callchain.c 6.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
 *
 * Handle the callchains from the stream in an ad-hoc radix tree and then
 * sort them in an rbtree.
 *
7 8 9
 * Using a radix for code path provides a fast retrieval and factorizes
 * memory use. Also that lets us use the paths in a hierarchical graph view.
 *
10 11 12 13 14 15 16 17 18
 */

#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>

#include "callchain.h"

19 20 21
#define chain_for_each_child(child, parent)	\
	list_for_each_entry(child, &parent->children, brothers)

22
static void
23 24
rb_insert_callchain(struct rb_root *root, struct callchain_node *chain,
		    enum chain_mode mode)
25 26 27 28 29 30 31 32 33
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct callchain_node *rnode;

	while (*p) {
		parent = *p;
		rnode = rb_entry(parent, struct callchain_node, rb_node);

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
		switch (mode) {
		case FLAT:
			if (rnode->hit < chain->hit)
				p = &(*p)->rb_left;
			else
				p = &(*p)->rb_right;
			break;
		case GRAPH:
			if (rnode->cumul_hit < chain->cumul_hit)
				p = &(*p)->rb_left;
			else
				p = &(*p)->rb_right;
			break;
		default:
			break;
		}
50 51 52 53 54 55 56 57 58 59
	}

	rb_link_node(&chain->rb_node, parent, p);
	rb_insert_color(&chain->rb_node, root);
}

/*
 * Once we get every callchains from the stream, we can now
 * sort them by hit
 */
60 61
void sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
		     u64 min_hit)
62 63 64
{
	struct callchain_node *child;

65
	chain_for_each_child(child, node)
66
		sort_chain_flat(rb_root, child, min_hit);
67

68
	if (node->hit && node->hit >= min_hit)
69 70 71
		rb_insert_callchain(rb_root, node, FLAT);
}

72
static void __sort_chain_graph(struct callchain_node *node, u64 min_hit)
73 74 75 76 77 78 79
{
	struct callchain_node *child;

	node->rb_root = RB_ROOT;
	node->cumul_hit = node->hit;

	chain_for_each_child(child, node) {
80 81 82
		__sort_chain_graph(child, min_hit);
		if (child->cumul_hit >= min_hit)
			rb_insert_callchain(&node->rb_root, child, GRAPH);
83 84 85 86 87
		node->cumul_hit += child->cumul_hit;
	}
}

void
88 89
sort_chain_graph(struct rb_root *rb_root, struct callchain_node *chain_root,
		 u64 min_hit)
90
{
91
	__sort_chain_graph(chain_root, min_hit);
92
	rb_root->rb_node = chain_root->rb_root.rb_node;
93 94
}

95 96 97 98 99 100
/*
 * Create a child for a parent. If inherit_children, then the new child
 * will become the new parent of it's parent children
 */
static struct callchain_node *
create_child(struct callchain_node *parent, bool inherit_children)
101 102 103 104 105 106 107 108 109 110 111
{
	struct callchain_node *new;

	new = malloc(sizeof(*new));
	if (!new) {
		perror("not enough memory to create child for code path tree");
		return NULL;
	}
	new->parent = parent;
	INIT_LIST_HEAD(&new->children);
	INIT_LIST_HEAD(&new->val);
112 113 114 115 116 117 118

	if (inherit_children) {
		struct callchain_node *next;

		list_splice(&parent->children, &new->children);
		INIT_LIST_HEAD(&parent->children);

119
		chain_for_each_child(next, new)
120 121
			next->parent = new;
	}
122 123 124 125 126
	list_add_tail(&new->brothers, &parent->children);

	return new;
}

127 128 129
/*
 * Fill the node with callchain values
 */
130
static void
131 132
fill_node(struct callchain_node *node, struct ip_callchain *chain,
	  int start, struct symbol **syms)
133
{
134
	unsigned int i;
135 136 137 138

	for (i = start; i < chain->nr; i++) {
		struct callchain_list *call;

139
		call = malloc(sizeof(*call));
140 141 142 143 144
		if (!call) {
			perror("not enough memory for the code path tree");
			return;
		}
		call->ip = chain->ips[i];
145
		call->sym = syms[i];
146 147
		list_add_tail(&call->list, &node->val);
	}
148 149 150
	node->val_nr = chain->nr - start;
	if (!node->val_nr)
		printf("Warning: empty node in callchain tree\n");
151 152
}

153 154 155
static void
add_child(struct callchain_node *parent, struct ip_callchain *chain,
	  int start, struct symbol **syms)
156 157 158
{
	struct callchain_node *new;

159 160
	new = create_child(parent, false);
	fill_node(new, chain, start, syms);
161 162 163 164

	new->hit = 1;
}

165 166 167 168 169
/*
 * Split the parent in two parts (a new child is created) and
 * give a part of its callchain to the created child.
 * Then create another child to host the given callchain of new branch
 */
170 171
static void
split_add_child(struct callchain_node *parent, struct ip_callchain *chain,
172 173
		struct callchain_list *to_split, int idx_parents, int idx_local,
		struct symbol **syms)
174 175
{
	struct callchain_node *new;
176
	struct list_head *old_tail;
177
	unsigned int idx_total = idx_parents + idx_local;
178 179

	/* split */
180 181 182 183 184 185 186 187 188
	new = create_child(parent, true);

	/* split the callchain and move a part to the new child */
	old_tail = parent->val.prev;
	list_del_range(&to_split->list, old_tail);
	new->val.next = &to_split->list;
	new->val.prev = old_tail;
	to_split->list.prev = &new->val;
	old_tail->next = &new->val;
189

190 191 192 193 194 195 196 197 198 199 200 201
	/* split the hits */
	new->hit = parent->hit;
	new->val_nr = parent->val_nr - idx_local;
	parent->val_nr = idx_local;

	/* create a new child for the new branch if any */
	if (idx_total < chain->nr) {
		parent->hit = 0;
		add_child(parent, chain, idx_total, syms);
	} else {
		parent->hit = 1;
	}
202 203 204 205
}

static int
__append_chain(struct callchain_node *root, struct ip_callchain *chain,
206
	       unsigned int start, struct symbol **syms);
207

208
static void
209
__append_chain_children(struct callchain_node *root, struct ip_callchain *chain,
210
			struct symbol **syms, unsigned int start)
211 212 213 214
{
	struct callchain_node *rnode;

	/* lookup in childrens */
215
	chain_for_each_child(rnode, root) {
216 217
		unsigned int ret = __append_chain(rnode, chain, start, syms);

218
		if (!ret)
219
			return;
220
	}
221 222
	/* nothing in children, add to the current node */
	add_child(root, chain, start, syms);
223 224 225 226
}

static int
__append_chain(struct callchain_node *root, struct ip_callchain *chain,
227
	       unsigned int start, struct symbol **syms)
228 229
{
	struct callchain_list *cnode;
230
	unsigned int i = start;
231 232
	bool found = false;

233 234 235 236 237
	/*
	 * Lookup in the current node
	 * If we have a symbol, then compare the start to match
	 * anywhere inside a function.
	 */
238
	list_for_each_entry(cnode, &root->val, list) {
239 240 241 242 243 244
		if (i == chain->nr)
			break;
		if (cnode->sym && syms[i]) {
			if (cnode->sym->start != syms[i]->start)
				break;
		} else if (cnode->ip != chain->ips[i])
245 246 247
			break;
		if (!found)
			found = true;
248
		i++;
249 250 251 252 253 254 255
	}

	/* matches not, relay on the parent */
	if (!found)
		return -1;

	/* we match only a part of the node. Split it and add the new chain */
256 257
	if (i - start < root->val_nr) {
		split_add_child(root, chain, cnode, start, i - start, syms);
258 259 260 261
		return 0;
	}

	/* we match 100% of the path, increment the hit */
262
	if (i - start == root->val_nr && i == chain->nr) {
263 264 265 266
		root->hit++;
		return 0;
	}

267 268 269 270
	/* We match the node and still have a part remaining */
	__append_chain_children(root, chain, syms, i);

	return 0;
271 272
}

273 274
void append_chain(struct callchain_node *root, struct ip_callchain *chain,
		  struct symbol **syms)
275
{
276
	__append_chain_children(root, chain, syms, 0);
277
}