callchain.c 6.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
 *
 * Handle the callchains from the stream in an ad-hoc radix tree and then
 * sort them in an rbtree.
 *
7 8 9
 * Using a radix for code path provides a fast retrieval and factorizes
 * memory use. Also that lets us use the paths in a hierarchical graph view.
 *
10 11 12 13 14 15 16 17 18
 */

#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>

#include "callchain.h"

19 20 21
#define chain_for_each_child(child, parent)	\
	list_for_each_entry(child, &parent->children, brothers)

22
static void
23 24
rb_insert_callchain(struct rb_root *root, struct callchain_node *chain,
		    enum chain_mode mode)
25 26 27 28 29 30 31 32 33
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct callchain_node *rnode;

	while (*p) {
		parent = *p;
		rnode = rb_entry(parent, struct callchain_node, rb_node);

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
		switch (mode) {
		case FLAT:
			if (rnode->hit < chain->hit)
				p = &(*p)->rb_left;
			else
				p = &(*p)->rb_right;
			break;
		case GRAPH:
			if (rnode->cumul_hit < chain->cumul_hit)
				p = &(*p)->rb_left;
			else
				p = &(*p)->rb_right;
			break;
		default:
			break;
		}
50 51 52 53 54 55 56 57 58 59
	}

	rb_link_node(&chain->rb_node, parent, p);
	rb_insert_color(&chain->rb_node, root);
}

/*
 * Once we get every callchains from the stream, we can now
 * sort them by hit
 */
60
void sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node)
61 62 63
{
	struct callchain_node *child;

64
	chain_for_each_child(child, node)
65
		sort_chain_flat(rb_root, child);
66 67

	if (node->hit)
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
		rb_insert_callchain(rb_root, node, FLAT);
}

static void __sort_chain_graph(struct callchain_node *node)
{
	struct callchain_node *child;

	node->rb_root = RB_ROOT;
	node->cumul_hit = node->hit;

	chain_for_each_child(child, node) {
		__sort_chain_graph(child);
		rb_insert_callchain(&node->rb_root, child, GRAPH);
		node->cumul_hit += child->cumul_hit;
	}
}

void
sort_chain_graph(struct rb_root *rb_root, struct callchain_node *chain_root)
{
	__sort_chain_graph(chain_root);
	rb_root->rb_node = chain_root->rb_root.rb_node;
90 91
}

92 93 94 95 96 97
/*
 * Create a child for a parent. If inherit_children, then the new child
 * will become the new parent of it's parent children
 */
static struct callchain_node *
create_child(struct callchain_node *parent, bool inherit_children)
98 99 100 101 102 103 104 105 106 107 108
{
	struct callchain_node *new;

	new = malloc(sizeof(*new));
	if (!new) {
		perror("not enough memory to create child for code path tree");
		return NULL;
	}
	new->parent = parent;
	INIT_LIST_HEAD(&new->children);
	INIT_LIST_HEAD(&new->val);
109 110 111 112 113 114 115

	if (inherit_children) {
		struct callchain_node *next;

		list_splice(&parent->children, &new->children);
		INIT_LIST_HEAD(&parent->children);

116
		chain_for_each_child(next, new)
117 118
			next->parent = new;
	}
119 120 121 122 123
	list_add_tail(&new->brothers, &parent->children);

	return new;
}

124 125 126
/*
 * Fill the node with callchain values
 */
127
static void
128 129
fill_node(struct callchain_node *node, struct ip_callchain *chain,
	  int start, struct symbol **syms)
130
{
131
	unsigned int i;
132 133 134 135

	for (i = start; i < chain->nr; i++) {
		struct callchain_list *call;

136
		call = malloc(sizeof(*call));
137 138 139 140 141
		if (!call) {
			perror("not enough memory for the code path tree");
			return;
		}
		call->ip = chain->ips[i];
142
		call->sym = syms[i];
143 144
		list_add_tail(&call->list, &node->val);
	}
145 146 147
	node->val_nr = chain->nr - start;
	if (!node->val_nr)
		printf("Warning: empty node in callchain tree\n");
148 149
}

150 151 152
static void
add_child(struct callchain_node *parent, struct ip_callchain *chain,
	  int start, struct symbol **syms)
153 154 155
{
	struct callchain_node *new;

156 157
	new = create_child(parent, false);
	fill_node(new, chain, start, syms);
158 159 160 161

	new->hit = 1;
}

162 163 164 165 166
/*
 * Split the parent in two parts (a new child is created) and
 * give a part of its callchain to the created child.
 * Then create another child to host the given callchain of new branch
 */
167 168
static void
split_add_child(struct callchain_node *parent, struct ip_callchain *chain,
169 170
		struct callchain_list *to_split, int idx_parents, int idx_local,
		struct symbol **syms)
171 172
{
	struct callchain_node *new;
173
	struct list_head *old_tail;
174
	unsigned int idx_total = idx_parents + idx_local;
175 176

	/* split */
177 178 179 180 181 182 183 184 185
	new = create_child(parent, true);

	/* split the callchain and move a part to the new child */
	old_tail = parent->val.prev;
	list_del_range(&to_split->list, old_tail);
	new->val.next = &to_split->list;
	new->val.prev = old_tail;
	to_split->list.prev = &new->val;
	old_tail->next = &new->val;
186

187 188 189 190 191 192 193 194 195 196 197 198
	/* split the hits */
	new->hit = parent->hit;
	new->val_nr = parent->val_nr - idx_local;
	parent->val_nr = idx_local;

	/* create a new child for the new branch if any */
	if (idx_total < chain->nr) {
		parent->hit = 0;
		add_child(parent, chain, idx_total, syms);
	} else {
		parent->hit = 1;
	}
199 200 201 202
}

static int
__append_chain(struct callchain_node *root, struct ip_callchain *chain,
203
	       unsigned int start, struct symbol **syms);
204

205
static void
206
__append_chain_children(struct callchain_node *root, struct ip_callchain *chain,
207
			struct symbol **syms, unsigned int start)
208 209 210 211
{
	struct callchain_node *rnode;

	/* lookup in childrens */
212
	chain_for_each_child(rnode, root) {
213 214
		unsigned int ret = __append_chain(rnode, chain, start, syms);

215
		if (!ret)
216
			return;
217
	}
218 219
	/* nothing in children, add to the current node */
	add_child(root, chain, start, syms);
220 221 222 223
}

static int
__append_chain(struct callchain_node *root, struct ip_callchain *chain,
224
	       unsigned int start, struct symbol **syms)
225 226
{
	struct callchain_list *cnode;
227
	unsigned int i = start;
228 229
	bool found = false;

230 231 232 233 234
	/*
	 * Lookup in the current node
	 * If we have a symbol, then compare the start to match
	 * anywhere inside a function.
	 */
235
	list_for_each_entry(cnode, &root->val, list) {
236 237 238 239 240 241
		if (i == chain->nr)
			break;
		if (cnode->sym && syms[i]) {
			if (cnode->sym->start != syms[i]->start)
				break;
		} else if (cnode->ip != chain->ips[i])
242 243 244
			break;
		if (!found)
			found = true;
245
		i++;
246 247 248 249 250 251 252
	}

	/* matches not, relay on the parent */
	if (!found)
		return -1;

	/* we match only a part of the node. Split it and add the new chain */
253 254
	if (i - start < root->val_nr) {
		split_add_child(root, chain, cnode, start, i - start, syms);
255 256 257 258
		return 0;
	}

	/* we match 100% of the path, increment the hit */
259
	if (i - start == root->val_nr && i == chain->nr) {
260 261 262 263
		root->hit++;
		return 0;
	}

264 265 266 267
	/* We match the node and still have a part remaining */
	__append_chain_children(root, chain, syms, i);

	return 0;
268 269
}

270 271
void append_chain(struct callchain_node *root, struct ip_callchain *chain,
		  struct symbol **syms)
272
{
273
	__append_chain_children(root, chain, syms, 0);
274
}