance_need_close(fs_info)) {
4176
		reset_balance_state(fs_info);
4177
		btrfs_exclop_finish(fs_info);
4178 4179
	}

4180
	wake_up(&fs_info->balance_wait_q);
4181 4182 4183

	return ret;
out:
I
Ilya Dryomov 已提交
4184
	if (bctl->flags & BTRFS_BALANCE_RESUME)
4185
		reset_balance_state(fs_info);
4186
	else
I
Ilya Dryomov 已提交
4187
		kfree(bctl);
4188
	btrfs_exclop_finish(fs_info);
4189

I
Ilya Dryomov 已提交
4190 4191 4192 4193 4194
	return ret;
}

static int balance_kthread(void *data)
{
4195
	struct btrfs_fs_info *fs_info = data;
4196
	int ret = 0;
I
Ilya Dryomov 已提交
4197 4198

	mutex_lock(&fs_info->balance_mutex);
4199
	if (fs_info->balance_ctl)
4200
		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
I
Ilya Dryomov 已提交
4201
	mutex_unlock(&fs_info->balance_mutex);
4202

I
Ilya Dryomov 已提交
4203 4204 4205
	return ret;
}

4206 4207 4208 4209
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
{
	struct task_struct *tsk;

4210
	mutex_lock(&fs_info->balance_mutex);
4211
	if (!fs_info->balance_ctl) {
4212
		mutex_unlock(&fs_info->balance_mutex);
4213 4214
		return 0;
	}
4215
	mutex_unlock(&fs_info->balance_mutex);
4216

4217
	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4218
		btrfs_info(fs_info, "balance: resume skipped");
4219 4220 4221
		return 0;
	}

4222 4223 4224 4225 4226 4227 4228 4229 4230
	/*
	 * A ro->rw remount sequence should continue with the paused balance
	 * regardless of who pauses it, system or the user as of now, so set
	 * the resume flag.
	 */
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
	spin_unlock(&fs_info->balance_lock);

4231
	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4232
	return PTR_ERR_OR_ZERO(tsk);
4233 4234
}

4235
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
I
Ilya Dryomov 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
{
	struct btrfs_balance_control *bctl;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_BALANCE_OBJECTID;
4250
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
I
Ilya Dryomov 已提交
4251 4252
	key.offset = 0;

4253
	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
I
Ilya Dryomov 已提交
4254
	if (ret < 0)
4255
		goto out;
I
Ilya Dryomov 已提交
4256 4257
	if (ret > 0) { /* ret = -ENOENT; */
		ret = 0;
4258 4259 4260 4261 4262 4263 4264
		goto out;
	}

	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
	if (!bctl) {
		ret = -ENOMEM;
		goto out;
I
Ilya Dryomov 已提交
4265 4266 4267 4268 4269
	}

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

4270 4271
	bctl->flags = btrfs_balance_flags(leaf, item);
	bctl->flags |= BTRFS_BALANCE_RESUME;
I
Ilya Dryomov 已提交
4272 4273 4274 4275 4276 4277 4278 4279

	btrfs_balance_data(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
	btrfs_balance_meta(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
	btrfs_balance_sys(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);

4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
	/*
	 * This should never happen, as the paused balance state is recovered
	 * during mount without any chance of other exclusive ops to collide.
	 *
	 * This gives the exclusive op status to balance and keeps in paused
	 * state until user intervention (cancel or umount). If the ownership
	 * cannot be assigned, show a message but do not fail. The balance
	 * is in a paused state and must have fs_info::balance_ctl properly
	 * set up.
	 */
4290
	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4291
		btrfs_warn(fs_info,
4292
	"balance: cannot set exclusive op status, resume manually");
4293

4294
	mutex_lock(&fs_info->balance_mutex);
4295 4296 4297 4298
	BUG_ON(fs_info->balance_ctl);
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = bctl;
	spin_unlock(&fs_info->balance_lock);
4299
	mutex_unlock(&fs_info->balance_mutex);
I
Ilya Dryomov 已提交
4300 4301
out:
	btrfs_free_path(path);
4302 4303 4304
	return ret;
}

4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
{
	int ret = 0;

	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4315
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4316 4317 4318 4319
		atomic_inc(&fs_info->balance_pause_req);
		mutex_unlock(&fs_info->balance_mutex);

		wait_event(fs_info->balance_wait_q,
4320
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4321 4322 4323

		mutex_lock(&fs_info->balance_mutex);
		/* we are good with balance_ctl ripped off from under us */
4324
		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4325 4326 4327 4328 4329 4330 4331 4332 4333
		atomic_dec(&fs_info->balance_pause_req);
	} else {
		ret = -ENOTCONN;
	}

	mutex_unlock(&fs_info->balance_mutex);
	return ret;
}

4334 4335 4336 4337 4338 4339 4340 4341
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
{
	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	/*
	 * A paused balance with the item stored on disk can be resumed at
	 * mount time if the mount is read-write. Otherwise it's still paused
	 * and we must not allow cancelling as it deletes the item.
	 */
	if (sb_rdonly(fs_info->sb)) {
		mutex_unlock(&fs_info->balance_mutex);
		return -EROFS;
	}

4352 4353 4354 4355 4356
	atomic_inc(&fs_info->balance_cancel_req);
	/*
	 * if we are running just wait and return, balance item is
	 * deleted in btrfs_balance in this case
	 */
4357
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4358 4359
		mutex_unlock(&fs_info->balance_mutex);
		wait_event(fs_info->balance_wait_q,
4360
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4361 4362 4363
		mutex_lock(&fs_info->balance_mutex);
	} else {
		mutex_unlock(&fs_info->balance_mutex);
4364 4365 4366 4367
		/*
		 * Lock released to allow other waiters to continue, we'll
		 * reexamine the status again.
		 */
4368 4369
		mutex_lock(&fs_info->balance_mutex);

4370
		if (fs_info->balance_ctl) {
4371
			reset_balance_state(fs_info);
4372
			btrfs_exclop_finish(fs_info);
4373
			btrfs_info(fs_info, "balance: canceled");
4374
		}
4375 4376
	}

4377 4378
	BUG_ON(fs_info->balance_ctl ||
		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4379 4380 4381 4382 4383
	atomic_dec(&fs_info->balance_cancel_req);
	mutex_unlock(&fs_info->balance_mutex);
	return 0;
}

4384
int btrfs_uuid_scan_kthread(void *data)
S
Stefan Behrens 已提交
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
{
	struct btrfs_fs_info *fs_info = data;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	int ret = 0;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_root_item root_item;
	u32 item_size;
4395
	struct btrfs_trans_handle *trans = NULL;
4396
	bool closing = false;
S
Stefan Behrens 已提交
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = 0;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;

	while (1) {
4409 4410 4411 4412
		if (btrfs_fs_closing(fs_info)) {
			closing = true;
			break;
		}
4413 4414
		ret = btrfs_search_forward(root, &key, path,
				BTRFS_OLDEST_GENERATION);
S
Stefan Behrens 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
		if (ret) {
			if (ret > 0)
				ret = 0;
			break;
		}

		if (key.type != BTRFS_ROOT_ITEM_KEY ||
		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
			goto skip;

		eb = path->nodes[0];
		slot = path->slots[0];
		item_size = btrfs_item_size_nr(eb, slot);
		if (item_size < sizeof(root_item))
			goto skip;

		read_extent_buffer(eb, &root_item,
				   btrfs_item_ptr_offset(eb, slot),
				   (int)sizeof(root_item));
		if (btrfs_root_refs(&root_item) == 0)
			goto skip;
4438 4439 4440 4441 4442 4443 4444

		if (!btrfs_is_empty_uuid(root_item.uuid) ||
		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
			if (trans)
				goto update_tree;

			btrfs_release_path(path);
S
Stefan Behrens 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453
			/*
			 * 1 - subvol uuid item
			 * 1 - received_subvol uuid item
			 */
			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
			if (IS_ERR(trans)) {
				ret = PTR_ERR(trans);
				break;
			}
4454 4455 4456 4457 4458
			continue;
		} else {
			goto skip;
		}
update_tree:
4459
		btrfs_release_path(path);
4460
		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4461
			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
S
Stefan Behrens 已提交
4462 4463 4464
						  BTRFS_UUID_KEY_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4465
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4466 4467 4468 4469 4470 4471
					ret);
				break;
			}
		}

		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4472
			ret = btrfs_uuid_tree_add(trans,
S
Stefan Behrens 已提交
4473 4474 4475 4476
						  root_item.received_uuid,
						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4477
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4478 4479 4480 4481 4482
					ret);
				break;
			}
		}

4483
skip:
4484
		btrfs_release_path(path);
S
Stefan Behrens 已提交
4485
		if (trans) {
4486
			ret = btrfs_end_transaction(trans);
4487
			trans = NULL;
S
Stefan Behrens 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
			if (ret)
				break;
		}

		if (key.offset < (u64)-1) {
			key.offset++;
		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
		} else if (key.objectid < (u64)-1) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.objectid++;
		} else {
			break;
		}
		cond_resched();
	}

out:
	btrfs_free_path(path);
4509
	if (trans && !IS_ERR(trans))
4510
		btrfs_end_transaction(trans);
S
Stefan Behrens 已提交
4511
	if (ret)
4512
		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4513
	else if (!closing)
4514
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
S
Stefan Behrens 已提交
4515 4516 4517 4518
	up(&fs_info->uuid_tree_rescan_sem);
	return 0;
}

4519 4520 4521 4522 4523
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *uuid_root;
S
Stefan Behrens 已提交
4524 4525
	struct task_struct *task;
	int ret;
4526 4527 4528 4529 4530 4531 4532 4533 4534

	/*
	 * 1 - root node
	 * 1 - root item
	 */
	trans = btrfs_start_transaction(tree_root, 2);
	if (IS_ERR(trans))
		return PTR_ERR(trans);

4535
	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4536
	if (IS_ERR(uuid_root)) {
4537
		ret = PTR_ERR(uuid_root);
4538
		btrfs_abort_transaction(trans, ret);
4539
		btrfs_end_transaction(trans);
4540
		return ret;
4541 4542 4543 4544
	}

	fs_info->uuid_root = uuid_root;

4545
	ret = btrfs_commit_transaction(trans);
S
Stefan Behrens 已提交
4546 4547 4548 4549 4550 4551
	if (ret)
		return ret;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
4552
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4553
		btrfs_warn(fs_info, "failed to start uuid_scan task");
S
Stefan Behrens 已提交
4554 4555 4556 4557 4558
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
4559
}
S
Stefan Behrens 已提交
4560

4561 4562 4563 4564 4565 4566 4567
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
4568 4569
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
4570 4571 4572 4573 4574 4575 4576
	struct btrfs_trans_handle *trans;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_offset;
	int ret;
	int slot;
4577 4578
	int failed = 0;
	bool retried = false;
4579 4580
	struct extent_buffer *l;
	struct btrfs_key key;
4581
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4582
	u64 old_total = btrfs_super_total_bytes(super_copy);
4583
	u64 old_size = btrfs_device_get_total_bytes(device);
4584
	u64 diff;
4585
	u64 start;
4586 4587

	new_size = round_down(new_size, fs_info->sectorsize);
4588
	start = new_size;
4589
	diff = round_down(old_size - new_size, fs_info->sectorsize);
4590

4591
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4592 4593
		return -EINVAL;

4594 4595 4596 4597
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4598
	path->reada = READA_BACK;
4599

4600 4601 4602 4603 4604 4605
	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

4606
	mutex_lock(&fs_info->chunk_mutex);
4607

4608
	btrfs_device_set_total_bytes(device, new_size);
4609
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
4610
		device->fs_devices->total_rw_bytes -= diff;
4611
		atomic64_sub(diff, &fs_info->free_chunk_space);
4612
	}
4613 4614 4615 4616 4617 4618

	/*
	 * Once the device's size has been set to the new size, ensure all
	 * in-memory chunks are synced to disk so that the loop below sees them
	 * and relocates them accordingly.
	 */
4619
	if (contains_pending_extent(device, &start, diff)) {
4620 4621 4622 4623 4624 4625 4626 4627
		mutex_unlock(&fs_info->chunk_mutex);
		ret = btrfs_commit_transaction(trans);
		if (ret)
			goto done;
	} else {
		mutex_unlock(&fs_info->chunk_mutex);
		btrfs_end_transaction(trans);
	}
4628

4629
again:
4630 4631 4632 4633
	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

4634
	do {
4635
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4636
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4637
		if (ret < 0) {
4638
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4639
			goto done;
4640
		}
4641 4642

		ret = btrfs_previous_item(root, path, 0, key.type);
4643
		if (ret)
4644
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4645 4646 4647 4648
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
4649
			btrfs_release_path(path);
4650
			break;
4651 4652 4653 4654 4655 4656
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

4657
		if (key.objectid != device->devid) {
4658
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4659
			btrfs_release_path(path);
4660
			break;
4661
		}
4662 4663 4664 4665

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

4666
		if (key.offset + length <= new_size) {
4667
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4668
			btrfs_release_path(path);
4669
			break;
4670
		}
4671 4672

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4673
		btrfs_release_path(path);
4674

4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
		/*
		 * We may be relocating the only data chunk we have,
		 * which could potentially end up with losing data's
		 * raid profile, so lets allocate an empty one in
		 * advance.
		 */
		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
			goto done;
		}

4687 4688
		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4689
		if (ret == -ENOSPC) {
4690
			failed++;
4691 4692 4693 4694 4695 4696 4697 4698
		} else if (ret) {
			if (ret == -ETXTBSY) {
				btrfs_warn(fs_info,
		   "could not shrink block group %llu due to active swapfile",
					   chunk_offset);
			}
			goto done;
		}
4699
	} while (key.offset-- > 0);
4700 4701 4702 4703 4704 4705 4706 4707

	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
	} else if (failed && retried) {
		ret = -ENOSPC;
		goto done;
4708 4709
	}

4710
	/* Shrinking succeeded, else we would be at "done". */
4711
	trans = btrfs_start_transaction(root, 0);
4712 4713 4714 4715 4716
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto done;
	}

4717
	mutex_lock(&fs_info->chunk_mutex);
4718 4719 4720 4721
	/* Clear all state bits beyond the shrunk device size */
	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
			  CHUNK_STATE_MASK);

4722
	btrfs_device_set_disk_total_bytes(device, new_size);
4723 4724 4725
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
4726 4727

	WARN_ON(diff > old_total);
4728 4729
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total - diff, fs_info->sectorsize));
4730
	mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
4731 4732 4733

	/* Now btrfs_update_device() will change the on-disk size. */
	ret = btrfs_update_device(trans, device);
4734 4735 4736 4737 4738 4739
	if (ret < 0) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	} else {
		ret = btrfs_commit_transaction(trans);
	}
4740 4741
done:
	btrfs_free_path(path);
4742
	if (ret) {
4743
		mutex_lock(&fs_info->chunk_mutex);
4744
		btrfs_device_set_total_bytes(device, old_size);
4745
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4746
			device->fs_devices->total_rw_bytes += diff;
4747
		atomic64_add(diff, &fs_info->free_chunk_space);
4748
		mutex_unlock(&fs_info->chunk_mutex);
4749
	}
4750 4751 4752
	return ret;
}

4753
static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4754 4755 4756
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
4757
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4758 4759 4760 4761
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

4762
	mutex_lock(&fs_info->chunk_mutex);
4763
	array_size = btrfs_super_sys_array_size(super_copy);
4764
	if (array_size + item_size + sizeof(disk_key)
4765
			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4766
		mutex_unlock(&fs_info->chunk_mutex);
4767
		return -EFBIG;
4768
	}
4769 4770 4771 4772 4773 4774 4775 4776

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4777
	mutex_unlock(&fs_info->chunk_mutex);
4778

4779 4780 4781
	return 0;
}

4782 4783 4784 4785
/*
 * sort the devices in descending order by max_avail, total_avail
 */
static int btrfs_cmp_device_info(const void *a, const void *b)
4786
{
4787 4788
	const struct btrfs_device_info *di_a = a;
	const struct btrfs_device_info *di_b = b;
4789

4790
	if (di_a->max_avail > di_b->max_avail)
4791
		return -1;
4792
	if (di_a->max_avail < di_b->max_avail)
4793
		return 1;
4794 4795 4796 4797 4798
	if (di_a->total_avail > di_b->total_avail)
		return -1;
	if (di_a->total_avail < di_b->total_avail)
		return 1;
	return 0;
4799
}
4800

D
David Woodhouse 已提交
4801 4802
static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
4803
	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
D
David Woodhouse 已提交
4804 4805
		return;

4806
	btrfs_set_fs_incompat(info, RAID56);
D
David Woodhouse 已提交
4807 4808
}

4809 4810 4811 4812 4813 4814 4815 4816
static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
		return;

	btrfs_set_fs_incompat(info, RAID1C34);
}

N
Naohiro Aota 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
/*
 * Structure used internally for __btrfs_alloc_chunk() function.
 * Wraps needed parameters.
 */
struct alloc_chunk_ctl {
	u64 start;
	u64 type;
	/* Total number of stripes to allocate */
	int num_stripes;
	/* sub_stripes info for map */
	int sub_stripes;
	/* Stripes per device */
	int dev_stripes;
	/* Maximum number of devices to use */
	int devs_max;
	/* Minimum number of devices to use */
	int devs_min;
	/* ndevs has to be a multiple of this */
	int devs_increment;
	/* Number of copies */
	int ncopies;
	/* Number of stripes worth of bytes to store parity information */
	int nparity;
	u64 max_stripe_size;
	u64 max_chunk_size;
4842
	u64 dev_extent_min;
N
Naohiro Aota 已提交
4843 4844 4845 4846 4847
	u64 stripe_size;
	u64 chunk_size;
	int ndevs;
};

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
static void init_alloc_chunk_ctl_policy_regular(
				struct btrfs_fs_devices *fs_devices,
				struct alloc_chunk_ctl *ctl)
{
	u64 type = ctl->type;

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		ctl->max_stripe_size = SZ_1G;
		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		/* For larger filesystems, use larger metadata chunks */
		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
			ctl->max_stripe_size = SZ_1G;
		else
			ctl->max_stripe_size = SZ_256M;
		ctl->max_chunk_size = ctl->max_stripe_size;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ctl->max_stripe_size = SZ_32M;
		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
		ctl->devs_max = min_t(int, ctl->devs_max,
				      BTRFS_MAX_DEVS_SYS_CHUNK);
	} else {
		BUG();
	}

	/* We don't want a chunk larger than 10% of writable space */
	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
				  ctl->max_chunk_size);
4876
	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
}

static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
				 struct alloc_chunk_ctl *ctl)
{
	int index = btrfs_bg_flags_to_raid_index(ctl->type);

	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
	ctl->devs_max = btrfs_raid_array[index].devs_max;
	if (!ctl->devs_max)
		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
	ctl->devs_min = btrfs_raid_array[index].devs_min;
	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
	ctl->ncopies = btrfs_raid_array[index].ncopies;
	ctl->nparity = btrfs_raid_array[index].nparity;
	ctl->ndevs = 0;

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
		break;
	default:
		BUG();
	}
}

4904 4905 4906
static int gather_device_info(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
4907
{
4908
	struct btrfs_fs_info *info = fs_devices->fs_info;
4909
	struct btrfs_device *device;
4910
	u64 total_avail;
4911
	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4912
	int ret;
4913 4914 4915
	int ndevs = 0;
	u64 max_avail;
	u64 dev_offset;
4916

4917
	/*
4918 4919
	 * in the first pass through the devices list, we gather information
	 * about the available holes on each device.
4920
	 */
4921
	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4922
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
J
Julia Lawall 已提交
4923
			WARN(1, KERN_ERR
4924
			       "BTRFS: read-only device in alloc_list\n");
4925 4926
			continue;
		}
4927

4928 4929
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
					&device->dev_state) ||
4930
		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4931
			continue;
4932

4933 4934 4935 4936
		if (device->total_bytes > device->bytes_used)
			total_avail = device->total_bytes - device->bytes_used;
		else
			total_avail = 0;
4937 4938

		/* If there is no space on this device, skip it. */
4939
		if (total_avail < ctl->dev_extent_min)
4940
			continue;
4941

4942 4943
		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
					   &max_avail);
4944
		if (ret && ret != -ENOSPC)
4945
			return ret;
4946

4947
		if (ret == 0)
4948
			max_avail = dev_extent_want;
4949

4950
		if (max_avail < ctl->dev_extent_min) {
4951 4952
			if (btrfs_test_opt(info, ENOSPC_DEBUG))
				btrfs_debug(info,
4953
			"%s: devid %llu has no free space, have=%llu want=%llu",
4954
					    __func__, device->devid, max_avail,
4955
					    ctl->dev_extent_min);
4956
			continue;
4957
		}
4958

4959 4960 4961 4962 4963
		if (ndevs == fs_devices->rw_devices) {
			WARN(1, "%s: found more than %llu devices\n",
			     __func__, fs_devices->rw_devices);
			break;
		}
4964 4965 4966 4967 4968 4969
		devices_info[ndevs].dev_offset = dev_offset;
		devices_info[ndevs].max_avail = max_avail;
		devices_info[ndevs].total_avail = total_avail;
		devices_info[ndevs].dev = device;
		++ndevs;
	}
4970
	ctl->ndevs = ndevs;
4971

4972 4973 4974
	/*
	 * now sort the devices by hole size / available space
	 */
4975
	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4976
	     btrfs_cmp_device_info, NULL);
4977

4978 4979 4980
	return 0;
}

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
				      struct btrfs_device_info *devices_info)
{
	/* Number of stripes that count for block group size */
	int data_stripes;

	/*
	 * The primary goal is to maximize the number of stripes, so use as
	 * many devices as possible, even if the stripes are not maximum sized.
	 *
	 * The DUP profile stores more than one stripe per device, the
	 * max_avail is the total size so we have to adjust.
	 */
	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
				   ctl->dev_stripes);
	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;

	/* This will have to be fixed for RAID1 and RAID10 over more drives */
	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;

	/*
	 * Use the number of data stripes to figure out how big this chunk is
	 * really going to be in terms of logical address space, and compare
	 * that answer with the max chunk size. If it's higher, we try to
	 * reduce stripe_size.
	 */
	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
		/*
		 * Reduce stripe_size, round it up to a 16MB boundary again and
		 * then use it, unless it ends up being even bigger than the
		 * previous value we had already.
		 */
		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
							data_stripes), SZ_16M),
				       ctl->stripe_size);
	}

	/* Align to BTRFS_STRIPE_LEN */
	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
	ctl->chunk_size = ctl->stripe_size * data_stripes;

	return 0;
}

static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
{
	struct btrfs_fs_info *info = fs_devices->fs_info;

	/*
	 * Round down to number of usable stripes, devs_increment can be any
	 * number so we can't use round_down() that requires power of 2, while
	 * rounddown is safe.
	 */
	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);

	if (ctl->ndevs < ctl->devs_min) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
			btrfs_debug(info,
	"%s: not enough devices with free space: have=%d minimum required=%d",
				    __func__, ctl->ndevs, ctl->devs_min);
		}
		return -ENOSPC;
	}

	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		return decide_stripe_size_regular(ctl, devices_info);
	default:
		BUG();
	}
}

N
Naohiro Aota 已提交
5057 5058 5059
static int create_chunk(struct btrfs_trans_handle *trans,
			struct alloc_chunk_ctl *ctl,
			struct btrfs_device_info *devices_info)
5060 5061 5062 5063 5064
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct map_lookup *map = NULL;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
N
Naohiro Aota 已提交
5065 5066
	u64 start = ctl->start;
	u64 type = ctl->type;
5067 5068 5069 5070
	int ret;
	int i;
	int j;

N
Naohiro Aota 已提交
5071 5072
	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
	if (!map)
5073
		return -ENOMEM;
N
Naohiro Aota 已提交
5074
	map->num_stripes = ctl->num_stripes;
5075

N
Naohiro Aota 已提交
5076 5077 5078
	for (i = 0; i < ctl->ndevs; ++i) {
		for (j = 0; j < ctl->dev_stripes; ++j) {
			int s = i * ctl->dev_stripes + j;
5079 5080
			map->stripes[s].dev = devices_info[i].dev;
			map->stripes[s].physical = devices_info[i].dev_offset +
N
Naohiro Aota 已提交
5081
						   j * ctl->stripe_size;
5082 5083
		}
	}
5084 5085 5086
	map->stripe_len = BTRFS_STRIPE_LEN;
	map->io_align = BTRFS_STRIPE_LEN;
	map->io_width = BTRFS_STRIPE_LEN;
Y
Yan Zheng 已提交
5087
	map->type = type;
N
Naohiro Aota 已提交
5088
	map->sub_stripes = ctl->sub_stripes;
5089

N
Naohiro Aota 已提交
5090
	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5091

5092
	em = alloc_extent_map();
Y
Yan Zheng 已提交
5093
	if (!em) {
5094
		kfree(map);
N
Naohiro Aota 已提交
5095
		return -ENOMEM;
5096
	}
5097
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5098
	em->map_lookup = map;
Y
Yan Zheng 已提交
5099
	em->start = start;
N
Naohiro Aota 已提交
5100
	em->len = ctl->chunk_size;
Y
Yan Zheng 已提交
5101 5102
	em->block_start = 0;
	em->block_len = em->len;
N
Naohiro Aota 已提交
5103
	em->orig_block_len = ctl->stripe_size;
5104

5105
	em_tree = &info->mapping_tree;
5106
	write_lock(&em_tree->lock);
J
Josef Bacik 已提交
5107
	ret = add_extent_mapping(em_tree, em, 0);
5108
	if (ret) {
5109
		write_unlock(&em_tree->lock);
5110
		free_extent_map(em);
N
Naohiro Aota 已提交
5111
		return ret;
5112
	}
5113 5114
	write_unlock(&em_tree->lock);

N
Naohiro Aota 已提交
5115
	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5116 5117
	if (ret)
		goto error_del_extent;
Y
Yan Zheng 已提交
5118

5119 5120 5121
	for (i = 0; i < map->num_stripes; i++) {
		struct btrfs_device *dev = map->stripes[i].dev;

N
Naohiro Aota 已提交
5122
		btrfs_device_set_bytes_used(dev,
N
Naohiro Aota 已提交
5123
					    dev->bytes_used + ctl->stripe_size);
5124 5125 5126 5127
		if (list_empty(&dev->post_commit_list))
			list_add_tail(&dev->post_commit_list,
				      &trans->transaction->dev_update_list);
	}
5128

N
Naohiro Aota 已提交
5129
	atomic64_sub(ctl->stripe_size * map->num_stripes,
N
Naohiro Aota 已提交
5130
		     &info->free_chunk_space);
5131

5132
	free_extent_map(em);
5133
	check_raid56_incompat_flag(info, type);
5134
	check_raid1c34_incompat_flag(info, type);
D
David Woodhouse 已提交
5135

Y
Yan Zheng 已提交
5136
	return 0;
5137

5138
error_del_extent:
5139 5140 5141 5142 5143 5144 5145 5146
	write_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	write_unlock(&em_tree->lock);

	/* One for our allocation */
	free_extent_map(em);
	/* One for the tree reference */
	free_extent_map(em);
N
Naohiro Aota 已提交
5147 5148 5149 5150

	return ret;
}

5151
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
N
Naohiro Aota 已提交
5152 5153 5154 5155 5156 5157 5158
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct btrfs_fs_devices *fs_devices = info->fs_devices;
	struct btrfs_device_info *devices_info = NULL;
	struct alloc_chunk_ctl ctl;
	int ret;

5159 5160
	lockdep_assert_held(&info->chunk_mutex);

N
Naohiro Aota 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
	if (!alloc_profile_is_valid(type, 0)) {
		ASSERT(0);
		return -EINVAL;
	}

	if (list_empty(&fs_devices->alloc_list)) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG))
			btrfs_debug(info, "%s: no writable device", __func__);
		return -ENOSPC;
	}

	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
		ASSERT(0);
		return -EINVAL;
	}

5178
	ctl.start = find_next_chunk(info);
N
Naohiro Aota 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	ctl.type = type;
	init_alloc_chunk_ctl(fs_devices, &ctl);

	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
			       GFP_NOFS);
	if (!devices_info)
		return -ENOMEM;

	ret = gather_device_info(fs_devices, &ctl, devices_info);
	if (ret < 0)
		goto out;

	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
	if (ret < 0)
		goto out;

	ret = create_chunk(trans, &ctl, devices_info);

out:
5198 5199
	kfree(devices_info);
	return ret;
Y
Yan Zheng 已提交
5200 5201
}

5202 5203 5204 5205 5206 5207 5208
/*
 * Chunk allocation falls into two parts. The first part does work
 * that makes the new allocated chunk usable, but does not do any operation
 * that modifies the chunk tree. The second part does the work that
 * requires modifying the chunk tree. This division is important for the
 * bootstrap process of adding storage to a seed btrfs.
 */
5209
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5210
			     u64 chunk_offset, u64 chunk_size)
Y
Yan Zheng 已提交
5211
{
5212
	struct btrfs_fs_info *fs_info = trans->fs_info;
5213 5214
	struct btrfs_root *extent_root = fs_info->extent_root;
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
5215 5216 5217 5218
	struct btrfs_key key;
	struct btrfs_device *device;
	struct btrfs_chunk *chunk;
	struct btrfs_stripe *stripe;
5219 5220 5221 5222 5223 5224
	struct extent_map *em;
	struct map_lookup *map;
	size_t item_size;
	u64 dev_offset;
	u64 stripe_size;
	int i = 0;
5225
	int ret = 0;
Y
Yan Zheng 已提交
5226

5227
	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5228 5229
	if (IS_ERR(em))
		return PTR_ERR(em);
5230

5231
	map = em->map_lookup;
5232 5233 5234
	item_size = btrfs_chunk_item_size(map->num_stripes);
	stripe_size = em->orig_block_len;

Y
Yan Zheng 已提交
5235
	chunk = kzalloc(item_size, GFP_NOFS);
5236 5237 5238 5239 5240
	if (!chunk) {
		ret = -ENOMEM;
		goto out;
	}

5241 5242 5243 5244 5245 5246 5247
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with the map's stripes, because the device object's id can change
	 * at any time during that final phase of the device replace operation
	 * (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
5248
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5249 5250 5251
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
Y
Yan Zheng 已提交
5252

5253
		ret = btrfs_update_device(trans, device);
5254
		if (ret)
5255
			break;
5256 5257
		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
					     dev_offset, stripe_size);
5258
		if (ret)
5259 5260 5261
			break;
	}
	if (ret) {
5262
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5263
		goto out;
Y
Yan Zheng 已提交
5264 5265 5266
	}

	stripe = &chunk->stripe;
5267 5268 5269
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
5270

5271 5272 5273
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
5274
		stripe++;
5275
	}
5276
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5277

Y
Yan Zheng 已提交
5278
	btrfs_set_stack_chunk_length(chunk, chunk_size);
5279
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
Y
Yan Zheng 已提交
5280 5281 5282 5283 5284
	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
	btrfs_set_stack_chunk_type(chunk, map->type);
	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5285
	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
Y
Yan Zheng 已提交
5286
	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5287

Y
Yan Zheng 已提交
5288 5289 5290
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	key.offset = chunk_offset;
5291

Y
Yan Zheng 已提交
5292
	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5293 5294 5295 5296 5297
	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		/*
		 * TODO: Cleanup of inserted chunk root in case of
		 * failure.
		 */
5298
		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5299
	}
5300

5301
out:
5302
	kfree(chunk);
5303
	free_extent_map(em);
5304
	return ret;
Y
Yan Zheng 已提交
5305
}
5306

5307
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
5308
{
5309
	struct btrfs_fs_info *fs_info = trans->fs_info;
Y
Yan Zheng 已提交
5310 5311 5312
	u64 alloc_profile;
	int ret;

5313
	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5314
	ret = btrfs_alloc_chunk(trans, alloc_profile);
5315 5316
	if (ret)
		return ret;
Y
Yan Zheng 已提交
5317

5318
	alloc_profile = btrfs_system_alloc_profile(fs_info);
5319
	ret = btrfs_alloc_chunk(trans, alloc_profile);
5320
	return ret;
Y
Yan Zheng 已提交
5321 5322
}

5323 5324
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
{
5325
	const int index = btrfs_bg_flags_to_raid_index(map->type);
Y
Yan Zheng 已提交
5326

5327
	return btrfs_raid_array[index].tolerated_failures;
Y
Yan Zheng 已提交
5328 5329
}

5330
int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
Y
Yan Zheng 已提交
5331 5332 5333 5334
{
	struct extent_map *em;
	struct map_lookup *map;
	int readonly = 0;
5335
	int miss_ndevs = 0;
Y
Yan Zheng 已提交
5336 5337
	int i;

5338
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5339
	if (IS_ERR(em))
Y
Yan Zheng 已提交
5340 5341
		return 1;

5342
	map = em->map_lookup;
Y
Yan Zheng 已提交
5343
	for (i = 0; i < map->num_stripes; i++) {
5344 5345
		if (test_bit(BTRFS_DEV_STATE_MISSING,
					&map->stripes[i].dev->dev_state)) {
5346 5347 5348
			miss_ndevs++;
			continue;
		}
5349 5350
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
					&map->stripes[i].dev->dev_state)) {
Y
Yan Zheng 已提交
5351
			readonly = 1;
5352
			goto end;
Y
Yan Zheng 已提交
5353 5354
		}
	}
5355 5356 5357 5358 5359 5360 5361 5362 5363

	/*
	 * If the number of missing devices is larger than max errors,
	 * we can not write the data into that chunk successfully, so
	 * set it readonly.
	 */
	if (miss_ndevs > btrfs_chunk_max_errors(map))
		readonly = 1;
end:
5364
	free_extent_map(em);
Y
Yan Zheng 已提交
5365
	return readonly;
5366 5367
}

5368
void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5369 5370 5371
{
	struct extent_map *em;

C
Chris Mason 已提交
5372
	while (1) {
5373 5374
		write_lock(&tree->lock);
		em = lookup_extent_mapping(tree, 0, (u64)-1);
5375
		if (em)
5376 5377
			remove_extent_mapping(tree, em);
		write_unlock(&tree->lock);
5378 5379 5380 5381 5382 5383 5384 5385 5386
		if (!em)
			break;
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

5387
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5388 5389 5390 5391 5392
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret;

5393
	em = btrfs_get_chunk_map(fs_info, logical, len);
5394 5395 5396 5397 5398 5399 5400
	if (IS_ERR(em))
		/*
		 * We could return errors for these cases, but that could get
		 * ugly and we'd probably do the same thing which is just not do
		 * anything else and exit, so return 1 so the callers don't try
		 * to use other copies.
		 */
5401 5402
		return 1;

5403
	map = em->map_lookup;
5404
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5405
		ret = map->num_stripes;
C
Chris Mason 已提交
5406 5407
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
D
David Woodhouse 已提交
5408 5409 5410
	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		ret = 2;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
L
Liu Bo 已提交
5411 5412 5413
		/*
		 * There could be two corrupted data stripes, we need
		 * to loop retry in order to rebuild the correct data.
5414
		 *
L
Liu Bo 已提交
5415 5416 5417 5418
		 * Fail a stripe at a time on every retry except the
		 * stripe under reconstruction.
		 */
		ret = map->num_stripes;
5419 5420 5421
	else
		ret = 1;
	free_extent_map(em);
5422

5423
	down_read(&fs_info->dev_replace.rwsem);
5424 5425
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
	    fs_info->dev_replace.tgtdev)
5426
		ret++;
5427
	up_read(&fs_info->dev_replace.rwsem);
5428

5429 5430 5431
	return ret;
}

5432
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
D
David Woodhouse 已提交
5433 5434 5435 5436
				    u64 logical)
{
	struct extent_map *em;
	struct map_lookup *map;
5437
	unsigned long len = fs_info->sectorsize;
D
David Woodhouse 已提交
5438

5439
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5440

5441 5442 5443 5444 5445 5446
	if (!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			len = map->stripe_len * nr_data_stripes(map);
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5447 5448 5449
	return len;
}

5450
int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
D
David Woodhouse 已提交
5451 5452 5453 5454 5455
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret = 0;

5456
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5457

5458 5459 5460 5461 5462 5463
	if(!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			ret = 1;
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5464 5465 5466
	return ret;
}

5467
static int find_live_mirror(struct btrfs_fs_info *fs_info,
5468
			    struct map_lookup *map, int first,
5469
			    int dev_replace_is_ongoing)
5470 5471
{
	int i;
5472
	int num_stripes;
5473
	int preferred_mirror;
5474 5475 5476
	int tolerance;
	struct btrfs_device *srcdev;

5477
	ASSERT((map->type &
5478
		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5479 5480 5481 5482 5483 5484

	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		num_stripes = map->sub_stripes;
	else
		num_stripes = map->num_stripes;

5485 5486
	preferred_mirror = first + current->pid % num_stripes;

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
	if (dev_replace_is_ongoing &&
	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
		srcdev = fs_info->dev_replace.srcdev;
	else
		srcdev = NULL;

	/*
	 * try to avoid the drive that is the source drive for a
	 * dev-replace procedure, only choose it if no other non-missing
	 * mirror is available
	 */
	for (tolerance = 0; tolerance < 2; tolerance++) {
5500 5501 5502
		if (map->stripes[preferred_mirror].dev->bdev &&
		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
			return preferred_mirror;
5503
		for (i = first; i < first + num_stripes; i++) {
5504 5505 5506 5507
			if (map->stripes[i].dev->bdev &&
			    (tolerance || map->stripes[i].dev != srcdev))
				return i;
		}
5508
	}
5509

5510 5511 5512
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
5513
	return preferred_mirror;
5514 5515
}

D
David Woodhouse 已提交
5516
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5517
static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
D
David Woodhouse 已提交
5518 5519 5520 5521 5522 5523
{
	int i;
	int again = 1;

	while (again) {
		again = 0;
5524
		for (i = 0; i < num_stripes - 1; i++) {
5525 5526 5527 5528
			/* Swap if parity is on a smaller index */
			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
				swap(bbio->stripes[i], bbio->stripes[i + 1]);
				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
D
David Woodhouse 已提交
5529 5530 5531 5532 5533 5534
				again = 1;
			}
		}
	}
}

5535 5536 5537
static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
{
	struct btrfs_bio *bbio = kzalloc(
5538
		 /* the size of the btrfs_bio */
5539
		sizeof(struct btrfs_bio) +
5540
		/* plus the variable array for the stripes */
5541
		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5542
		/* plus the variable array for the tgt dev */
5543
		sizeof(int) * (real_stripes) +
5544 5545 5546 5547 5548
		/*
		 * plus the raid_map, which includes both the tgt dev
		 * and the stripes
		 */
		sizeof(u64) * (total_stripes),
5549
		GFP_NOFS|__GFP_NOFAIL);
5550 5551

	atomic_set(&bbio->error, 0);
5552
	refcount_set(&bbio->refs, 1);
5553

5554 5555 5556
	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);

5557 5558 5559 5560 5561
	return bbio;
}

void btrfs_get_bbio(struct btrfs_bio *bbio)
{
5562 5563
	WARN_ON(!refcount_read(&bbio->refs));
	refcount_inc(&bbio->refs);
5564 5565 5566 5567 5568 5569
}

void btrfs_put_bbio(struct btrfs_bio *bbio)
{
	if (!bbio)
		return;
5570
	if (refcount_dec_and_test(&bbio->refs))
5571 5572 5573
		kfree(bbio);
}

5574 5575 5576 5577 5578 5579
/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
/*
 * Please note that, discard won't be sent to target device of device
 * replace.
 */
static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5580
					 u64 logical, u64 *length_ret,
5581 5582 5583 5584 5585
					 struct btrfs_bio **bbio_ret)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_bio *bbio;
5586
	u64 length = *length_ret;
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
	u64 offset;
	u64 stripe_nr;
	u64 stripe_nr_end;
	u64 stripe_end_offset;
	u64 stripe_cnt;
	u64 stripe_len;
	u64 stripe_offset;
	u64 num_stripes;
	u32 stripe_index;
	u32 factor = 0;
	u32 sub_stripes = 0;
	u64 stripes_per_dev = 0;
	u32 remaining_stripes = 0;
	u32 last_stripe = 0;
	int ret = 0;
	int i;

	/* discard always return a bbio */
	ASSERT(bbio_ret);

5607
	em = btrfs_get_chunk_map(fs_info, logical, length);
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* we don't discard raid56 yet */
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ret = -EOPNOTSUPP;
		goto out;
	}

	offset = logical - em->start;
5619
	length = min_t(u64, em->start + em->len - logical, length);
5620
	*length_ret = length;
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632

	stripe_len = map->stripe_len;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	stripe_nr = div64_u64(offset, stripe_len);

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_nr * stripe_len;

	stripe_nr_end = round_up(offset + length, map->stripe_len);
5633
	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
	stripe_cnt = stripe_nr_end - stripe_nr;
	stripe_end_offset = stripe_nr_end * map->stripe_len -
			    (offset + length);
	/*
	 * after this, stripe_nr is the number of stripes on this
	 * device we have to walk to find the data, and stripe_index is
	 * the number of our device in the stripe array
	 */
	num_stripes = 1;
	stripe_index = 0;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			 BTRFS_BLOCK_GROUP_RAID10)) {
		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
			sub_stripes = 1;
		else
			sub_stripes = map->sub_stripes;

		factor = map->num_stripes / sub_stripes;
		num_stripes = min_t(u64, map->num_stripes,
				    sub_stripes * stripe_cnt);
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
		stripe_index *= sub_stripes;
		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
					      &remaining_stripes);
		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
		last_stripe *= sub_stripes;
5660
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
				BTRFS_BLOCK_GROUP_DUP)) {
		num_stripes = map->num_stripes;
	} else {
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
					&stripe_index);
	}

	bbio = alloc_btrfs_bio(num_stripes, 0);
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical =
			map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;

		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
				 BTRFS_BLOCK_GROUP_RAID10)) {
			bbio->stripes[i].length = stripes_per_dev *
				map->stripe_len;

			if (i / sub_stripes < remaining_stripes)
				bbio->stripes[i].length +=
					map->stripe_len;

			/*
			 * Special for the first stripe and
			 * the last stripe:
			 *
			 * |-------|...|-------|
			 *     |----------|
			 *    off     end_off
			 */
			if (i < sub_stripes)
				bbio->stripes[i].length -=
					stripe_offset;

			if (stripe_index >= last_stripe &&
			    stripe_index <= (last_stripe +
					     sub_stripes - 1))
				bbio->stripes[i].length -=
					stripe_end_offset;

			if (i == sub_stripes - 1)
				stripe_offset = 0;
		} else {
			bbio->stripes[i].length = length;
		}

		stripe_index++;
		if (stripe_index == map->num_stripes) {
			stripe_index = 0;
			stripe_nr++;
		}
	}

	*bbio_ret = bbio;
	bbio->map_type = map->type;
	bbio->num_stripes = num_stripes;
out:
	free_extent_map(em);
	return ret;
}

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
/*
 * In dev-replace case, for repair case (that's the only case where the mirror
 * is selected explicitly when calling btrfs_map_block), blocks left of the
 * left cursor can also be read from the target drive.
 *
 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
 * array of stripes.
 * For READ, it also needs to be supported using the same mirror number.
 *
 * If the requested block is not left of the left cursor, EIO is returned. This
 * can happen because btrfs_num_copies() returns one more in the dev-replace
 * case.
 */
static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
					 u64 logical, u64 length,
					 u64 srcdev_devid, int *mirror_num,
					 u64 *physical)
{
	struct btrfs_bio *bbio = NULL;
	int num_stripes;
	int index_srcdev = 0;
	int found = 0;
	u64 physical_of_found = 0;
	int i;
	int ret = 0;

	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
				logical, &length, &bbio, 0, 0);
	if (ret) {
		ASSERT(bbio == NULL);
		return ret;
	}

	num_stripes = bbio->num_stripes;
	if (*mirror_num > num_stripes) {
		/*
		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
		 * that means that the requested area is not left of the left
		 * cursor
		 */
		btrfs_put_bbio(bbio);
		return -EIO;
	}

	/*
	 * process the rest of the function using the mirror_num of the source
	 * drive. Therefore look it up first.  At the end, patch the device
	 * pointer to the one of the target drive.
	 */
	for (i = 0; i < num_stripes; i++) {
		if (bbio->stripes[i].dev->devid != srcdev_devid)
			continue;

		/*
		 * In case of DUP, in order to keep it simple, only add the
		 * mirror with the lowest physical address
		 */
		if (found &&
		    physical_of_found <= bbio->stripes[i].physical)
			continue;

		index_srcdev = i;
		found = 1;
		physical_of_found = bbio->stripes[i].physical;
	}

	btrfs_put_bbio(bbio);

	ASSERT(found);
	if (!found)
		return -EIO;

	*mirror_num = index_srcdev + 1;
	*physical = physical_of_found;
	return ret;
}

5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
static void handle_ops_on_dev_replace(enum btrfs_map_op op,
				      struct btrfs_bio **bbio_ret,
				      struct btrfs_dev_replace *dev_replace,
				      int *num_stripes_ret, int *max_errors_ret)
{
	struct btrfs_bio *bbio = *bbio_ret;
	u64 srcdev_devid = dev_replace->srcdev->devid;
	int tgtdev_indexes = 0;
	int num_stripes = *num_stripes_ret;
	int max_errors = *max_errors_ret;
	int i;

	if (op == BTRFS_MAP_WRITE) {
		int index_where_to_add;

		/*
		 * duplicate the write operations while the dev replace
		 * procedure is running. Since the copying of the old disk to
		 * the new disk takes place at run time while the filesystem is
		 * mounted writable, the regular write operations to the old
		 * disk have to be duplicated to go to the new disk as well.
		 *
		 * Note that device->missing is handled by the caller, and that
		 * the write to the old disk is already set up in the stripes
		 * array.
		 */
		index_where_to_add = num_stripes;
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/* write to new disk, too */
				struct btrfs_bio_stripe *new =
					bbio->stripes + index_where_to_add;
				struct btrfs_bio_stripe *old =
					bbio->stripes + i;

				new->physical = old->physical;
				new->length = old->length;
				new->dev = dev_replace->tgtdev;
				bbio->tgtdev_map[i] = index_where_to_add;
				index_where_to_add++;
				max_errors++;
				tgtdev_indexes++;
			}
		}
		num_stripes = index_where_to_add;
	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
		int index_srcdev = 0;
		int found = 0;
		u64 physical_of_found = 0;

		/*
		 * During the dev-replace procedure, the target drive can also
		 * be used to read data in case it is needed to repair a corrupt
		 * block elsewhere. This is possible if the requested area is
		 * left of the left cursor. In this area, the target drive is a
		 * full copy of the source drive.
		 */
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/*
				 * In case of DUP, in order to keep it simple,
				 * only add the mirror with the lowest physical
				 * address
				 */
				if (found &&
				    physical_of_found <=
				     bbio->stripes[i].physical)
					continue;
				index_srcdev = i;
				found = 1;
				physical_of_found = bbio->stripes[i].physical;
			}
		}
		if (found) {
			struct btrfs_bio_stripe *tgtdev_stripe =
				bbio->stripes + num_stripes;

			tgtdev_stripe->physical = physical_of_found;
			tgtdev_stripe->length =
				bbio->stripes[index_srcdev].length;
			tgtdev_stripe->dev = dev_replace->tgtdev;
			bbio->tgtdev_map[index_srcdev] = num_stripes;

			tgtdev_indexes++;
			num_stripes++;
		}
	}

	*num_stripes_ret = num_stripes;
	*max_errors_ret = max_errors;
	bbio->num_tgtdevs = tgtdev_indexes;
	*bbio_ret = bbio;
}

5899 5900 5901 5902 5903
static bool need_full_stripe(enum btrfs_map_op op)
{
	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
}

5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
/*
 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
 *		       tuple. This information is used to calculate how big a
 *		       particular bio can get before it straddles a stripe.
 *
 * @fs_info - the filesystem
 * @logical - address that we want to figure out the geometry of
 * @len	    - the length of IO we are going to perform, starting at @logical
 * @op      - type of operation - write or read
 * @io_geom - pointer used to return values
 *
 * Returns < 0 in case a chunk for the given logical address cannot be found,
 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
 */
int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5919
			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5920 5921 5922 5923 5924 5925 5926 5927 5928
{
	struct extent_map *em;
	struct map_lookup *map;
	u64 offset;
	u64 stripe_offset;
	u64 stripe_nr;
	u64 stripe_len;
	u64 raid56_full_stripe_start = (u64)-1;
	int data_stripes;
5929
	int ret = 0;
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949

	ASSERT(op != BTRFS_MAP_DISCARD);

	em = btrfs_get_chunk_map(fs_info, logical, len);
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* Offset of this logical address in the chunk */
	offset = logical - em->start;
	/* Len of a stripe in a chunk */
	stripe_len = map->stripe_len;
	/* Stripe wher this block falls in */
	stripe_nr = div64_u64(offset, stripe_len);
	/* Offset of stripe in the chunk */
	stripe_offset = stripe_nr * stripe_len;
	if (offset < stripe_offset) {
		btrfs_crit(fs_info,
"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
			stripe_offset, offset, em->start, logical, stripe_len);
5950 5951
		ret = -EINVAL;
		goto out;
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
	}

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_offset;
	data_stripes = nr_data_stripes(map);

	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
		u64 max_len = stripe_len - stripe_offset;

		/*
		 * In case of raid56, we need to know the stripe aligned start
		 */
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			unsigned long full_stripe_len = stripe_len * data_stripes;
			raid56_full_stripe_start = offset;

			/*
			 * Allow a write of a full stripe, but make sure we
			 * don't allow straddling of stripes
			 */
			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
					full_stripe_len);
			raid56_full_stripe_start *= full_stripe_len;

			/*
			 * For writes to RAID[56], allow a full stripeset across
			 * all disks. For other RAID types and for RAID[56]
			 * reads, just allow a single stripe (on a single disk).
			 */
			if (op == BTRFS_MAP_WRITE) {
				max_len = stripe_len * data_stripes -
					  (offset - raid56_full_stripe_start);
			}
		}
		len = min_t(u64, em->len - offset, max_len);
	} else {
		len = em->len - offset;
	}

	io_geom->len = len;
	io_geom->offset = offset;
	io_geom->stripe_len = stripe_len;
	io_geom->stripe_nr = stripe_nr;
	io_geom->stripe_offset = stripe_offset;
	io_geom->raid56_stripe_offset = raid56_full_stripe_start;

5998 5999 6000 6001
out:
	/* once for us */
	free_extent_map(em);
	return ret;
6002 6003
}

6004 6005
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
6006
			     u64 logical, u64 *length,
6007
			     struct btrfs_bio **bbio_ret,
6008
			     int mirror_num, int need_raid_map)
6009 6010 6011
{
	struct extent_map *em;
	struct map_lookup *map;
6012 6013
	u64 stripe_offset;
	u64 stripe_nr;
D
David Woodhouse 已提交
6014
	u64 stripe_len;
6015
	u32 stripe_index;
6016
	int data_stripes;
6017
	int i;
L
Li Zefan 已提交
6018
	int ret = 0;
6019
	int num_stripes;
6020
	int max_errors = 0;
6021
	int tgtdev_indexes = 0;
6022
	struct btrfs_bio *bbio = NULL;
6023 6024 6025
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
	int dev_replace_is_ongoing = 0;
	int num_alloc_stripes;
6026 6027
	int patch_the_first_stripe_for_dev_replace = 0;
	u64 physical_to_patch_in_first_stripe = 0;
D
David Woodhouse 已提交
6028
	u64 raid56_full_stripe_start = (u64)-1;
6029 6030 6031
	struct btrfs_io_geometry geom;

	ASSERT(bbio_ret);
6032
	ASSERT(op != BTRFS_MAP_DISCARD);
6033

6034 6035 6036
	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
	if (ret < 0)
		return ret;
6037

6038
	em = btrfs_get_chunk_map(fs_info, logical, *length);
6039
	ASSERT(!IS_ERR(em));
6040
	map = em->map_lookup;
6041

6042 6043 6044 6045 6046
	*length = geom.len;
	stripe_len = geom.stripe_len;
	stripe_nr = geom.stripe_nr;
	stripe_offset = geom.stripe_offset;
	raid56_full_stripe_start = geom.raid56_stripe_offset;
6047
	data_stripes = nr_data_stripes(map);
6048

6049
	down_read(&dev_replace->rwsem);
6050
	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6051 6052 6053 6054
	/*
	 * Hold the semaphore for read during the whole operation, write is
	 * requested at commit time but must wait.
	 */
6055
	if (!dev_replace_is_ongoing)
6056
		up_read(&dev_replace->rwsem);
6057

6058
	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6059
	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6060 6061 6062 6063 6064
		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
						    dev_replace->srcdev->devid,
						    &mirror_num,
					    &physical_to_patch_in_first_stripe);
		if (ret)
6065
			goto out;
6066 6067
		else
			patch_the_first_stripe_for_dev_replace = 1;
6068 6069 6070 6071
	} else if (mirror_num > map->num_stripes) {
		mirror_num = 0;
	}

6072
	num_stripes = 1;
6073
	stripe_index = 0;
6074
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6075 6076
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6077
		if (!need_full_stripe(op))
6078
			mirror_num = 1;
6079
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6080
		if (need_full_stripe(op))
6081
			num_stripes = map->num_stripes;
6082
		else if (mirror_num)
6083
			stripe_index = mirror_num - 1;
6084
		else {
6085 6086
			stripe_index = find_live_mirror(fs_info, map, 0,
					    dev_replace_is_ongoing);
6087
			mirror_num = stripe_index + 1;
6088
		}
6089

6090
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6091
		if (need_full_stripe(op)) {
6092
			num_stripes = map->num_stripes;
6093
		} else if (mirror_num) {
6094
			stripe_index = mirror_num - 1;
6095 6096 6097
		} else {
			mirror_num = 1;
		}
6098

C
Chris Mason 已提交
6099
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6100
		u32 factor = map->num_stripes / map->sub_stripes;
C
Chris Mason 已提交
6101

6102
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
C
Chris Mason 已提交
6103 6104
		stripe_index *= map->sub_stripes;

6105
		if (need_full_stripe(op))
6106
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
6107 6108
		else if (mirror_num)
			stripe_index += mirror_num - 1;
6109
		else {
J
Jan Schmidt 已提交
6110
			int old_stripe_index = stripe_index;
6111 6112 6113
			stripe_index = find_live_mirror(fs_info, map,
					      stripe_index,
					      dev_replace_is_ongoing);
J
Jan Schmidt 已提交
6114
			mirror_num = stripe_index - old_stripe_index + 1;
6115
		}
D
David Woodhouse 已提交
6116

6117
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6118
		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
D
David Woodhouse 已提交
6119
			/* push stripe_nr back to the start of the full stripe */
6120
			stripe_nr = div64_u64(raid56_full_stripe_start,
6121
					stripe_len * data_stripes);
D
David Woodhouse 已提交
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135

			/* RAID[56] write or recovery. Return all stripes */
			num_stripes = map->num_stripes;
			max_errors = nr_parity_stripes(map);

			*length = map->stripe_len;
			stripe_index = 0;
			stripe_offset = 0;
		} else {
			/*
			 * Mirror #0 or #1 means the original data block.
			 * Mirror #2 is RAID5 parity block.
			 * Mirror #3 is RAID6 Q block.
			 */
6136
			stripe_nr = div_u64_rem(stripe_nr,
6137
					data_stripes, &stripe_index);
D
David Woodhouse 已提交
6138
			if (mirror_num > 1)
6139
				stripe_index = data_stripes + mirror_num - 2;
D
David Woodhouse 已提交
6140 6141

			/* We distribute the parity blocks across stripes */
6142 6143
			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
					&stripe_index);
6144
			if (!need_full_stripe(op) && mirror_num <= 1)
6145
				mirror_num = 1;
D
David Woodhouse 已提交
6146
		}
6147 6148
	} else {
		/*
6149 6150 6151
		 * after this, stripe_nr is the number of stripes on this
		 * device we have to walk to find the data, and stripe_index is
		 * the number of our device in the stripe array
6152
		 */
6153 6154
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6155
		mirror_num = stripe_index + 1;
6156
	}
6157
	if (stripe_index >= map->num_stripes) {
J
Jeff Mahoney 已提交
6158 6159
		btrfs_crit(fs_info,
			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6160 6161 6162 6163
			   stripe_index, map->num_stripes);
		ret = -EINVAL;
		goto out;
	}
6164

6165
	num_alloc_stripes = num_stripes;
6166
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6167
		if (op == BTRFS_MAP_WRITE)
6168
			num_alloc_stripes <<= 1;
6169
		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6170
			num_alloc_stripes++;
6171
		tgtdev_indexes = num_stripes;
6172
	}
6173

6174
	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
L
Li Zefan 已提交
6175 6176 6177 6178
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}
6179 6180 6181 6182 6183 6184 6185

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
		stripe_index++;
	}
L
Li Zefan 已提交
6186

6187
	/* build raid_map */
6188 6189
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
	    (need_full_stripe(op) || mirror_num > 1)) {
6190
		u64 tmp;
6191
		unsigned rot;
6192 6193

		/* Work out the disk rotation on this stripe-set */
6194
		div_u64_rem(stripe_nr, num_stripes, &rot);
6195 6196

		/* Fill in the logical address of each stripe */
6197 6198
		tmp = stripe_nr * data_stripes;
		for (i = 0; i < data_stripes; i++)
6199 6200 6201 6202 6203 6204 6205 6206
			bbio->raid_map[(i+rot) % num_stripes] =
				em->start + (tmp + i) * map->stripe_len;

		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
			bbio->raid_map[(i+rot+1) % num_stripes] =
				RAID6_Q_STRIPE;

6207
		sort_parity_stripes(bbio, num_stripes);
6208
	}
L
Li Zefan 已提交
6209

6210
	if (need_full_stripe(op))
6211
		max_errors = btrfs_chunk_max_errors(map);
L
Li Zefan 已提交
6212

6213
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6214
	    need_full_stripe(op)) {
6215 6216
		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
					  &max_errors);
6217 6218
	}

L
Li Zefan 已提交
6219
	*bbio_ret = bbio;
Z
Zhao Lei 已提交
6220
	bbio->map_type = map->type;
L
Li Zefan 已提交
6221 6222 6223
	bbio->num_stripes = num_stripes;
	bbio->max_errors = max_errors;
	bbio->mirror_num = mirror_num;
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235

	/*
	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
	 * mirror_num == num_stripes + 1 && dev_replace target drive is
	 * available as a mirror
	 */
	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
		WARN_ON(num_stripes > 1);
		bbio->stripes[0].dev = dev_replace->tgtdev;
		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
		bbio->mirror_num = map->num_stripes + 1;
	}
6236
out:
6237
	if (dev_replace_is_ongoing) {
6238 6239
		lockdep_assert_held(&dev_replace->rwsem);
		/* Unlock and let waiting writers proceed */
6240
		up_read(&dev_replace->rwsem);
6241
	}
6242
	free_extent_map(em);
L
Li Zefan 已提交
6243
	return ret;
6244 6245
}

6246
int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6247
		      u64 logical, u64 *length,
6248
		      struct btrfs_bio **bbio_ret, int mirror_num)
6249
{
6250 6251 6252 6253
	if (op == BTRFS_MAP_DISCARD)
		return __btrfs_map_block_for_discard(fs_info, logical,
						     length, bbio_ret);

6254
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6255
				 mirror_num, 0);
6256 6257
}

6258
/* For Scrub/replace */
6259
int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6260
		     u64 logical, u64 *length,
6261
		     struct btrfs_bio **bbio_ret)
6262
{
6263
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6264 6265
}

6266
static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6267
{
6268 6269
	bio->bi_private = bbio->private;
	bio->bi_end_io = bbio->end_io;
6270
	bio_endio(bio);
6271

6272
	btrfs_put_bbio(bbio);
6273 6274
}

6275
static void btrfs_end_bio(struct bio *bio)
6276
{
6277
	struct btrfs_bio *bbio = bio->bi_private;
6278
	int is_orig_bio = 0;
6279

6280
	if (bio->bi_status) {
6281
		atomic_inc(&bbio->error);
6282 6283
		if (bio->bi_status == BLK_STS_IOERR ||
		    bio->bi_status == BLK_STS_TARGET) {
6284
			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6285

6286 6287 6288
			ASSERT(dev->bdev);
			if (bio_op(bio) == REQ_OP_WRITE)
				btrfs_dev_stat_inc_and_print(dev,
6289
						BTRFS_DEV_STAT_WRITE_ERRS);
6290 6291
			else if (!(bio->bi_opf & REQ_RAHEAD))
				btrfs_dev_stat_inc_and_print(dev,
6292
						BTRFS_DEV_STAT_READ_ERRS);
6293 6294
			if (bio->bi_opf & REQ_PREFLUSH)
				btrfs_dev_stat_inc_and_print(dev,
6295
						BTRFS_DEV_STAT_FLUSH_ERRS);
6296 6297
		}
	}
6298

6299
	if (bio == bbio->orig_bio)
6300 6301
		is_orig_bio = 1;

6302 6303
	btrfs_bio_counter_dec(bbio->fs_info);

6304
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6305 6306
		if (!is_orig_bio) {
			bio_put(bio);
6307
			bio = bbio->orig_bio;
6308
		}
6309

6310
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6311
		/* only send an error to the higher layers if it is
D
David Woodhouse 已提交
6312
		 * beyond the tolerance of the btrfs bio
6313
		 */
6314
		if (atomic_read(&bbio->error) > bbio->max_errors) {
6315
			bio->bi_status = BLK_STS_IOERR;
6316
		} else {
6317 6318 6319 6320
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
6321
			bio->bi_status = BLK_STS_OK;
6322
		}
6323

6324
		btrfs_end_bbio(bbio, bio);
6325
	} else if (!is_orig_bio) {
6326 6327 6328 6329
		bio_put(bio);
	}
}

6330
static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6331
			      u64 physical, struct btrfs_device *dev)
6332
{
6333
	struct btrfs_fs_info *fs_info = bbio->fs_info;
6334 6335

	bio->bi_private = bbio;
6336
	btrfs_io_bio(bio)->device = dev;
6337
	bio->bi_end_io = btrfs_end_bio;
6338
	bio->bi_iter.bi_sector = physical >> 9;
6339 6340 6341
	btrfs_debug_in_rcu(fs_info,
	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6342 6343
		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
		dev->devid, bio->bi_iter.bi_size);
6344
	bio_set_dev(bio, dev->bdev);
6345

6346
	btrfs_bio_counter_inc_noblocked(fs_info);
6347

6348
	btrfsic_submit_bio(bio);
6349 6350 6351 6352 6353 6354
}

static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
{
	atomic_inc(&bbio->error);
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6355
		/* Should be the original bio. */
6356 6357
		WARN_ON(bio != bbio->orig_bio);

6358
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6359
		bio->bi_iter.bi_sector = logical >> 9;
6360 6361 6362 6363
		if (atomic_read(&bbio->error) > bbio->max_errors)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_status = BLK_STS_OK;
6364
		btrfs_end_bbio(bbio, bio);
6365 6366 6367
	}
}

6368
blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6369
			   int mirror_num)
6370 6371
{
	struct btrfs_device *dev;
6372
	struct bio *first_bio = bio;
6373
	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6374 6375 6376
	u64 length = 0;
	u64 map_length;
	int ret;
6377 6378
	int dev_nr;
	int total_devs;
6379
	struct btrfs_bio *bbio = NULL;
6380

6381
	length = bio->bi_iter.bi_size;
6382
	map_length = length;
6383

6384
	btrfs_bio_counter_inc_blocked(fs_info);
6385
	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
M
Mike Christie 已提交
6386
				&map_length, &bbio, mirror_num, 1);
6387
	if (ret) {
6388
		btrfs_bio_counter_dec(fs_info);
6389
		return errno_to_blk_status(ret);
6390
	}
6391

6392
	total_devs = bbio->num_stripes;
D
David Woodhouse 已提交
6393 6394 6395
	bbio->orig_bio = first_bio;
	bbio->private = first_bio->bi_private;
	bbio->end_io = first_bio->bi_end_io;
6396
	bbio->fs_info = fs_info;
D
David Woodhouse 已提交
6397 6398
	atomic_set(&bbio->stripes_pending, bbio->num_stripes);

6399
	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
M
Mike Christie 已提交
6400
	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
D
David Woodhouse 已提交
6401 6402
		/* In this case, map_length has been set to the length of
		   a single stripe; not the whole write */
M
Mike Christie 已提交
6403
		if (bio_op(bio) == REQ_OP_WRITE) {
6404 6405
			ret = raid56_parity_write(fs_info, bio, bbio,
						  map_length);
D
David Woodhouse 已提交
6406
		} else {
6407 6408
			ret = raid56_parity_recover(fs_info, bio, bbio,
						    map_length, mirror_num, 1);
D
David Woodhouse 已提交
6409
		}
6410

6411
		btrfs_bio_counter_dec(fs_info);
6412
		return errno_to_blk_status(ret);
D
David Woodhouse 已提交
6413 6414
	}

6415
	if (map_length < length) {
6416
		btrfs_crit(fs_info,
J
Jeff Mahoney 已提交
6417 6418
			   "mapping failed logical %llu bio len %llu len %llu",
			   logical, length, map_length);
6419 6420
		BUG();
	}
6421

6422
	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6423
		dev = bbio->stripes[dev_nr].dev;
6424 6425
		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
						   &dev->dev_state) ||
6426 6427
		    (bio_op(first_bio) == REQ_OP_WRITE &&
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6428 6429 6430 6431
			bbio_error(bbio, first_bio, logical);
			continue;
		}

6432
		if (dev_nr < total_devs - 1)
6433
			bio = btrfs_bio_clone(first_bio);
6434
		else
6435
			bio = first_bio;
6436

6437
		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6438
	}
6439
	btrfs_bio_counter_dec(fs_info);
6440
	return BLK_STS_OK;
6441 6442
}

6443 6444 6445 6446 6447 6448 6449 6450 6451
/*
 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 * return NULL.
 *
 * If devid and uuid are both specified, the match must be exact, otherwise
 * only devid is used.
 *
 * If @seed is true, traverse through the seed devices.
 */
6452
struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6453 6454
				       u64 devid, u8 *uuid, u8 *fsid,
				       bool seed)
6455
{
Y
Yan Zheng 已提交
6456
	struct btrfs_device *device;
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
	struct btrfs_fs_devices *seed_devs;

	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
		list_for_each_entry(device, &fs_devices->devices, dev_list) {
			if (device->devid == devid &&
			    (!uuid || memcmp(device->uuid, uuid,
					     BTRFS_UUID_SIZE) == 0))
				return device;
		}
	}
Y
Yan Zheng 已提交
6467

6468
	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
Y
Yan Zheng 已提交
6469
		if (!fsid ||
6470 6471
		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
			list_for_each_entry(device, &seed_devs->devices,
6472 6473 6474 6475 6476 6477
					    dev_list) {
				if (device->devid == devid &&
				    (!uuid || memcmp(device->uuid, uuid,
						     BTRFS_UUID_SIZE) == 0))
					return device;
			}
Y
Yan Zheng 已提交
6478 6479
		}
	}
6480

Y
Yan Zheng 已提交
6481
	return NULL;
6482 6483
}

6484
static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6485 6486 6487
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
6488
	unsigned int nofs_flag;
6489

6490 6491 6492 6493 6494 6495 6496
	/*
	 * We call this under the chunk_mutex, so we want to use NOFS for this
	 * allocation, however we don't want to change btrfs_alloc_device() to
	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
	 * places.
	 */
	nofs_flag = memalloc_nofs_save();
6497
	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6498
	memalloc_nofs_restore(nofs_flag);
6499
	if (IS_ERR(device))
6500
		return device;
6501 6502

	list_add(&device->dev_list, &fs_devices->devices);
Y
Yan Zheng 已提交
6503
	device->fs_devices = fs_devices;
6504
	fs_devices->num_devices++;
6505

6506
	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6507
	fs_devices->missing_devices++;
6508

6509 6510 6511
	return device;
}

6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
/**
 * btrfs_alloc_device - allocate struct btrfs_device
 * @fs_info:	used only for generating a new devid, can be NULL if
 *		devid is provided (i.e. @devid != NULL).
 * @devid:	a pointer to devid for this device.  If NULL a new devid
 *		is generated.
 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
 *		is generated.
 *
 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6522
 * on error.  Returned struct is not linked onto any lists and must be
6523
 * destroyed with btrfs_free_device.
6524 6525 6526 6527 6528 6529 6530 6531
 */
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
					const u64 *devid,
					const u8 *uuid)
{
	struct btrfs_device *dev;
	u64 tmp;

6532
	if (WARN_ON(!devid && !fs_info))
6533 6534
		return ERR_PTR(-EINVAL);

6535
	dev = __alloc_device(fs_info);
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
	if (IS_ERR(dev))
		return dev;

	if (devid)
		tmp = *devid;
	else {
		int ret;

		ret = find_next_devid(fs_info, &tmp);
		if (ret) {
6546
			btrfs_free_device(dev);
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
			return ERR_PTR(ret);
		}
	}
	dev->devid = tmp;

	if (uuid)
		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
	else
		generate_random_uuid(dev->uuid);

	return dev;
}

6560
static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6561
					u64 devid, u8 *uuid, bool error)
6562
{
6563 6564 6565 6566 6567 6568
	if (error)
		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
	else
		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
6569 6570
}

6571 6572 6573 6574
static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
{
	int index = btrfs_bg_flags_to_raid_index(type);
	int ncopies = btrfs_raid_array[index].ncopies;
6575
	const int nparity = btrfs_raid_array[index].nparity;
6576 6577
	int data_stripes;

6578 6579 6580
	if (nparity)
		data_stripes = num_stripes - nparity;
	else
6581
		data_stripes = num_stripes / ncopies;
6582

6583 6584 6585
	return div_u64(chunk_len, data_stripes);
}

6586
static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6587 6588
			  struct btrfs_chunk *chunk)
{
6589
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6590
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
	u8 uuid[BTRFS_UUID_SIZE];
	int num_stripes;
	int ret;
	int i;

	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

6605 6606 6607 6608 6609
	/*
	 * Only need to verify chunk item if we're reading from sys chunk array,
	 * as chunk item in tree block is already verified by tree-checker.
	 */
	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6610
		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6611 6612 6613
		if (ret)
			return ret;
	}
6614

6615 6616 6617
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, logical, 1);
	read_unlock(&map_tree->lock);
6618 6619 6620 6621 6622 6623 6624 6625 6626

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

6627
	em = alloc_extent_map();
6628 6629
	if (!em)
		return -ENOMEM;
6630
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6631 6632 6633 6634 6635
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

6636
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6637
	em->map_lookup = map;
6638 6639
	em->start = logical;
	em->len = length;
6640
	em->orig_start = 0;
6641
	em->block_start = 0;
C
Chris Mason 已提交
6642
	em->block_len = em->len;
6643

6644 6645 6646 6647 6648
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
6649
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6650
	map->verified_stripes = 0;
6651 6652
	em->orig_block_len = calc_stripe_length(map->type, em->len,
						map->num_stripes);
6653 6654 6655 6656
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6657 6658 6659
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
6660
		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6661
							devid, uuid, NULL, true);
6662
		if (!map->stripes[i].dev &&
6663
		    !btrfs_test_opt(fs_info, DEGRADED)) {
6664
			free_extent_map(em);
6665
			btrfs_report_missing_device(fs_info, devid, uuid, true);
6666
			return -ENOENT;
6667
		}
6668 6669
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
6670 6671
				add_missing_dev(fs_info->fs_devices, devid,
						uuid);
6672
			if (IS_ERR(map->stripes[i].dev)) {
6673
				free_extent_map(em);
6674 6675 6676 6677
				btrfs_err(fs_info,
					"failed to init missing dev %llu: %ld",
					devid, PTR_ERR(map->stripes[i].dev));
				return PTR_ERR(map->stripes[i].dev);
6678
			}
6679
			btrfs_report_missing_device(fs_info, devid, uuid, false);
6680
		}
6681 6682 6683
		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				&(map->stripes[i].dev->dev_state));

6684 6685
	}

6686 6687 6688
	write_lock(&map_tree->lock);
	ret = add_extent_mapping(map_tree, em, 0);
	write_unlock(&map_tree->lock);
6689 6690 6691 6692 6693
	if (ret < 0) {
		btrfs_err(fs_info,
			  "failed to add chunk map, start=%llu len=%llu: %d",
			  em->start, em->len, ret);
	}
6694 6695
	free_extent_map(em);

6696
	return ret;
6697 6698
}

6699
static void fill_device_from_item(struct extent_buffer *leaf,
6700 6701 6702 6703 6704 6705
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
6706 6707
	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->total_bytes = device->disk_total_bytes;
6708
	device->commit_total_bytes = device->disk_total_bytes;
6709
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6710
	device->commit_bytes_used = device->bytes_used;
6711 6712 6713 6714
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6715
	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6716
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6717

6718
	ptr = btrfs_device_uuid(dev_item);
6719
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6720 6721
}

6722
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6723
						  u8 *fsid)
Y
Yan Zheng 已提交
6724 6725 6726 6727
{
	struct btrfs_fs_devices *fs_devices;
	int ret;

6728
	lockdep_assert_held(&uuid_mutex);
D
David Sterba 已提交
6729
	ASSERT(fsid);
Y
Yan Zheng 已提交
6730

6731
	/* This will match only for multi-device seed fs */
6732
	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6733
		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6734 6735
			return fs_devices;

Y
Yan Zheng 已提交
6736

6737
	fs_devices = find_fsid(fsid, NULL);
Y
Yan Zheng 已提交
6738
	if (!fs_devices) {
6739
		if (!btrfs_test_opt(fs_info, DEGRADED))
6740 6741
			return ERR_PTR(-ENOENT);

6742
		fs_devices = alloc_fs_devices(fsid, NULL);
6743 6744 6745
		if (IS_ERR(fs_devices))
			return fs_devices;

6746
		fs_devices->seeding = true;
6747 6748
		fs_devices->opened = 1;
		return fs_devices;
Y
Yan Zheng 已提交
6749
	}
Y
Yan Zheng 已提交
6750

6751 6752 6753 6754
	/*
	 * Upon first call for a seed fs fsid, just create a private copy of the
	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
	 */
Y
Yan Zheng 已提交
6755
	fs_devices = clone_fs_devices(fs_devices);
6756 6757
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
6758

6759
	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6760 6761
	if (ret) {
		free_fs_devices(fs_devices);
6762
		return ERR_PTR(ret);
6763
	}
Y
Yan Zheng 已提交
6764 6765

	if (!fs_devices->seeding) {
6766
		close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
6767
		free_fs_devices(fs_devices);
6768
		return ERR_PTR(-EINVAL);
Y
Yan Zheng 已提交
6769 6770
	}

6771
	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6772

6773
	return fs_devices;
Y
Yan Zheng 已提交
6774 6775
}

6776
static int read_one_dev(struct extent_buffer *leaf,
6777 6778
			struct btrfs_dev_item *dev_item)
{
6779
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6780
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6781 6782 6783
	struct btrfs_device *device;
	u64 devid;
	int ret;
6784
	u8 fs_uuid[BTRFS_FSID_SIZE];
6785 6786
	u8 dev_uuid[BTRFS_UUID_SIZE];

6787
	devid = btrfs_device_id(leaf, dev_item);
6788
	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6789
			   BTRFS_UUID_SIZE);
6790
	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6791
			   BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
6792

6793
	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6794
		fs_devices = open_seed_devices(fs_info, fs_uuid);
6795 6796
		if (IS_ERR(fs_devices))
			return PTR_ERR(fs_devices);
Y
Yan Zheng 已提交
6797 6798
	}

6799
	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6800
				   fs_uuid, true);
6801
	if (!device) {
6802
		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6803 6804
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, true);
6805
			return -ENOENT;
6806
		}
Y
Yan Zheng 已提交
6807

6808
		device = add_missing_dev(fs_devices, devid, dev_uuid);
6809 6810 6811 6812 6813 6814
		if (IS_ERR(device)) {
			btrfs_err(fs_info,
				"failed to add missing dev %llu: %ld",
				devid, PTR_ERR(device));
			return PTR_ERR(device);
		}
6815
		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6816
	} else {
6817
		if (!device->bdev) {
6818 6819 6820
			if (!btrfs_test_opt(fs_info, DEGRADED)) {
				btrfs_report_missing_device(fs_info,
						devid, dev_uuid, true);
6821
				return -ENOENT;
6822 6823 6824
			}
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, false);
6825
		}
6826

6827 6828
		if (!device->bdev &&
		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6829 6830 6831 6832 6833 6834
			/*
			 * this happens when a device that was properly setup
			 * in the device info lists suddenly goes bad.
			 * device->bdev is NULL, and so we have to set
			 * device->missing to one here
			 */
6835
			device->fs_devices->missing_devices++;
6836
			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
Y
Yan Zheng 已提交
6837
		}
6838 6839 6840

		/* Move the device to its own fs_devices */
		if (device->fs_devices != fs_devices) {
6841 6842
			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
							&device->dev_state));
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852

			list_move(&device->dev_list, &fs_devices->devices);
			device->fs_devices->num_devices--;
			fs_devices->num_devices++;

			device->fs_devices->missing_devices--;
			fs_devices->missing_devices++;

			device->fs_devices = fs_devices;
		}
Y
Yan Zheng 已提交
6853 6854
	}

6855
	if (device->fs_devices != fs_info->fs_devices) {
6856
		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
Y
Yan Zheng 已提交
6857 6858 6859
		if (device->generation !=
		    btrfs_device_generation(leaf, dev_item))
			return -EINVAL;
6860
	}
6861 6862

	fill_device_from_item(leaf, dev_item, device);
6863
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6864
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6865
	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
Y
Yan Zheng 已提交
6866
		device->fs_devices->total_rw_bytes += device->total_bytes;
6867 6868
		atomic64_add(device->total_bytes - device->bytes_used,
				&fs_info->free_chunk_space);
6869
	}
6870 6871 6872 6873
	ret = 0;
	return ret;
}

6874
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6875
{
6876
	struct btrfs_root *root = fs_info->tree_root;
6877
	struct btrfs_super_block *super_copy = fs_info->super_copy;
6878
	struct extent_buffer *sb;
6879 6880
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
6881 6882
	u8 *array_ptr;
	unsigned long sb_array_offset;
6883
	int ret = 0;
6884 6885 6886
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
6887
	u32 cur_offset;
6888
	u64 type;
6889
	struct btrfs_key key;
6890

6891
	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6892 6893 6894 6895 6896
	/*
	 * This will create extent buffer of nodesize, superblock size is
	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
	 * overallocate but we can keep it as-is, only the first page is used.
	 */
6897
	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6898 6899
	if (IS_ERR(sb))
		return PTR_ERR(sb);
6900
	set_extent_buffer_uptodate(sb);
6901
	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6902
	/*
6903
	 * The sb extent buffer is artificial and just used to read the system array.
6904
	 * set_extent_buffer_uptodate() call does not properly mark all it's
6905 6906 6907 6908 6909 6910 6911 6912 6913
	 * pages up-to-date when the page is larger: extent does not cover the
	 * whole page and consequently check_page_uptodate does not find all
	 * the page's extents up-to-date (the hole beyond sb),
	 * write_extent_buffer then triggers a WARN_ON.
	 *
	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
	 * but sb spans only this function. Add an explicit SetPageUptodate call
	 * to silence the warning eg. on PowerPC 64.
	 */
6914
	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6915
		SetPageUptodate(sb->pages[0]);
6916

6917
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6918 6919
	array_size = btrfs_super_sys_array_size(super_copy);

6920 6921 6922
	array_ptr = super_copy->sys_chunk_array;
	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur_offset = 0;
6923

6924 6925
	while (cur_offset < array_size) {
		disk_key = (struct btrfs_disk_key *)array_ptr;
6926 6927 6928 6929
		len = sizeof(*disk_key);
		if (cur_offset + len > array_size)
			goto out_short_read;

6930 6931
		btrfs_disk_key_to_cpu(&key, disk_key);

6932 6933 6934
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6935

6936 6937 6938 6939 6940 6941 6942
		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
			btrfs_err(fs_info,
			    "unexpected item type %u in sys_array at offset %u",
				  (u32)key.type, cur_offset);
			ret = -EIO;
			break;
		}
6943

6944 6945 6946 6947 6948 6949 6950 6951
		chunk = (struct btrfs_chunk *)sb_array_offset;
		/*
		 * At least one btrfs_chunk with one stripe must be present,
		 * exact stripe count check comes afterwards
		 */
		len = btrfs_chunk_item_size(1);
		if (cur_offset + len > array_size)
			goto out_short_read;
6952

6953 6954 6955 6956 6957 6958 6959 6960
		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
		if (!num_stripes) {
			btrfs_err(fs_info,
			"invalid number of stripes %u in sys_array at offset %u",
				  num_stripes, cur_offset);
			ret = -EIO;
			break;
		}
6961

6962 6963
		type = btrfs_chunk_type(sb, chunk);
		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6964
			btrfs_err(fs_info,
6965 6966
			"invalid chunk type %llu in sys_array at offset %u",
				  type, cur_offset);
6967 6968
			ret = -EIO;
			break;
6969
		}
6970 6971 6972 6973 6974 6975 6976 6977 6978

		len = btrfs_chunk_item_size(num_stripes);
		if (cur_offset + len > array_size)
			goto out_short_read;

		ret = read_one_chunk(&key, sb, chunk);
		if (ret)
			break;

6979 6980 6981
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6982
	}
6983
	clear_extent_buffer_uptodate(sb);
6984
	free_extent_buffer_stale(sb);
6985
	return ret;
6986 6987

out_short_read:
6988
	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6989
			len, cur_offset);
6990
	clear_extent_buffer_uptodate(sb);
6991
	free_extent_buffer_stale(sb);
6992
	return -EIO;
6993 6994
}

6995 6996 6997
/*
 * Check if all chunks in the fs are OK for read-write degraded mount
 *
6998 6999
 * If the @failing_dev is specified, it's accounted as missing.
 *
7000 7001 7002
 * Return true if all chunks meet the minimal RW mount requirements.
 * Return false if any chunk doesn't meet the minimal RW mount requirements.
 */
7003 7004
bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
					struct btrfs_device *failing_dev)
7005
{
7006
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7007 7008 7009 7010
	struct extent_map *em;
	u64 next_start = 0;
	bool ret = true;

7011 7012 7013
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
	read_unlock(&map_tree->lock);
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031
	/* No chunk at all? Return false anyway */
	if (!em) {
		ret = false;
		goto out;
	}
	while (em) {
		struct map_lookup *map;
		int missing = 0;
		int max_tolerated;
		int i;

		map = em->map_lookup;
		max_tolerated =
			btrfs_get_num_tolerated_disk_barrier_failures(
					map->type);
		for (i = 0; i < map->num_stripes; i++) {
			struct btrfs_device *dev = map->stripes[i].dev;

7032 7033
			if (!dev || !dev->bdev ||
			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7034 7035
			    dev->last_flush_error)
				missing++;
7036 7037
			else if (failing_dev && failing_dev == dev)
				missing++;
7038 7039
		}
		if (missing > max_tolerated) {
7040 7041
			if (!failing_dev)
				btrfs_warn(fs_info,
7042
	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7043 7044 7045 7046 7047 7048 7049 7050
				   em->start, missing, max_tolerated);
			free_extent_map(em);
			ret = false;
			goto out;
		}
		next_start = extent_map_end(em);
		free_extent_map(em);

7051 7052
		read_lock(&map_tree->lock);
		em = lookup_extent_mapping(map_tree, next_start,
7053
					   (u64)(-1) - next_start);
7054
		read_unlock(&map_tree->lock);
7055 7056 7057 7058 7059
	}
out:
	return ret;
}

7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
static void readahead_tree_node_children(struct extent_buffer *node)
{
	int i;
	const int nr_items = btrfs_header_nritems(node);

	for (i = 0; i < nr_items; i++) {
		u64 start;

		start = btrfs_node_blockptr(node, i);
		readahead_tree_block(node->fs_info, start);
	}
}

7073
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7074
{
7075
	struct btrfs_root *root = fs_info->chunk_root;
7076 7077 7078 7079 7080 7081
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;
7082
	u64 total_dev = 0;
7083
	u64 last_ra_node = 0;
7084 7085 7086 7087 7088

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

7089 7090 7091 7092
	/*
	 * uuid_mutex is needed only if we are mounting a sprout FS
	 * otherwise we don't need it.
	 */
7093 7094
	mutex_lock(&uuid_mutex);

7095 7096 7097 7098 7099 7100 7101 7102
	/*
	 * It is possible for mount and umount to race in such a way that
	 * we execute this code path, but open_fs_devices failed to clear
	 * total_rw_bytes. We certainly want it cleared before reading the
	 * device items, so clear it here.
	 */
	fs_info->fs_devices->total_rw_bytes = 0;

7103 7104 7105 7106 7107
	/*
	 * Read all device items, and then all the chunk items. All
	 * device items are found before any chunk item (their object id
	 * is smaller than the lowest possible object id for a chunk
	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7108 7109 7110 7111 7112
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7113 7114
	if (ret < 0)
		goto error;
C
Chris Mason 已提交
7115
	while (1) {
7116 7117
		struct extent_buffer *node;

7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
		/*
		 * The nodes on level 1 are not locked but we don't need to do
		 * that during mount time as nothing else can access the tree
		 */
		node = path->nodes[1];
		if (node) {
			if (last_ra_node != node->start) {
				readahead_tree_node_children(node);
				last_ra_node = node->start;
			}
		}
7139
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7140 7141 7142
		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
			struct btrfs_dev_item *dev_item;
			dev_item = btrfs_item_ptr(leaf, slot,
7143
						  struct btrfs_dev_item);
7144
			ret = read_one_dev(leaf, dev_item);
7145 7146
			if (ret)
				goto error;
7147
			total_dev++;
7148 7149 7150
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7151
			mutex_lock(&fs_info->chunk_mutex);
7152
			ret = read_one_chunk(&found_key, leaf, chunk);
7153
			mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
7154 7155
			if (ret)
				goto error;
7156 7157 7158
		}
		path->slots[0]++;
	}
7159 7160 7161 7162 7163

	/*
	 * After loading chunk tree, we've got all device information,
	 * do another round of validation checks.
	 */
7164 7165
	if (total_dev != fs_info->fs_devices->total_devices) {
		btrfs_err(fs_info,
7166
	   "super_num_devices %llu mismatch with num_devices %llu found here",
7167
			  btrfs_super_num_devices(fs_info->super_copy),
7168 7169 7170 7171
			  total_dev);
		ret = -EINVAL;
		goto error;
	}
7172 7173 7174
	if (btrfs_super_total_bytes(fs_info->super_copy) <
	    fs_info->fs_devices->total_rw_bytes) {
		btrfs_err(fs_info,
7175
	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7176 7177
			  btrfs_super_total_bytes(fs_info->super_copy),
			  fs_info->fs_devices->total_rw_bytes);
7178 7179 7180
		ret = -EINVAL;
		goto error;
	}
7181 7182
	ret = 0;
error:
7183 7184
	mutex_unlock(&uuid_mutex);

Y
Yan Zheng 已提交
7185
	btrfs_free_path(path);
7186 7187
	return ret;
}
7188

7189 7190
void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
{
7191
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7192 7193
	struct btrfs_device *device;

7194 7195 7196 7197 7198 7199 7200 7201
	fs_devices->fs_info = fs_info;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list)
		device->fs_info = fs_info;

	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
		list_for_each_entry(device, &seed_devs->devices, dev_list)
7202
			device->fs_info = fs_info;
7203

7204
		seed_devs->fs_info = fs_info;
7205
	}
7206
	mutex_unlock(&fs_devices->device_list_mutex);
7207 7208
}

7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
				 const struct btrfs_dev_stats_item *ptr,
				 int index)
{
	u64 val;

	read_extent_buffer(eb, &val,
			   offsetof(struct btrfs_dev_stats_item, values) +
			    ((unsigned long)ptr) + (index * sizeof(u64)),
			   sizeof(val));
	return val;
}

static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
				      struct btrfs_dev_stats_item *ptr,
				      int index, u64 val)
{
	write_extent_buffer(eb, &val,
			    offsetof(struct btrfs_dev_stats_item, values) +
			     ((unsigned long)ptr) + (index * sizeof(u64)),
			    sizeof(val));
}

7232 7233
static int btrfs_device_init_dev_stats(struct btrfs_device *device,
				       struct btrfs_path *path)
7234
{
7235
	struct btrfs_dev_stats_item *ptr;
7236
	struct extent_buffer *eb;
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
	struct btrfs_key key;
	int item_size;
	int i, ret, slot;

	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
	key.offset = device->devid;
	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
	if (ret) {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			btrfs_dev_stat_set(device, i, 0);
		device->dev_stats_valid = 1;
		btrfs_release_path(path);
7250
		return ret < 0 ? ret : 0;
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
	}
	slot = path->slots[0];
	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, slot);

	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
		if (item_size >= (1 + i) * sizeof(__le64))
			btrfs_dev_stat_set(device, i,
					   btrfs_dev_stats_value(eb, ptr, i));
		else
			btrfs_dev_stat_set(device, i, 0);
	}

	device->dev_stats_valid = 1;
	btrfs_dev_stat_print_on_load(device);
	btrfs_release_path(path);
7269 7270

	return 0;
7271 7272 7273 7274 7275
}

int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7276 7277
	struct btrfs_device *device;
	struct btrfs_path *path = NULL;
7278
	int ret = 0;
7279 7280

	path = btrfs_alloc_path();
A
Anand Jain 已提交
7281 7282
	if (!path)
		return -ENOMEM;
7283 7284

	mutex_lock(&fs_devices->device_list_mutex);
7285 7286 7287 7288 7289
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		ret = btrfs_device_init_dev_stats(device, path);
		if (ret)
			goto out;
	}
7290
	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7291 7292 7293 7294 7295
		list_for_each_entry(device, &seed_devs->devices, dev_list) {
			ret = btrfs_device_init_dev_stats(device, path);
			if (ret)
				goto out;
		}
7296
	}
7297
out:
7298 7299 7300
	mutex_unlock(&fs_devices->device_list_mutex);

	btrfs_free_path(path);
7301
	return ret;
7302 7303 7304 7305 7306
}

static int update_dev_stat_item(struct btrfs_trans_handle *trans,
				struct btrfs_device *device)
{
7307
	struct btrfs_fs_info *fs_info = trans->fs_info;
7308
	struct btrfs_root *dev_root = fs_info->dev_root;
7309 7310 7311 7312 7313 7314 7315
	struct btrfs_path *path;
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_dev_stats_item *ptr;
	int ret;
	int i;

7316 7317
	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7318 7319 7320
	key.offset = device->devid;

	path = btrfs_alloc_path();
7321 7322
	if (!path)
		return -ENOMEM;
7323 7324
	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
	if (ret < 0) {
7325
		btrfs_warn_in_rcu(fs_info,
7326
			"error %d while searching for dev_stats item for device %s",
7327
			      ret, rcu_str_deref(device->name));
7328 7329 7330 7331 7332 7333 7334 7335
		goto out;
	}

	if (ret == 0 &&
	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
		/* need to delete old one and insert a new one */
		ret = btrfs_del_item(trans, dev_root, path);
		if (ret != 0) {
7336
			btrfs_warn_in_rcu(fs_info,
7337
				"delete too small dev_stats item for device %s failed %d",
7338
				      rcu_str_deref(device->name), ret);
7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
			goto out;
		}
		ret = 1;
	}

	if (ret == 1) {
		/* need to insert a new item */
		btrfs_release_path(path);
		ret = btrfs_insert_empty_item(trans, dev_root, path,
					      &key, sizeof(*ptr));
		if (ret < 0) {
7350
			btrfs_warn_in_rcu(fs_info,
7351 7352
				"insert dev_stats item for device %s failed %d",
				rcu_str_deref(device->name), ret);
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371
			goto out;
		}
	}

	eb = path->nodes[0];
	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		btrfs_set_dev_stats_value(eb, ptr, i,
					  btrfs_dev_stat_read(device, i));
	btrfs_mark_buffer_dirty(eb);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * called from commit_transaction. Writes all changed device stats to disk.
 */
7372
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7373
{
7374
	struct btrfs_fs_info *fs_info = trans->fs_info;
7375 7376
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
7377
	int stats_cnt;
7378 7379 7380 7381
	int ret = 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7382 7383
		stats_cnt = atomic_read(&device->dev_stats_ccnt);
		if (!device->dev_stats_valid || stats_cnt == 0)
7384 7385
			continue;

7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399

		/*
		 * There is a LOAD-LOAD control dependency between the value of
		 * dev_stats_ccnt and updating the on-disk values which requires
		 * reading the in-memory counters. Such control dependencies
		 * require explicit read memory barriers.
		 *
		 * This memory barriers pairs with smp_mb__before_atomic in
		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
		 * barrier implied by atomic_xchg in
		 * btrfs_dev_stats_read_and_reset
		 */
		smp_rmb();

7400
		ret = update_dev_stat_item(trans, device);
7401
		if (!ret)
7402
			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7403 7404 7405 7406 7407 7408
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

7409 7410 7411 7412 7413 7414
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
{
	btrfs_dev_stat_inc(dev, index);
	btrfs_dev_stat_print_on_error(dev);
}

7415
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7416
{
7417 7418
	if (!dev->dev_stats_valid)
		return;
7419
	btrfs_err_rl_in_rcu(dev->fs_info,
7420
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7421
			   rcu_str_deref(dev->name),
7422 7423 7424
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7425 7426
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7427
}
7428

7429 7430
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
{
7431 7432 7433 7434 7435 7436 7437 7438
	int i;

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		if (btrfs_dev_stat_read(dev, i) != 0)
			break;
	if (i == BTRFS_DEV_STAT_VALUES_MAX)
		return; /* all values == 0, suppress message */

7439
	btrfs_info_in_rcu(dev->fs_info,
7440
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7441
	       rcu_str_deref(dev->name),
7442 7443 7444 7445 7446 7447 7448
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
}

7449
int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7450
			struct btrfs_ioctl_get_dev_stats *stats)
7451 7452
{
	struct btrfs_device *dev;
7453
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7454 7455 7456
	int i;

	mutex_lock(&fs_devices->device_list_mutex);
7457 7458
	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
				true);
7459 7460 7461
	mutex_unlock(&fs_devices->device_list_mutex);

	if (!dev) {
7462
		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7463
		return -ENODEV;
7464
	} else if (!dev->dev_stats_valid) {
7465
		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7466
		return -ENODEV;
7467
	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7468 7469 7470 7471 7472
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (stats->nr_items > i)
				stats->values[i] =
					btrfs_dev_stat_read_and_reset(dev, i);
			else
7473
				btrfs_dev_stat_set(dev, i, 0);
7474
		}
7475 7476
		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
			   current->comm, task_pid_nr(current));
7477 7478 7479 7480 7481 7482 7483 7484 7485
	} else {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			if (stats->nr_items > i)
				stats->values[i] = btrfs_dev_stat_read(dev, i);
	}
	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
	return 0;
}
7486

7487
/*
7488 7489 7490 7491 7492
 * Update the size and bytes used for each device where it changed.  This is
 * delayed since we would otherwise get errors while writing out the
 * superblocks.
 *
 * Must be invoked during transaction commit.
7493
 */
7494
void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7495 7496 7497
{
	struct btrfs_device *curr, *next;

7498
	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7499

7500
	if (list_empty(&trans->dev_update_list))
7501 7502
		return;

7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
	/*
	 * We don't need the device_list_mutex here.  This list is owned by the
	 * transaction and the transaction must complete before the device is
	 * released.
	 */
	mutex_lock(&trans->fs_info->chunk_mutex);
	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&curr->post_commit_list);
		curr->commit_total_bytes = curr->disk_total_bytes;
		curr->commit_bytes_used = curr->bytes_used;
7514
	}
7515
	mutex_unlock(&trans->fs_info->chunk_mutex);
7516
}
7517

7518 7519 7520 7521 7522
/*
 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
 */
int btrfs_bg_type_to_factor(u64 flags)
{
7523 7524 7525
	const int index = btrfs_bg_flags_to_raid_index(flags);

	return btrfs_raid_array[index].ncopies;
7526
}
7527 7528 7529 7530 7531 7532 7533



static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
				 u64 chunk_offset, u64 devid,
				 u64 physical_offset, u64 physical_len)
{
7534
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7535 7536
	struct extent_map *em;
	struct map_lookup *map;
7537
	struct btrfs_device *dev;
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
	u64 stripe_len;
	bool found = false;
	int ret = 0;
	int i;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
			  physical_offset, devid);
		ret = -EUCLEAN;
		goto out;
	}

	map = em->map_lookup;
	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
	if (physical_len != stripe_len) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
			  physical_offset, devid, em->start, physical_len,
			  stripe_len);
		ret = -EUCLEAN;
		goto out;
	}

	for (i = 0; i < map->num_stripes; i++) {
		if (map->stripes[i].dev->devid == devid &&
		    map->stripes[i].physical == physical_offset) {
			found = true;
			if (map->verified_stripes >= map->num_stripes) {
				btrfs_err(fs_info,
				"too many dev extents for chunk %llu found",
					  em->start);
				ret = -EUCLEAN;
				goto out;
			}
			map->verified_stripes++;
			break;
		}
	}
	if (!found) {
		btrfs_err(fs_info,
	"dev extent physical offset %llu devid %llu has no corresponding chunk",
			physical_offset, devid);
		ret = -EUCLEAN;
	}
7587 7588

	/* Make sure no dev extent is beyond device bondary */
7589
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7590 7591 7592 7593 7594
	if (!dev) {
		btrfs_err(fs_info, "failed to find devid %llu", devid);
		ret = -EUCLEAN;
		goto out;
	}
7595 7596 7597

	/* It's possible this device is a dummy for seed device */
	if (dev->disk_total_bytes == 0) {
7598 7599 7600 7601 7602
		struct btrfs_fs_devices *devs;

		devs = list_first_entry(&fs_info->fs_devices->seed_list,
					struct btrfs_fs_devices, seed_list);
		dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7603 7604 7605 7606 7607 7608 7609 7610
		if (!dev) {
			btrfs_err(fs_info, "failed to find seed devid %llu",
				  devid);
			ret = -EUCLEAN;
			goto out;
		}
	}

7611 7612 7613 7614 7615 7616 7617 7618
	if (physical_offset + physical_len > dev->disk_total_bytes) {
		btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
			  devid, physical_offset, physical_len,
			  dev->disk_total_bytes);
		ret = -EUCLEAN;
		goto out;
	}
7619 7620 7621 7622 7623 7624 7625
out:
	free_extent_map(em);
	return ret;
}

static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
{
7626
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7627 7628 7629 7630 7631
	struct extent_map *em;
	struct rb_node *node;
	int ret = 0;

	read_lock(&em_tree->lock);
L
Liu Bo 已提交
7632
	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660
		em = rb_entry(node, struct extent_map, rb_node);
		if (em->map_lookup->num_stripes !=
		    em->map_lookup->verified_stripes) {
			btrfs_err(fs_info,
			"chunk %llu has missing dev extent, have %d expect %d",
				  em->start, em->map_lookup->verified_stripes,
				  em->map_lookup->num_stripes);
			ret = -EUCLEAN;
			goto out;
		}
	}
out:
	read_unlock(&em_tree->lock);
	return ret;
}

/*
 * Ensure that all dev extents are mapped to correct chunk, otherwise
 * later chunk allocation/free would cause unexpected behavior.
 *
 * NOTE: This will iterate through the whole device tree, which should be of
 * the same size level as the chunk tree.  This slightly increases mount time.
 */
int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_key key;
7661 7662
	u64 prev_devid = 0;
	u64 prev_dev_ext_end = 0;
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706
	int ret = 0;

	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = READA_FORWARD;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		/* No dev extents at all? Not good */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}
	while (1) {
		struct extent_buffer *leaf = path->nodes[0];
		struct btrfs_dev_extent *dext;
		int slot = path->slots[0];
		u64 chunk_offset;
		u64 physical_offset;
		u64 physical_len;
		u64 devid;

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.type != BTRFS_DEV_EXTENT_KEY)
			break;
		devid = key.objectid;
		physical_offset = key.offset;

		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
		physical_len = btrfs_dev_extent_length(leaf, dext);

7707 7708 7709 7710 7711 7712 7713 7714 7715
		/* Check if this dev extent overlaps with the previous one */
		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
			btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
				  devid, physical_offset, prev_dev_ext_end);
			ret = -EUCLEAN;
			goto out;
		}

7716 7717 7718 7719
		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
					    physical_offset, physical_len);
		if (ret < 0)
			goto out;
7720 7721 7722
		prev_devid = devid;
		prev_dev_ext_end = physical_offset + physical_len;

7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
	}

	/* Ensure all chunks have corresponding dev extents */
	ret = verify_chunk_dev_extent_mapping(fs_info);
out:
	btrfs_free_path(path);
	return ret;
}
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761

/*
 * Check whether the given block group or device is pinned by any inode being
 * used as a swapfile.
 */
bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
{
	struct btrfs_swapfile_pin *sp;
	struct rb_node *node;

	spin_lock(&fs_info->swapfile_pins_lock);
	node = fs_info->swapfile_pins.rb_node;
	while (node) {
		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
		if (ptr < sp->ptr)
			node = node->rb_left;
		else if (ptr > sp->ptr)
			node = node->rb_right;
		else
			break;
	}
	spin_unlock(&fs_info->swapfile_pins_lock);
	return node != NULL;
}