kfd_topology.c 41.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/acpi.h>
#include <linux/hash.h>
#include <linux/cpufreq.h>
30
#include <linux/log2.h>
31 32
#include <linux/dmi.h>
#include <linux/atomic.h>
33 34 35 36

#include "kfd_priv.h"
#include "kfd_crat.h"
#include "kfd_topology.h"
37
#include "kfd_device_queue_manager.h"
38
#include "kfd_iommu.h"
A
Amber Lin 已提交
39
#include "amdgpu_amdkfd.h"
40
#include "amdgpu_ras.h"
41

42 43
/* topology_device_list - Master list of all topology devices */
static struct list_head topology_device_list;
44
static struct kfd_system_properties sys_props;
45 46

static DECLARE_RWSEM(topology_lock);
47
static atomic_t topology_crat_proximity_domain;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
						uint32_t proximity_domain)
{
	struct kfd_topology_device *top_dev;
	struct kfd_topology_device *device = NULL;

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
		if (top_dev->proximity_domain == proximity_domain) {
			device = top_dev;
			break;
		}

	up_read(&topology_lock);

	return device;
}

68
struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
69
{
70 71
	struct kfd_topology_device *top_dev = NULL;
	struct kfd_topology_device *ret = NULL;
72 73 74 75 76

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
		if (top_dev->gpu_id == gpu_id) {
77
			ret = top_dev;
78 79 80 81 82
			break;
		}

	up_read(&topology_lock);

83 84 85 86 87 88 89 90 91 92 93 94
	return ret;
}

struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
{
	struct kfd_topology_device *top_dev;

	top_dev = kfd_topology_device_by_id(gpu_id);
	if (!top_dev)
		return NULL;

	return top_dev->gpu;
95 96 97 98 99 100 101 102 103 104
}

struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
{
	struct kfd_topology_device *top_dev;
	struct kfd_dev *device = NULL;

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
105
		if (top_dev->gpu && top_dev->gpu->pdev == pdev) {
106 107 108 109 110 111 112 113 114
			device = top_dev->gpu;
			break;
		}

	up_read(&topology_lock);

	return device;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd)
{
	struct kfd_topology_device *top_dev;
	struct kfd_dev *device = NULL;

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
		if (top_dev->gpu && top_dev->gpu->kgd == kgd) {
			device = top_dev->gpu;
			break;
		}

	up_read(&topology_lock);

	return device;
}

133
/* Called with write topology_lock acquired */
134 135 136 137 138
static void kfd_release_topology_device(struct kfd_topology_device *dev)
{
	struct kfd_mem_properties *mem;
	struct kfd_cache_properties *cache;
	struct kfd_iolink_properties *iolink;
139
	struct kfd_perf_properties *perf;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	list_del(&dev->list);

	while (dev->mem_props.next != &dev->mem_props) {
		mem = container_of(dev->mem_props.next,
				struct kfd_mem_properties, list);
		list_del(&mem->list);
		kfree(mem);
	}

	while (dev->cache_props.next != &dev->cache_props) {
		cache = container_of(dev->cache_props.next,
				struct kfd_cache_properties, list);
		list_del(&cache->list);
		kfree(cache);
	}

	while (dev->io_link_props.next != &dev->io_link_props) {
		iolink = container_of(dev->io_link_props.next,
				struct kfd_iolink_properties, list);
		list_del(&iolink->list);
		kfree(iolink);
	}

164 165 166 167 168 169 170
	while (dev->perf_props.next != &dev->perf_props) {
		perf = container_of(dev->perf_props.next,
				struct kfd_perf_properties, list);
		list_del(&perf->list);
		kfree(perf);
	}

171 172 173
	kfree(dev);
}

174
void kfd_release_topology_device_list(struct list_head *device_list)
175 176 177
{
	struct kfd_topology_device *dev;

178 179 180
	while (!list_empty(device_list)) {
		dev = list_first_entry(device_list,
				       struct kfd_topology_device, list);
181
		kfd_release_topology_device(dev);
182
	}
183 184
}

185 186 187
static void kfd_release_live_view(void)
{
	kfd_release_topology_device_list(&topology_device_list);
188 189 190
	memset(&sys_props, 0, sizeof(sys_props));
}

191 192
struct kfd_topology_device *kfd_create_topology_device(
				struct list_head *device_list)
193 194 195 196
{
	struct kfd_topology_device *dev;

	dev = kfd_alloc_struct(dev);
197
	if (!dev) {
198
		pr_err("No memory to allocate a topology device");
199
		return NULL;
200 201 202 203 204
	}

	INIT_LIST_HEAD(&dev->mem_props);
	INIT_LIST_HEAD(&dev->cache_props);
	INIT_LIST_HEAD(&dev->io_link_props);
205
	INIT_LIST_HEAD(&dev->perf_props);
206

207
	list_add_tail(&dev->list, device_list);
208 209

	return dev;
210
}
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247


#define sysfs_show_gen_prop(buffer, fmt, ...) \
		snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
#define sysfs_show_32bit_prop(buffer, name, value) \
		sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
#define sysfs_show_64bit_prop(buffer, name, value) \
		sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
#define sysfs_show_32bit_val(buffer, value) \
		sysfs_show_gen_prop(buffer, "%u\n", value)
#define sysfs_show_str_val(buffer, value) \
		sysfs_show_gen_prop(buffer, "%s\n", value)

static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	if (attr == &sys_props.attr_genid) {
		ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
	} else if (attr == &sys_props.attr_props) {
		sysfs_show_64bit_prop(buffer, "platform_oem",
				sys_props.platform_oem);
		sysfs_show_64bit_prop(buffer, "platform_id",
				sys_props.platform_id);
		ret = sysfs_show_64bit_prop(buffer, "platform_rev",
				sys_props.platform_rev);
	} else {
		ret = -EINVAL;
	}

	return ret;
}

248 249 250 251 252
static void kfd_topology_kobj_release(struct kobject *kobj)
{
	kfree(kobj);
}

253 254 255 256 257
static const struct sysfs_ops sysprops_ops = {
	.show = sysprops_show,
};

static struct kobj_type sysprops_type = {
258
	.release = kfd_topology_kobj_release,
259 260 261 262 263 264 265 266 267 268 269 270 271
	.sysfs_ops = &sysprops_ops,
};

static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;
	struct kfd_iolink_properties *iolink;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	iolink = container_of(attr, struct kfd_iolink_properties, attr);
272 273
	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
		return -EPERM;
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
	sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
	sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
	sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
	sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
	sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
	sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
	sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
	sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
	sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
	sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
			iolink->rec_transfer_size);
	ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);

	return ret;
}

static const struct sysfs_ops iolink_ops = {
	.show = iolink_show,
};

static struct kobj_type iolink_type = {
296
	.release = kfd_topology_kobj_release,
297 298 299 300 301 302 303 304 305 306 307 308 309
	.sysfs_ops = &iolink_ops,
};

static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;
	struct kfd_mem_properties *mem;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	mem = container_of(attr, struct kfd_mem_properties, attr);
310 311
	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
		return -EPERM;
312 313 314 315 316 317 318 319 320 321 322 323 324 325
	sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
	sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
	sysfs_show_32bit_prop(buffer, "flags", mem->flags);
	sysfs_show_32bit_prop(buffer, "width", mem->width);
	ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);

	return ret;
}

static const struct sysfs_ops mem_ops = {
	.show = mem_show,
};

static struct kobj_type mem_type = {
326
	.release = kfd_topology_kobj_release,
327 328 329 330 331 332 333
	.sysfs_ops = &mem_ops,
};

static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;
334
	uint32_t i, j;
335 336 337 338 339 340
	struct kfd_cache_properties *cache;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	cache = container_of(attr, struct kfd_cache_properties, attr);
341 342
	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
		return -EPERM;
343 344 345 346 347 348 349 350 351 352 353
	sysfs_show_32bit_prop(buffer, "processor_id_low",
			cache->processor_id_low);
	sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
	sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
	sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
	sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
			cache->cachelines_per_tag);
	sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
	sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
	sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
	snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
354 355 356 357 358 359 360 361 362 363 364 365
	for (i = 0; i < CRAT_SIBLINGMAP_SIZE; i++)
		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) {
			/* Check each bit */
			if (cache->sibling_map[i] & (1 << j))
				ret = snprintf(buffer, PAGE_SIZE,
					 "%s%d%s", buffer, 1, ",");
			else
				ret = snprintf(buffer, PAGE_SIZE,
					 "%s%d%s", buffer, 0, ",");
		}
	/* Replace the last "," with end of line */
	*(buffer + strlen(buffer) - 1) = 0xA;
366 367 368 369 370 371 372 373
	return ret;
}

static const struct sysfs_ops cache_ops = {
	.show = kfd_cache_show,
};

static struct kobj_type cache_type = {
374
	.release = kfd_topology_kobj_release,
375 376 377
	.sysfs_ops = &cache_ops,
};

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
/****** Sysfs of Performance Counters ******/

struct kfd_perf_attr {
	struct kobj_attribute attr;
	uint32_t data;
};

static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
			char *buf)
{
	struct kfd_perf_attr *attr;

	buf[0] = 0;
	attr = container_of(attrs, struct kfd_perf_attr, attr);
	if (!attr->data) /* invalid data for PMC */
		return 0;
	else
		return sysfs_show_32bit_val(buf, attr->data);
}

#define KFD_PERF_DESC(_name, _data)			\
{							\
	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
	.data = _data,					\
}

static struct kfd_perf_attr perf_attr_iommu[] = {
	KFD_PERF_DESC(max_concurrent, 0),
	KFD_PERF_DESC(num_counters, 0),
	KFD_PERF_DESC(counter_ids, 0),
};
/****************************************/

411 412 413 414
static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	struct kfd_topology_device *dev;
415
	uint32_t log_max_watch_addr;
416 417 418 419 420 421 422

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	if (strcmp(attr->name, "gpu_id") == 0) {
		dev = container_of(attr, struct kfd_topology_device,
				attr_gpuid);
423 424
		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
			return -EPERM;
425 426 427 428
		return sysfs_show_32bit_val(buffer, dev->gpu_id);
	}

	if (strcmp(attr->name, "name") == 0) {
429 430
		dev = container_of(attr, struct kfd_topology_device,
				attr_name);
431

432 433
		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
			return -EPERM;
434
		return sysfs_show_str_val(buffer, dev->node_props.name);
435
	}
436

437 438
	dev = container_of(attr, struct kfd_topology_device,
			attr_props);
439 440
	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
		return -EPERM;
441 442 443 444
	sysfs_show_32bit_prop(buffer, "cpu_cores_count",
			dev->node_props.cpu_cores_count);
	sysfs_show_32bit_prop(buffer, "simd_count",
			dev->node_props.simd_count);
445 446
	sysfs_show_32bit_prop(buffer, "mem_banks_count",
			dev->node_props.mem_banks_count);
447 448 449 450 451 452 453 454 455 456 457 458 459 460
	sysfs_show_32bit_prop(buffer, "caches_count",
			dev->node_props.caches_count);
	sysfs_show_32bit_prop(buffer, "io_links_count",
			dev->node_props.io_links_count);
	sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
			dev->node_props.cpu_core_id_base);
	sysfs_show_32bit_prop(buffer, "simd_id_base",
			dev->node_props.simd_id_base);
	sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
			dev->node_props.max_waves_per_simd);
	sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
			dev->node_props.lds_size_in_kb);
	sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
			dev->node_props.gds_size_in_kb);
461 462
	sysfs_show_32bit_prop(buffer, "num_gws",
			dev->node_props.num_gws);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	sysfs_show_32bit_prop(buffer, "wave_front_size",
			dev->node_props.wave_front_size);
	sysfs_show_32bit_prop(buffer, "array_count",
			dev->node_props.array_count);
	sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
			dev->node_props.simd_arrays_per_engine);
	sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
			dev->node_props.cu_per_simd_array);
	sysfs_show_32bit_prop(buffer, "simd_per_cu",
			dev->node_props.simd_per_cu);
	sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
			dev->node_props.max_slots_scratch_cu);
	sysfs_show_32bit_prop(buffer, "vendor_id",
			dev->node_props.vendor_id);
	sysfs_show_32bit_prop(buffer, "device_id",
			dev->node_props.device_id);
	sysfs_show_32bit_prop(buffer, "location_id",
			dev->node_props.location_id);
481 482
	sysfs_show_32bit_prop(buffer, "drm_render_minor",
			dev->node_props.drm_render_minor);
483 484
	sysfs_show_64bit_prop(buffer, "hive_id",
			dev->node_props.hive_id);
485 486 487 488
	sysfs_show_32bit_prop(buffer, "num_sdma_engines",
			dev->node_props.num_sdma_engines);
	sysfs_show_32bit_prop(buffer, "num_sdma_xgmi_engines",
			dev->node_props.num_sdma_xgmi_engines);
489 490
	sysfs_show_32bit_prop(buffer, "num_sdma_queues_per_engine",
			dev->node_props.num_sdma_queues_per_engine);
491 492
	sysfs_show_32bit_prop(buffer, "num_cp_queues",
			dev->node_props.num_cp_queues);
493 494 495 496 497 498 499 500 501 502 503 504 505

	if (dev->gpu) {
		log_max_watch_addr =
			__ilog2_u32(dev->gpu->device_info->num_of_watch_points);

		if (log_max_watch_addr) {
			dev->node_props.capability |=
					HSA_CAP_WATCH_POINTS_SUPPORTED;

			dev->node_props.capability |=
				((log_max_watch_addr <<
					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
506 507
		}

508 509 510 511
		if (dev->gpu->device_info->asic_family == CHIP_TONGA)
			dev->node_props.capability |=
					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;

512
		sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
513
			dev->node_props.max_engine_clk_fcompute);
514

515
		sysfs_show_64bit_prop(buffer, "local_mem_size",
516
				(unsigned long long int) 0);
517 518

		sysfs_show_32bit_prop(buffer, "fw_version",
519
				dev->gpu->mec_fw_version);
520 521
		sysfs_show_32bit_prop(buffer, "capability",
				dev->node_props.capability);
522 523
		sysfs_show_32bit_prop(buffer, "sdma_fw_version",
				dev->gpu->sdma_fw_version);
524 525
	}

526 527
	return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
					cpufreq_quick_get_max(0)/1000);
528 529 530 531 532 533 534
}

static const struct sysfs_ops node_ops = {
	.show = node_show,
};

static struct kobj_type node_type = {
535
	.release = kfd_topology_kobj_release,
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	.sysfs_ops = &node_ops,
};

static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
{
	sysfs_remove_file(kobj, attr);
	kobject_del(kobj);
	kobject_put(kobj);
}

static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
{
	struct kfd_iolink_properties *iolink;
	struct kfd_cache_properties *cache;
	struct kfd_mem_properties *mem;
551
	struct kfd_perf_properties *perf;
552 553 554 555 556 557

	if (dev->kobj_iolink) {
		list_for_each_entry(iolink, &dev->io_link_props, list)
			if (iolink->kobj) {
				kfd_remove_sysfs_file(iolink->kobj,
							&iolink->attr);
558
				iolink->kobj = NULL;
559 560 561
			}
		kobject_del(dev->kobj_iolink);
		kobject_put(dev->kobj_iolink);
562
		dev->kobj_iolink = NULL;
563 564 565 566 567 568 569
	}

	if (dev->kobj_cache) {
		list_for_each_entry(cache, &dev->cache_props, list)
			if (cache->kobj) {
				kfd_remove_sysfs_file(cache->kobj,
							&cache->attr);
570
				cache->kobj = NULL;
571 572 573
			}
		kobject_del(dev->kobj_cache);
		kobject_put(dev->kobj_cache);
574
		dev->kobj_cache = NULL;
575 576 577 578 579 580
	}

	if (dev->kobj_mem) {
		list_for_each_entry(mem, &dev->mem_props, list)
			if (mem->kobj) {
				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
581
				mem->kobj = NULL;
582 583 584
			}
		kobject_del(dev->kobj_mem);
		kobject_put(dev->kobj_mem);
585
		dev->kobj_mem = NULL;
586 587
	}

588 589 590 591 592 593 594 595 596 597
	if (dev->kobj_perf) {
		list_for_each_entry(perf, &dev->perf_props, list) {
			kfree(perf->attr_group);
			perf->attr_group = NULL;
		}
		kobject_del(dev->kobj_perf);
		kobject_put(dev->kobj_perf);
		dev->kobj_perf = NULL;
	}

598 599 600 601 602 603
	if (dev->kobj_node) {
		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
		kobject_del(dev->kobj_node);
		kobject_put(dev->kobj_node);
604
		dev->kobj_node = NULL;
605 606 607 608 609 610 611 612 613
	}
}

static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
		uint32_t id)
{
	struct kfd_iolink_properties *iolink;
	struct kfd_cache_properties *cache;
	struct kfd_mem_properties *mem;
614
	struct kfd_perf_properties *perf;
615
	int ret;
616 617
	uint32_t i, num_attrs;
	struct attribute **attrs;
618

619 620 621
	if (WARN_ON(dev->kobj_node))
		return -EEXIST;

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	/*
	 * Creating the sysfs folders
	 */
	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
	if (!dev->kobj_node)
		return -ENOMEM;

	ret = kobject_init_and_add(dev->kobj_node, &node_type,
			sys_props.kobj_nodes, "%d", id);
	if (ret < 0)
		return ret;

	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
	if (!dev->kobj_mem)
		return -ENOMEM;

	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
	if (!dev->kobj_cache)
		return -ENOMEM;

	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
	if (!dev->kobj_iolink)
		return -ENOMEM;

646 647 648 649
	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
	if (!dev->kobj_perf)
		return -ENOMEM;

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	/*
	 * Creating sysfs files for node properties
	 */
	dev->attr_gpuid.name = "gpu_id";
	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
	sysfs_attr_init(&dev->attr_gpuid);
	dev->attr_name.name = "name";
	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
	sysfs_attr_init(&dev->attr_name);
	dev->attr_props.name = "properties";
	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
	sysfs_attr_init(&dev->attr_props);
	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
	if (ret < 0)
		return ret;
	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
	if (ret < 0)
		return ret;
	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
	if (ret < 0)
		return ret;

	i = 0;
	list_for_each_entry(mem, &dev->mem_props, list) {
		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
		if (!mem->kobj)
			return -ENOMEM;
		ret = kobject_init_and_add(mem->kobj, &mem_type,
				dev->kobj_mem, "%d", i);
		if (ret < 0)
			return ret;

		mem->attr.name = "properties";
		mem->attr.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&mem->attr);
		ret = sysfs_create_file(mem->kobj, &mem->attr);
		if (ret < 0)
			return ret;
		i++;
	}

	i = 0;
	list_for_each_entry(cache, &dev->cache_props, list) {
		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
		if (!cache->kobj)
			return -ENOMEM;
		ret = kobject_init_and_add(cache->kobj, &cache_type,
				dev->kobj_cache, "%d", i);
		if (ret < 0)
			return ret;

		cache->attr.name = "properties";
		cache->attr.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&cache->attr);
		ret = sysfs_create_file(cache->kobj, &cache->attr);
		if (ret < 0)
			return ret;
		i++;
	}

	i = 0;
	list_for_each_entry(iolink, &dev->io_link_props, list) {
		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
		if (!iolink->kobj)
			return -ENOMEM;
		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
				dev->kobj_iolink, "%d", i);
		if (ret < 0)
			return ret;

		iolink->attr.name = "properties";
		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&iolink->attr);
		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
		if (ret < 0)
			return ret;
		i++;
727 728 729
	}

	/* All hardware blocks have the same number of attributes. */
730
	num_attrs = ARRAY_SIZE(perf_attr_iommu);
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	list_for_each_entry(perf, &dev->perf_props, list) {
		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
			* num_attrs + sizeof(struct attribute_group),
			GFP_KERNEL);
		if (!perf->attr_group)
			return -ENOMEM;

		attrs = (struct attribute **)(perf->attr_group + 1);
		if (!strcmp(perf->block_name, "iommu")) {
		/* Information of IOMMU's num_counters and counter_ids is shown
		 * under /sys/bus/event_source/devices/amd_iommu. We don't
		 * duplicate here.
		 */
			perf_attr_iommu[0].data = perf->max_concurrent;
			for (i = 0; i < num_attrs; i++)
				attrs[i] = &perf_attr_iommu[i].attr.attr;
		}
		perf->attr_group->name = perf->block_name;
		perf->attr_group->attrs = attrs;
		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
		if (ret < 0)
			return ret;
	}
754 755 756 757

	return 0;
}

758
/* Called with write topology lock acquired */
759 760 761 762 763 764 765
static int kfd_build_sysfs_node_tree(void)
{
	struct kfd_topology_device *dev;
	int ret;
	uint32_t i = 0;

	list_for_each_entry(dev, &topology_device_list, list) {
766
		ret = kfd_build_sysfs_node_entry(dev, i);
767 768 769 770 771 772 773 774
		if (ret < 0)
			return ret;
		i++;
	}

	return 0;
}

775
/* Called with write topology lock acquired */
776 777 778 779 780 781 782 783 784 785 786 787 788
static void kfd_remove_sysfs_node_tree(void)
{
	struct kfd_topology_device *dev;

	list_for_each_entry(dev, &topology_device_list, list)
		kfd_remove_sysfs_node_entry(dev);
}

static int kfd_topology_update_sysfs(void)
{
	int ret;

	pr_info("Creating topology SYSFS entries\n");
789
	if (!sys_props.kobj_topology) {
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
		sys_props.kobj_topology =
				kfd_alloc_struct(sys_props.kobj_topology);
		if (!sys_props.kobj_topology)
			return -ENOMEM;

		ret = kobject_init_and_add(sys_props.kobj_topology,
				&sysprops_type,  &kfd_device->kobj,
				"topology");
		if (ret < 0)
			return ret;

		sys_props.kobj_nodes = kobject_create_and_add("nodes",
				sys_props.kobj_topology);
		if (!sys_props.kobj_nodes)
			return -ENOMEM;

		sys_props.attr_genid.name = "generation_id";
		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&sys_props.attr_genid);
		ret = sysfs_create_file(sys_props.kobj_topology,
				&sys_props.attr_genid);
		if (ret < 0)
			return ret;

		sys_props.attr_props.name = "system_properties";
		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&sys_props.attr_props);
		ret = sysfs_create_file(sys_props.kobj_topology,
				&sys_props.attr_props);
		if (ret < 0)
			return ret;
	}

	kfd_remove_sysfs_node_tree();

	return kfd_build_sysfs_node_tree();
}

static void kfd_topology_release_sysfs(void)
{
	kfd_remove_sysfs_node_tree();
	if (sys_props.kobj_topology) {
		sysfs_remove_file(sys_props.kobj_topology,
				&sys_props.attr_genid);
		sysfs_remove_file(sys_props.kobj_topology,
				&sys_props.attr_props);
		if (sys_props.kobj_nodes) {
			kobject_del(sys_props.kobj_nodes);
			kobject_put(sys_props.kobj_nodes);
839
			sys_props.kobj_nodes = NULL;
840 841 842
		}
		kobject_del(sys_props.kobj_topology);
		kobject_put(sys_props.kobj_topology);
843
		sys_props.kobj_topology = NULL;
844 845 846
	}
}

847 848 849 850 851 852 853 854 855 856
/* Called with write topology_lock acquired */
static void kfd_topology_update_device_list(struct list_head *temp_list,
					struct list_head *master_list)
{
	while (!list_empty(temp_list)) {
		list_move_tail(temp_list->next, master_list);
		sys_props.num_devices++;
	}
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static void kfd_debug_print_topology(void)
{
	struct kfd_topology_device *dev;

	down_read(&topology_lock);

	dev = list_last_entry(&topology_device_list,
			struct kfd_topology_device, list);
	if (dev) {
		if (dev->node_props.cpu_cores_count &&
				dev->node_props.simd_count) {
			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
				dev->node_props.device_id,
				dev->node_props.vendor_id);
		} else if (dev->node_props.cpu_cores_count)
			pr_info("Topology: Add CPU node\n");
		else if (dev->node_props.simd_count)
			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
				dev->node_props.device_id,
				dev->node_props.vendor_id);
	}
	up_read(&topology_lock);
}

/* Helper function for intializing platform_xx members of
 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
 */
static void kfd_update_system_properties(void)
{
	struct kfd_topology_device *dev;

	down_read(&topology_lock);
	dev = list_last_entry(&topology_device_list,
			struct kfd_topology_device, list);
	if (dev) {
		sys_props.platform_id =
			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
		sys_props.platform_rev = dev->oem_revision;
	}
	up_read(&topology_lock);
}

static void find_system_memory(const struct dmi_header *dm,
	void *private)
{
	struct kfd_mem_properties *mem;
	u16 mem_width, mem_clock;
	struct kfd_topology_device *kdev =
		(struct kfd_topology_device *)private;
	const u8 *dmi_data = (const u8 *)(dm + 1);

	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
		list_for_each_entry(mem, &kdev->mem_props, list) {
			if (mem_width != 0xFFFF && mem_width != 0)
				mem->width = mem_width;
			if (mem_clock != 0)
				mem->mem_clk_max = mem_clock;
		}
	}
}
920 921 922 923 924 925 926 927

/*
 * Performance counters information is not part of CRAT but we would like to
 * put them in the sysfs under topology directory for Thunk to get the data.
 * This function is called before updating the sysfs.
 */
static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
{
928 929
	/* These are the only counters supported so far */
	return kfd_iommu_add_perf_counters(kdev);
930 931
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945
/* kfd_add_non_crat_information - Add information that is not currently
 *	defined in CRAT but is necessary for KFD topology
 * @dev - topology device to which addition info is added
 */
static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
{
	/* Check if CPU only node. */
	if (!kdev->gpu) {
		/* Add system memory information */
		dmi_walk(find_system_memory, kdev);
	}
	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
/* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
 *	Ignore CRAT for all other devices. AMD APU is identified if both CPU
 *	and GPU cores are present.
 * @device_list - topology device list created by parsing ACPI CRAT table.
 * @return - TRUE if invalid, FALSE is valid.
 */
static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
{
	struct kfd_topology_device *dev;

	list_for_each_entry(dev, device_list, list) {
		if (dev->node_props.cpu_cores_count &&
			dev->node_props.simd_count)
			return false;
	}
	pr_info("Ignoring ACPI CRAT on non-APU system\n");
	return true;
}

965 966
int kfd_topology_init(void)
{
967
	void *crat_image = NULL;
968 969
	size_t image_size = 0;
	int ret;
970
	struct list_head temp_topology_device_list;
971 972 973
	int cpu_only_node = 0;
	struct kfd_topology_device *kdev;
	int proximity_domain;
974

975 976 977 978
	/* topology_device_list - Master list of all topology devices
	 * temp_topology_device_list - temporary list created while parsing CRAT
	 * or VCRAT. Once parsing is complete the contents of list is moved to
	 * topology_device_list
979
	 */
980 981

	/* Initialize the head for the both the lists */
982
	INIT_LIST_HEAD(&topology_device_list);
983
	INIT_LIST_HEAD(&temp_topology_device_list);
984 985 986 987
	init_rwsem(&topology_lock);

	memset(&sys_props, 0, sizeof(sys_props));

988 989 990 991 992 993 994
	/* Proximity domains in ACPI CRAT tables start counting at
	 * 0. The same should be true for virtual CRAT tables created
	 * at this stage. GPUs added later in kfd_topology_add_device
	 * use a counter.
	 */
	proximity_domain = 0;

995
	/*
996
	 * Get the CRAT image from the ACPI. If ACPI doesn't have one
997
	 * or if ACPI CRAT is invalid create a virtual CRAT.
998 999
	 * NOTE: The current implementation expects all AMD APUs to have
	 *	CRAT. If no CRAT is available, it is assumed to be a CPU
1000
	 */
1001 1002
	ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
	if (!ret) {
1003
		ret = kfd_parse_crat_table(crat_image,
1004 1005
					   &temp_topology_device_list,
					   proximity_domain);
1006 1007
		if (ret ||
		    kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			kfd_release_topology_device_list(
				&temp_topology_device_list);
			kfd_destroy_crat_image(crat_image);
			crat_image = NULL;
		}
	}

	if (!crat_image) {
		ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
						    COMPUTE_UNIT_CPU, NULL,
						    proximity_domain);
		cpu_only_node = 1;
		if (ret) {
			pr_err("Error creating VCRAT table for CPU\n");
			return ret;
		}

		ret = kfd_parse_crat_table(crat_image,
					   &temp_topology_device_list,
					   proximity_domain);
		if (ret) {
			pr_err("Error parsing VCRAT table for CPU\n");
1030
			goto err;
1031
		}
1032 1033
	}

1034 1035 1036 1037
	kdev = list_first_entry(&temp_topology_device_list,
				struct kfd_topology_device, list);
	kfd_add_perf_to_topology(kdev);

1038
	down_write(&topology_lock);
1039 1040
	kfd_topology_update_device_list(&temp_topology_device_list,
					&topology_device_list);
1041
	atomic_set(&topology_crat_proximity_domain, sys_props.num_devices-1);
1042 1043 1044
	ret = kfd_topology_update_sysfs();
	up_write(&topology_lock);

1045 1046
	if (!ret) {
		sys_props.generation_count++;
1047 1048
		kfd_update_system_properties();
		kfd_debug_print_topology();
1049
		pr_info("Finished initializing topology\n");
1050
	} else
1051 1052
		pr_err("Failed to update topology in sysfs ret=%d\n", ret);

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	/* For nodes with GPU, this information gets added
	 * when GPU is detected (kfd_topology_add_device).
	 */
	if (cpu_only_node) {
		/* Add additional information to CPU only node created above */
		down_write(&topology_lock);
		kdev = list_first_entry(&topology_device_list,
				struct kfd_topology_device, list);
		up_write(&topology_lock);
		kfd_add_non_crat_information(kdev);
	}

1065
err:
1066
	kfd_destroy_crat_image(crat_image);
1067 1068 1069 1070 1071
	return ret;
}

void kfd_topology_shutdown(void)
{
1072
	down_write(&topology_lock);
1073 1074
	kfd_topology_release_sysfs();
	kfd_release_live_view();
1075
	up_write(&topology_lock);
1076 1077 1078 1079 1080 1081
}

static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
{
	uint32_t hashout;
	uint32_t buf[7];
1082
	uint64_t local_mem_size;
1083
	int i;
1084
	struct kfd_local_mem_info local_mem_info;
1085 1086 1087 1088

	if (!gpu)
		return 0;

1089
	amdgpu_amdkfd_get_local_mem_info(gpu->kgd, &local_mem_info);
1090 1091 1092

	local_mem_size = local_mem_info.local_mem_size_private +
			local_mem_info.local_mem_size_public;
1093

1094
	buf[0] = gpu->pdev->devfn;
1095 1096 1097
	buf[1] = gpu->pdev->subsystem_vendor |
		(gpu->pdev->subsystem_device << 16);
	buf[2] = pci_domain_nr(gpu->pdev->bus);
1098 1099
	buf[3] = gpu->pdev->device;
	buf[4] = gpu->pdev->bus->number;
1100 1101
	buf[5] = lower_32_bits(local_mem_size);
	buf[6] = upper_32_bits(local_mem_size);
1102 1103 1104 1105 1106 1107

	for (i = 0, hashout = 0; i < 7; i++)
		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);

	return hashout;
}
1108 1109 1110 1111 1112
/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
 *		the GPU device is not already present in the topology device
 *		list then return NULL. This means a new topology device has to
 *		be created for this GPU.
 */
1113 1114 1115
static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
{
	struct kfd_topology_device *dev;
1116
	struct kfd_topology_device *out_dev = NULL;
1117 1118 1119
	struct kfd_mem_properties *mem;
	struct kfd_cache_properties *cache;
	struct kfd_iolink_properties *iolink;
1120

1121
	down_write(&topology_lock);
1122 1123 1124 1125 1126 1127 1128 1129
	list_for_each_entry(dev, &topology_device_list, list) {
		/* Discrete GPUs need their own topology device list
		 * entries. Don't assign them to CPU/APU nodes.
		 */
		if (!gpu->device_info->needs_iommu_device &&
		    dev->node_props.cpu_cores_count)
			continue;

1130
		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1131 1132
			dev->gpu = gpu;
			out_dev = dev;
1133 1134 1135 1136 1137 1138 1139

			list_for_each_entry(mem, &dev->mem_props, list)
				mem->gpu = dev->gpu;
			list_for_each_entry(cache, &dev->cache_props, list)
				cache->gpu = dev->gpu;
			list_for_each_entry(iolink, &dev->io_link_props, list)
				iolink->gpu = dev->gpu;
1140 1141
			break;
		}
1142
	}
1143
	up_write(&topology_lock);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	return out_dev;
}

static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
{
	/*
	 * TODO: Generate an event for thunk about the arrival/removal
	 * of the GPU
	 */
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
 *		patch this after CRAT parsing.
 */
static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
{
	struct kfd_mem_properties *mem;
	struct kfd_local_mem_info local_mem_info;

	if (!dev)
		return;

	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
	 * single bank of VRAM local memory.
	 * for dGPUs - VCRAT reports only one bank of Local Memory
	 * for APUs - If CRAT from ACPI reports more than one bank, then
	 *	all the banks will report the same mem_clk_max information
	 */
1172
	amdgpu_amdkfd_get_local_mem_info(dev->gpu->kgd, &local_mem_info);
1173 1174 1175 1176 1177 1178 1179

	list_for_each_entry(mem, &dev->mem_props, list)
		mem->mem_clk_max = local_mem_info.mem_clk_max;
}

static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
{
1180 1181 1182 1183 1184
	struct kfd_iolink_properties *link, *cpu_link;
	struct kfd_topology_device *cpu_dev;
	uint32_t cap;
	uint32_t cpu_flag = CRAT_IOLINK_FLAGS_ENABLED;
	uint32_t flag = CRAT_IOLINK_FLAGS_ENABLED;
1185 1186 1187 1188

	if (!dev || !dev->gpu)
		return;

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	pcie_capability_read_dword(dev->gpu->pdev,
			PCI_EXP_DEVCAP2, &cap);

	if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
		     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
		cpu_flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
			CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;

	if (!dev->gpu->pci_atomic_requested ||
	    dev->gpu->device_info->asic_family == CHIP_HAWAII)
		flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
			CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;

	/* GPU only creates direct links so apply flags setting to all */
	list_for_each_entry(link, &dev->io_link_props, list) {
		link->flags = flag;
		cpu_dev = kfd_topology_device_by_proximity_domain(
				link->node_to);
		if (cpu_dev) {
			list_for_each_entry(cpu_link,
					    &cpu_dev->io_link_props, list)
				if (cpu_link->node_to == link->node_from)
					cpu_link->flags = cpu_flag;
		}
	}
1214 1215
}

1216 1217 1218 1219
int kfd_topology_add_device(struct kfd_dev *gpu)
{
	uint32_t gpu_id;
	struct kfd_topology_device *dev;
1220
	struct kfd_cu_info cu_info;
1221 1222
	int res = 0;
	struct list_head temp_topology_device_list;
1223 1224 1225
	void *crat_image = NULL;
	size_t image_size = 0;
	int proximity_domain;
1226
	struct amdgpu_ras *ctx;
1227 1228

	INIT_LIST_HEAD(&temp_topology_device_list);
1229 1230 1231

	gpu_id = kfd_generate_gpu_id(gpu);

1232
	pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1233

1234 1235 1236 1237 1238 1239 1240
	proximity_domain = atomic_inc_return(&topology_crat_proximity_domain);

	/* Check to see if this gpu device exists in the topology_device_list.
	 * If so, assign the gpu to that device,
	 * else create a Virtual CRAT for this gpu device and then parse that
	 * CRAT to create a new topology device. Once created assign the gpu to
	 * that topology device
1241 1242 1243
	 */
	dev = kfd_assign_gpu(gpu);
	if (!dev) {
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		res = kfd_create_crat_image_virtual(&crat_image, &image_size,
						    COMPUTE_UNIT_GPU, gpu,
						    proximity_domain);
		if (res) {
			pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
			       gpu_id);
			return res;
		}
		res = kfd_parse_crat_table(crat_image,
					   &temp_topology_device_list,
					   proximity_domain);
		if (res) {
			pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
			       gpu_id);
1258 1259
			goto err;
		}
1260 1261 1262 1263 1264

		down_write(&topology_lock);
		kfd_topology_update_device_list(&temp_topology_device_list,
			&topology_device_list);

1265 1266
		/* Update the SYSFS tree, since we added another topology
		 * device
1267
		 */
1268
		res = kfd_topology_update_sysfs();
1269 1270
		up_write(&topology_lock);

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		if (!res)
			sys_props.generation_count++;
		else
			pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
						gpu_id, res);
		dev = kfd_assign_gpu(gpu);
		if (WARN_ON(!dev)) {
			res = -ENODEV;
			goto err;
		}
1281 1282 1283 1284
	}

	dev->gpu_id = gpu_id;
	gpu->id = gpu_id;
1285 1286 1287 1288 1289 1290 1291 1292 1293

	/* TODO: Move the following lines to function
	 *	kfd_add_non_crat_information
	 */

	/* Fill-in additional information that is not available in CRAT but
	 * needed for the topology
	 */

1294
	amdgpu_amdkfd_get_cu_info(dev->gpu->kgd, &cu_info);
1295 1296 1297 1298

	strncpy(dev->node_props.name, gpu->device_info->asic_name,
			KFD_TOPOLOGY_PUBLIC_NAME_SIZE);

1299 1300 1301
	dev->node_props.simd_arrays_per_engine =
		cu_info.num_shader_arrays_per_engine;

1302 1303
	dev->node_props.vendor_id = gpu->pdev->vendor;
	dev->node_props.device_id = gpu->pdev->device;
1304
	dev->node_props.location_id = pci_dev_id(gpu->pdev);
1305
	dev->node_props.max_engine_clk_fcompute =
1306
		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->kgd);
1307 1308
	dev->node_props.max_engine_clk_ccompute =
		cpufreq_quick_get_max(0) / 1000;
1309 1310
	dev->node_props.drm_render_minor =
		gpu->shared_resources.drm_render_minor;
1311

1312
	dev->node_props.hive_id = gpu->hive_id;
1313 1314 1315
	dev->node_props.num_sdma_engines = gpu->device_info->num_sdma_engines;
	dev->node_props.num_sdma_xgmi_engines =
				gpu->device_info->num_xgmi_sdma_engines;
1316 1317
	dev->node_props.num_sdma_queues_per_engine =
				gpu->device_info->num_sdma_queues_per_engine;
1318 1319 1320
	dev->node_props.num_gws = (hws_gws_support &&
		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
		amdgpu_amdkfd_get_num_gws(dev->gpu->kgd) : 0;
1321
	dev->node_props.num_cp_queues = get_queues_num(dev->gpu->dqm);
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	kfd_fill_mem_clk_max_info(dev);
	kfd_fill_iolink_non_crat_info(dev);

	switch (dev->gpu->device_info->asic_family) {
	case CHIP_KAVERI:
	case CHIP_HAWAII:
	case CHIP_TONGA:
		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
		break;
	case CHIP_CARRIZO:
	case CHIP_FIJI:
	case CHIP_POLARIS10:
	case CHIP_POLARIS11:
1338
	case CHIP_POLARIS12:
K
Kent Russell 已提交
1339
	case CHIP_VEGAM:
1340
		pr_debug("Adding doorbell packet type capability\n");
1341 1342 1343 1344
		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
		break;
1345
	case CHIP_VEGA10:
1346
	case CHIP_VEGA12:
1347
	case CHIP_VEGA20:
1348
	case CHIP_RAVEN:
H
Huang Rui 已提交
1349
	case CHIP_RENOIR:
Y
Yong Zhao 已提交
1350
	case CHIP_ARCTURUS:
1351
	case CHIP_NAVI10:
1352
	case CHIP_NAVI12:
Y
Yong Zhao 已提交
1353
	case CHIP_NAVI14:
1354 1355 1356 1357
		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
		break;
1358 1359 1360
	default:
		WARN(1, "Unexpected ASIC family %u",
		     dev->gpu->device_info->asic_family);
1361 1362
	}

1363 1364 1365 1366 1367 1368 1369 1370 1371
	/*
	* Overwrite ATS capability according to needs_iommu_device to fix
	* potential missing corresponding bit in CRAT of BIOS.
	*/
	if (dev->gpu->device_info->needs_iommu_device)
		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
	else
		dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;

1372 1373 1374
	/* Fix errors in CZ CRAT.
	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
	 *		because it doesn't consider masked out CUs
1375
	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
1376
	 */
1377
	if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
1378 1379
		dev->node_props.simd_count =
			cu_info.simd_per_cu * cu_info.cu_active_number;
1380 1381
		dev->node_props.max_waves_per_simd = 10;
	}
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	ctx = amdgpu_ras_get_context((struct amdgpu_device *)(dev->gpu->kgd));
	if (ctx) {
		/* kfd only concerns sram ecc on GFX/SDMA and HBM ecc on UMC */
		dev->node_props.capability |=
			(((ctx->features & BIT(AMDGPU_RAS_BLOCK__SDMA)) != 0) ||
			 ((ctx->features & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0)) ?
			HSA_CAP_SRAM_EDCSUPPORTED : 0;
		dev->node_props.capability |= ((ctx->features & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
			HSA_CAP_MEM_EDCSUPPORTED : 0;

		dev->node_props.capability |= (ctx->features != 0) ?
			HSA_CAP_RASEVENTNOTIFY : 0;
	}

1397 1398
	kfd_debug_print_topology();

1399
	if (!res)
1400
		kfd_notify_gpu_change(gpu_id, 1);
1401
err:
1402
	kfd_destroy_crat_image(crat_image);
1403 1404 1405 1406 1407
	return res;
}

int kfd_topology_remove_device(struct kfd_dev *gpu)
{
1408
	struct kfd_topology_device *dev, *tmp;
1409 1410 1411 1412 1413
	uint32_t gpu_id;
	int res = -ENODEV;

	down_write(&topology_lock);

1414
	list_for_each_entry_safe(dev, tmp, &topology_device_list, list)
1415 1416 1417 1418
		if (dev->gpu == gpu) {
			gpu_id = dev->gpu_id;
			kfd_remove_sysfs_node_entry(dev);
			kfd_release_topology_device(dev);
1419
			sys_props.num_devices--;
1420 1421 1422 1423 1424 1425 1426 1427
			res = 0;
			if (kfd_topology_update_sysfs() < 0)
				kfd_topology_release_sysfs();
			break;
		}

	up_write(&topology_lock);

1428
	if (!res)
1429 1430 1431 1432 1433
		kfd_notify_gpu_change(gpu_id, 0);

	return res;
}

1434 1435 1436 1437 1438
/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
 *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
 *	returned through @kdev
 * Return -	0: On success (@kdev will be NULL for non GPU nodes)
 *		-1: If end of list
1439
 */
1440
int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
1441 1442 1443 1444 1445
{

	struct kfd_topology_device *top_dev;
	uint8_t device_idx = 0;

1446
	*kdev = NULL;
1447 1448 1449 1450
	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list) {
		if (device_idx == idx) {
1451 1452 1453
			*kdev = top_dev->gpu;
			up_read(&topology_lock);
			return 0;
1454 1455 1456 1457 1458 1459 1460
		}

		device_idx++;
	}

	up_read(&topology_lock);

1461
	return -1;
1462 1463

}
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473
static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
{
	int first_cpu_of_numa_node;

	if (!cpumask || cpumask == cpu_none_mask)
		return -1;
	first_cpu_of_numa_node = cpumask_first(cpumask);
	if (first_cpu_of_numa_node >= nr_cpu_ids)
		return -1;
1474 1475 1476 1477 1478
#ifdef CONFIG_X86_64
	return cpu_data(first_cpu_of_numa_node).apicid;
#else
	return first_cpu_of_numa_node;
#endif
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
}

/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
 *	of the given NUMA node (numa_node_id)
 * Return -1 on failure
 */
int kfd_numa_node_to_apic_id(int numa_node_id)
{
	if (numa_node_id == -1) {
		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
		return kfd_cpumask_to_apic_id(cpu_online_mask);
	}
	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
#if defined(CONFIG_DEBUG_FS)

int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
{
	struct kfd_topology_device *dev;
	unsigned int i = 0;
	int r = 0;

	down_read(&topology_lock);

	list_for_each_entry(dev, &topology_device_list, list) {
		if (!dev->gpu) {
			i++;
			continue;
		}

		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
		if (r)
			break;
	}

	up_read(&topology_lock);

	return r;
}

int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
{
	struct kfd_topology_device *dev;
	unsigned int i = 0;
	int r = 0;

	down_read(&topology_lock);

	list_for_each_entry(dev, &topology_device_list, list) {
		if (!dev->gpu) {
			i++;
			continue;
		}

		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packets);
		if (r)
			break;
	}

	up_read(&topology_lock);

	return r;
}

#endif