kfd_topology.c 39.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/acpi.h>
#include <linux/hash.h>
#include <linux/cpufreq.h>
30
#include <linux/log2.h>
31 32
#include <linux/dmi.h>
#include <linux/atomic.h>
33 34 35 36

#include "kfd_priv.h"
#include "kfd_crat.h"
#include "kfd_topology.h"
37
#include "kfd_device_queue_manager.h"
38
#include "kfd_iommu.h"
39

40 41
/* topology_device_list - Master list of all topology devices */
static struct list_head topology_device_list;
42
static struct kfd_system_properties sys_props;
43 44

static DECLARE_RWSEM(topology_lock);
45
static atomic_t topology_crat_proximity_domain;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
						uint32_t proximity_domain)
{
	struct kfd_topology_device *top_dev;
	struct kfd_topology_device *device = NULL;

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
		if (top_dev->proximity_domain == proximity_domain) {
			device = top_dev;
			break;
		}

	up_read(&topology_lock);

	return device;
}

66
struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
67
{
68 69
	struct kfd_topology_device *top_dev = NULL;
	struct kfd_topology_device *ret = NULL;
70 71 72 73 74

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
		if (top_dev->gpu_id == gpu_id) {
75
			ret = top_dev;
76 77 78 79 80
			break;
		}

	up_read(&topology_lock);

81 82 83 84 85 86 87 88 89 90 91 92
	return ret;
}

struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
{
	struct kfd_topology_device *top_dev;

	top_dev = kfd_topology_device_by_id(gpu_id);
	if (!top_dev)
		return NULL;

	return top_dev->gpu;
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
}

struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
{
	struct kfd_topology_device *top_dev;
	struct kfd_dev *device = NULL;

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
		if (top_dev->gpu->pdev == pdev) {
			device = top_dev->gpu;
			break;
		}

	up_read(&topology_lock);

	return device;
}

113
/* Called with write topology_lock acquired */
114 115 116 117 118
static void kfd_release_topology_device(struct kfd_topology_device *dev)
{
	struct kfd_mem_properties *mem;
	struct kfd_cache_properties *cache;
	struct kfd_iolink_properties *iolink;
119
	struct kfd_perf_properties *perf;
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

	list_del(&dev->list);

	while (dev->mem_props.next != &dev->mem_props) {
		mem = container_of(dev->mem_props.next,
				struct kfd_mem_properties, list);
		list_del(&mem->list);
		kfree(mem);
	}

	while (dev->cache_props.next != &dev->cache_props) {
		cache = container_of(dev->cache_props.next,
				struct kfd_cache_properties, list);
		list_del(&cache->list);
		kfree(cache);
	}

	while (dev->io_link_props.next != &dev->io_link_props) {
		iolink = container_of(dev->io_link_props.next,
				struct kfd_iolink_properties, list);
		list_del(&iolink->list);
		kfree(iolink);
	}

144 145 146 147 148 149 150
	while (dev->perf_props.next != &dev->perf_props) {
		perf = container_of(dev->perf_props.next,
				struct kfd_perf_properties, list);
		list_del(&perf->list);
		kfree(perf);
	}

151 152 153
	kfree(dev);
}

154
void kfd_release_topology_device_list(struct list_head *device_list)
155 156 157
{
	struct kfd_topology_device *dev;

158 159 160
	while (!list_empty(device_list)) {
		dev = list_first_entry(device_list,
				       struct kfd_topology_device, list);
161
		kfd_release_topology_device(dev);
162
	}
163 164
}

165 166 167
static void kfd_release_live_view(void)
{
	kfd_release_topology_device_list(&topology_device_list);
168 169 170
	memset(&sys_props, 0, sizeof(sys_props));
}

171 172
struct kfd_topology_device *kfd_create_topology_device(
				struct list_head *device_list)
173 174 175 176
{
	struct kfd_topology_device *dev;

	dev = kfd_alloc_struct(dev);
177
	if (!dev) {
178
		pr_err("No memory to allocate a topology device");
179
		return NULL;
180 181 182 183 184
	}

	INIT_LIST_HEAD(&dev->mem_props);
	INIT_LIST_HEAD(&dev->cache_props);
	INIT_LIST_HEAD(&dev->io_link_props);
185
	INIT_LIST_HEAD(&dev->perf_props);
186

187
	list_add_tail(&dev->list, device_list);
188 189

	return dev;
190
}
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227


#define sysfs_show_gen_prop(buffer, fmt, ...) \
		snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
#define sysfs_show_32bit_prop(buffer, name, value) \
		sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
#define sysfs_show_64bit_prop(buffer, name, value) \
		sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
#define sysfs_show_32bit_val(buffer, value) \
		sysfs_show_gen_prop(buffer, "%u\n", value)
#define sysfs_show_str_val(buffer, value) \
		sysfs_show_gen_prop(buffer, "%s\n", value)

static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	if (attr == &sys_props.attr_genid) {
		ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
	} else if (attr == &sys_props.attr_props) {
		sysfs_show_64bit_prop(buffer, "platform_oem",
				sys_props.platform_oem);
		sysfs_show_64bit_prop(buffer, "platform_id",
				sys_props.platform_id);
		ret = sysfs_show_64bit_prop(buffer, "platform_rev",
				sys_props.platform_rev);
	} else {
		ret = -EINVAL;
	}

	return ret;
}

228 229 230 231 232
static void kfd_topology_kobj_release(struct kobject *kobj)
{
	kfree(kobj);
}

233 234 235 236 237
static const struct sysfs_ops sysprops_ops = {
	.show = sysprops_show,
};

static struct kobj_type sysprops_type = {
238
	.release = kfd_topology_kobj_release,
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
	.sysfs_ops = &sysprops_ops,
};

static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;
	struct kfd_iolink_properties *iolink;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	iolink = container_of(attr, struct kfd_iolink_properties, attr);
	sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
	sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
	sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
	sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
	sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
	sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
	sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
	sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
	sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
	sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
	sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
			iolink->rec_transfer_size);
	ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);

	return ret;
}

static const struct sysfs_ops iolink_ops = {
	.show = iolink_show,
};

static struct kobj_type iolink_type = {
274
	.release = kfd_topology_kobj_release,
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	.sysfs_ops = &iolink_ops,
};

static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;
	struct kfd_mem_properties *mem;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	mem = container_of(attr, struct kfd_mem_properties, attr);
	sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
	sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
	sysfs_show_32bit_prop(buffer, "flags", mem->flags);
	sysfs_show_32bit_prop(buffer, "width", mem->width);
	ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);

	return ret;
}

static const struct sysfs_ops mem_ops = {
	.show = mem_show,
};

static struct kobj_type mem_type = {
302
	.release = kfd_topology_kobj_release,
303 304 305 306 307 308 309
	.sysfs_ops = &mem_ops,
};

static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;
310
	uint32_t i, j;
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
	struct kfd_cache_properties *cache;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	cache = container_of(attr, struct kfd_cache_properties, attr);
	sysfs_show_32bit_prop(buffer, "processor_id_low",
			cache->processor_id_low);
	sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
	sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
	sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
	sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
			cache->cachelines_per_tag);
	sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
	sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
	sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
	snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
328 329 330 331 332 333 334 335 336 337 338 339
	for (i = 0; i < CRAT_SIBLINGMAP_SIZE; i++)
		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) {
			/* Check each bit */
			if (cache->sibling_map[i] & (1 << j))
				ret = snprintf(buffer, PAGE_SIZE,
					 "%s%d%s", buffer, 1, ",");
			else
				ret = snprintf(buffer, PAGE_SIZE,
					 "%s%d%s", buffer, 0, ",");
		}
	/* Replace the last "," with end of line */
	*(buffer + strlen(buffer) - 1) = 0xA;
340 341 342 343 344 345 346 347
	return ret;
}

static const struct sysfs_ops cache_ops = {
	.show = kfd_cache_show,
};

static struct kobj_type cache_type = {
348
	.release = kfd_topology_kobj_release,
349 350 351
	.sysfs_ops = &cache_ops,
};

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/****** Sysfs of Performance Counters ******/

struct kfd_perf_attr {
	struct kobj_attribute attr;
	uint32_t data;
};

static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
			char *buf)
{
	struct kfd_perf_attr *attr;

	buf[0] = 0;
	attr = container_of(attrs, struct kfd_perf_attr, attr);
	if (!attr->data) /* invalid data for PMC */
		return 0;
	else
		return sysfs_show_32bit_val(buf, attr->data);
}

#define KFD_PERF_DESC(_name, _data)			\
{							\
	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
	.data = _data,					\
}

static struct kfd_perf_attr perf_attr_iommu[] = {
	KFD_PERF_DESC(max_concurrent, 0),
	KFD_PERF_DESC(num_counters, 0),
	KFD_PERF_DESC(counter_ids, 0),
};
/****************************************/

385 386 387 388 389 390
static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	struct kfd_topology_device *dev;
	char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
	uint32_t i;
391
	uint32_t log_max_watch_addr;
392 393 394 395 396 397 398

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	if (strcmp(attr->name, "gpu_id") == 0) {
		dev = container_of(attr, struct kfd_topology_device,
				attr_gpuid);
399 400 401 402
		return sysfs_show_32bit_val(buffer, dev->gpu_id);
	}

	if (strcmp(attr->name, "name") == 0) {
403 404 405 406 407 408 409 410 411
		dev = container_of(attr, struct kfd_topology_device,
				attr_name);
		for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
			public_name[i] =
					(char)dev->node_props.marketing_name[i];
			if (dev->node_props.marketing_name[i] == 0)
				break;
		}
		public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
412 413
		return sysfs_show_str_val(buffer, public_name);
	}
414

415 416 417 418 419 420
	dev = container_of(attr, struct kfd_topology_device,
			attr_props);
	sysfs_show_32bit_prop(buffer, "cpu_cores_count",
			dev->node_props.cpu_cores_count);
	sysfs_show_32bit_prop(buffer, "simd_count",
			dev->node_props.simd_count);
421 422
	sysfs_show_32bit_prop(buffer, "mem_banks_count",
			dev->node_props.mem_banks_count);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	sysfs_show_32bit_prop(buffer, "caches_count",
			dev->node_props.caches_count);
	sysfs_show_32bit_prop(buffer, "io_links_count",
			dev->node_props.io_links_count);
	sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
			dev->node_props.cpu_core_id_base);
	sysfs_show_32bit_prop(buffer, "simd_id_base",
			dev->node_props.simd_id_base);
	sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
			dev->node_props.max_waves_per_simd);
	sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
			dev->node_props.lds_size_in_kb);
	sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
			dev->node_props.gds_size_in_kb);
	sysfs_show_32bit_prop(buffer, "wave_front_size",
			dev->node_props.wave_front_size);
	sysfs_show_32bit_prop(buffer, "array_count",
			dev->node_props.array_count);
	sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
			dev->node_props.simd_arrays_per_engine);
	sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
			dev->node_props.cu_per_simd_array);
	sysfs_show_32bit_prop(buffer, "simd_per_cu",
			dev->node_props.simd_per_cu);
	sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
			dev->node_props.max_slots_scratch_cu);
	sysfs_show_32bit_prop(buffer, "vendor_id",
			dev->node_props.vendor_id);
	sysfs_show_32bit_prop(buffer, "device_id",
			dev->node_props.device_id);
	sysfs_show_32bit_prop(buffer, "location_id",
			dev->node_props.location_id);
455 456
	sysfs_show_32bit_prop(buffer, "drm_render_minor",
			dev->node_props.drm_render_minor);
457 458
	sysfs_show_64bit_prop(buffer, "hive_id",
			dev->node_props.hive_id);
459 460 461 462 463 464 465 466 467 468 469 470 471

	if (dev->gpu) {
		log_max_watch_addr =
			__ilog2_u32(dev->gpu->device_info->num_of_watch_points);

		if (log_max_watch_addr) {
			dev->node_props.capability |=
					HSA_CAP_WATCH_POINTS_SUPPORTED;

			dev->node_props.capability |=
				((log_max_watch_addr <<
					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
472 473
		}

474 475 476 477
		if (dev->gpu->device_info->asic_family == CHIP_TONGA)
			dev->node_props.capability |=
					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;

478
		sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
479
			dev->node_props.max_engine_clk_fcompute);
480

481
		sysfs_show_64bit_prop(buffer, "local_mem_size",
482
				(unsigned long long int) 0);
483 484

		sysfs_show_32bit_prop(buffer, "fw_version",
485
				dev->gpu->mec_fw_version);
486 487
		sysfs_show_32bit_prop(buffer, "capability",
				dev->node_props.capability);
488 489
		sysfs_show_32bit_prop(buffer, "sdma_fw_version",
				dev->gpu->sdma_fw_version);
490 491
	}

492 493
	return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
					cpufreq_quick_get_max(0)/1000);
494 495 496 497 498 499 500
}

static const struct sysfs_ops node_ops = {
	.show = node_show,
};

static struct kobj_type node_type = {
501
	.release = kfd_topology_kobj_release,
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	.sysfs_ops = &node_ops,
};

static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
{
	sysfs_remove_file(kobj, attr);
	kobject_del(kobj);
	kobject_put(kobj);
}

static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
{
	struct kfd_iolink_properties *iolink;
	struct kfd_cache_properties *cache;
	struct kfd_mem_properties *mem;
517
	struct kfd_perf_properties *perf;
518 519 520 521 522 523

	if (dev->kobj_iolink) {
		list_for_each_entry(iolink, &dev->io_link_props, list)
			if (iolink->kobj) {
				kfd_remove_sysfs_file(iolink->kobj,
							&iolink->attr);
524
				iolink->kobj = NULL;
525 526 527
			}
		kobject_del(dev->kobj_iolink);
		kobject_put(dev->kobj_iolink);
528
		dev->kobj_iolink = NULL;
529 530 531 532 533 534 535
	}

	if (dev->kobj_cache) {
		list_for_each_entry(cache, &dev->cache_props, list)
			if (cache->kobj) {
				kfd_remove_sysfs_file(cache->kobj,
							&cache->attr);
536
				cache->kobj = NULL;
537 538 539
			}
		kobject_del(dev->kobj_cache);
		kobject_put(dev->kobj_cache);
540
		dev->kobj_cache = NULL;
541 542 543 544 545 546
	}

	if (dev->kobj_mem) {
		list_for_each_entry(mem, &dev->mem_props, list)
			if (mem->kobj) {
				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
547
				mem->kobj = NULL;
548 549 550
			}
		kobject_del(dev->kobj_mem);
		kobject_put(dev->kobj_mem);
551
		dev->kobj_mem = NULL;
552 553
	}

554 555 556 557 558 559 560 561 562 563
	if (dev->kobj_perf) {
		list_for_each_entry(perf, &dev->perf_props, list) {
			kfree(perf->attr_group);
			perf->attr_group = NULL;
		}
		kobject_del(dev->kobj_perf);
		kobject_put(dev->kobj_perf);
		dev->kobj_perf = NULL;
	}

564 565 566 567 568 569
	if (dev->kobj_node) {
		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
		kobject_del(dev->kobj_node);
		kobject_put(dev->kobj_node);
570
		dev->kobj_node = NULL;
571 572 573 574 575 576 577 578 579
	}
}

static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
		uint32_t id)
{
	struct kfd_iolink_properties *iolink;
	struct kfd_cache_properties *cache;
	struct kfd_mem_properties *mem;
580
	struct kfd_perf_properties *perf;
581
	int ret;
582 583
	uint32_t i, num_attrs;
	struct attribute **attrs;
584

585 586 587
	if (WARN_ON(dev->kobj_node))
		return -EEXIST;

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	/*
	 * Creating the sysfs folders
	 */
	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
	if (!dev->kobj_node)
		return -ENOMEM;

	ret = kobject_init_and_add(dev->kobj_node, &node_type,
			sys_props.kobj_nodes, "%d", id);
	if (ret < 0)
		return ret;

	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
	if (!dev->kobj_mem)
		return -ENOMEM;

	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
	if (!dev->kobj_cache)
		return -ENOMEM;

	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
	if (!dev->kobj_iolink)
		return -ENOMEM;

612 613 614 615
	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
	if (!dev->kobj_perf)
		return -ENOMEM;

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	/*
	 * Creating sysfs files for node properties
	 */
	dev->attr_gpuid.name = "gpu_id";
	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
	sysfs_attr_init(&dev->attr_gpuid);
	dev->attr_name.name = "name";
	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
	sysfs_attr_init(&dev->attr_name);
	dev->attr_props.name = "properties";
	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
	sysfs_attr_init(&dev->attr_props);
	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
	if (ret < 0)
		return ret;
	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
	if (ret < 0)
		return ret;
	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
	if (ret < 0)
		return ret;

	i = 0;
	list_for_each_entry(mem, &dev->mem_props, list) {
		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
		if (!mem->kobj)
			return -ENOMEM;
		ret = kobject_init_and_add(mem->kobj, &mem_type,
				dev->kobj_mem, "%d", i);
		if (ret < 0)
			return ret;

		mem->attr.name = "properties";
		mem->attr.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&mem->attr);
		ret = sysfs_create_file(mem->kobj, &mem->attr);
		if (ret < 0)
			return ret;
		i++;
	}

	i = 0;
	list_for_each_entry(cache, &dev->cache_props, list) {
		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
		if (!cache->kobj)
			return -ENOMEM;
		ret = kobject_init_and_add(cache->kobj, &cache_type,
				dev->kobj_cache, "%d", i);
		if (ret < 0)
			return ret;

		cache->attr.name = "properties";
		cache->attr.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&cache->attr);
		ret = sysfs_create_file(cache->kobj, &cache->attr);
		if (ret < 0)
			return ret;
		i++;
	}

	i = 0;
	list_for_each_entry(iolink, &dev->io_link_props, list) {
		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
		if (!iolink->kobj)
			return -ENOMEM;
		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
				dev->kobj_iolink, "%d", i);
		if (ret < 0)
			return ret;

		iolink->attr.name = "properties";
		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&iolink->attr);
		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
		if (ret < 0)
			return ret;
		i++;
693 694 695
	}

	/* All hardware blocks have the same number of attributes. */
696
	num_attrs = ARRAY_SIZE(perf_attr_iommu);
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	list_for_each_entry(perf, &dev->perf_props, list) {
		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
			* num_attrs + sizeof(struct attribute_group),
			GFP_KERNEL);
		if (!perf->attr_group)
			return -ENOMEM;

		attrs = (struct attribute **)(perf->attr_group + 1);
		if (!strcmp(perf->block_name, "iommu")) {
		/* Information of IOMMU's num_counters and counter_ids is shown
		 * under /sys/bus/event_source/devices/amd_iommu. We don't
		 * duplicate here.
		 */
			perf_attr_iommu[0].data = perf->max_concurrent;
			for (i = 0; i < num_attrs; i++)
				attrs[i] = &perf_attr_iommu[i].attr.attr;
		}
		perf->attr_group->name = perf->block_name;
		perf->attr_group->attrs = attrs;
		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
		if (ret < 0)
			return ret;
	}
720 721 722 723

	return 0;
}

724
/* Called with write topology lock acquired */
725 726 727 728 729 730 731
static int kfd_build_sysfs_node_tree(void)
{
	struct kfd_topology_device *dev;
	int ret;
	uint32_t i = 0;

	list_for_each_entry(dev, &topology_device_list, list) {
732
		ret = kfd_build_sysfs_node_entry(dev, i);
733 734 735 736 737 738 739 740
		if (ret < 0)
			return ret;
		i++;
	}

	return 0;
}

741
/* Called with write topology lock acquired */
742 743 744 745 746 747 748 749 750 751 752 753 754
static void kfd_remove_sysfs_node_tree(void)
{
	struct kfd_topology_device *dev;

	list_for_each_entry(dev, &topology_device_list, list)
		kfd_remove_sysfs_node_entry(dev);
}

static int kfd_topology_update_sysfs(void)
{
	int ret;

	pr_info("Creating topology SYSFS entries\n");
755
	if (!sys_props.kobj_topology) {
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
		sys_props.kobj_topology =
				kfd_alloc_struct(sys_props.kobj_topology);
		if (!sys_props.kobj_topology)
			return -ENOMEM;

		ret = kobject_init_and_add(sys_props.kobj_topology,
				&sysprops_type,  &kfd_device->kobj,
				"topology");
		if (ret < 0)
			return ret;

		sys_props.kobj_nodes = kobject_create_and_add("nodes",
				sys_props.kobj_topology);
		if (!sys_props.kobj_nodes)
			return -ENOMEM;

		sys_props.attr_genid.name = "generation_id";
		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&sys_props.attr_genid);
		ret = sysfs_create_file(sys_props.kobj_topology,
				&sys_props.attr_genid);
		if (ret < 0)
			return ret;

		sys_props.attr_props.name = "system_properties";
		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&sys_props.attr_props);
		ret = sysfs_create_file(sys_props.kobj_topology,
				&sys_props.attr_props);
		if (ret < 0)
			return ret;
	}

	kfd_remove_sysfs_node_tree();

	return kfd_build_sysfs_node_tree();
}

static void kfd_topology_release_sysfs(void)
{
	kfd_remove_sysfs_node_tree();
	if (sys_props.kobj_topology) {
		sysfs_remove_file(sys_props.kobj_topology,
				&sys_props.attr_genid);
		sysfs_remove_file(sys_props.kobj_topology,
				&sys_props.attr_props);
		if (sys_props.kobj_nodes) {
			kobject_del(sys_props.kobj_nodes);
			kobject_put(sys_props.kobj_nodes);
805
			sys_props.kobj_nodes = NULL;
806 807 808
		}
		kobject_del(sys_props.kobj_topology);
		kobject_put(sys_props.kobj_topology);
809
		sys_props.kobj_topology = NULL;
810 811 812
	}
}

813 814 815 816 817 818 819 820 821 822
/* Called with write topology_lock acquired */
static void kfd_topology_update_device_list(struct list_head *temp_list,
					struct list_head *master_list)
{
	while (!list_empty(temp_list)) {
		list_move_tail(temp_list->next, master_list);
		sys_props.num_devices++;
	}
}

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static void kfd_debug_print_topology(void)
{
	struct kfd_topology_device *dev;

	down_read(&topology_lock);

	dev = list_last_entry(&topology_device_list,
			struct kfd_topology_device, list);
	if (dev) {
		if (dev->node_props.cpu_cores_count &&
				dev->node_props.simd_count) {
			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
				dev->node_props.device_id,
				dev->node_props.vendor_id);
		} else if (dev->node_props.cpu_cores_count)
			pr_info("Topology: Add CPU node\n");
		else if (dev->node_props.simd_count)
			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
				dev->node_props.device_id,
				dev->node_props.vendor_id);
	}
	up_read(&topology_lock);
}

/* Helper function for intializing platform_xx members of
 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
 */
static void kfd_update_system_properties(void)
{
	struct kfd_topology_device *dev;

	down_read(&topology_lock);
	dev = list_last_entry(&topology_device_list,
			struct kfd_topology_device, list);
	if (dev) {
		sys_props.platform_id =
			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
		sys_props.platform_rev = dev->oem_revision;
	}
	up_read(&topology_lock);
}

static void find_system_memory(const struct dmi_header *dm,
	void *private)
{
	struct kfd_mem_properties *mem;
	u16 mem_width, mem_clock;
	struct kfd_topology_device *kdev =
		(struct kfd_topology_device *)private;
	const u8 *dmi_data = (const u8 *)(dm + 1);

	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
		list_for_each_entry(mem, &kdev->mem_props, list) {
			if (mem_width != 0xFFFF && mem_width != 0)
				mem->width = mem_width;
			if (mem_clock != 0)
				mem->mem_clk_max = mem_clock;
		}
	}
}
886 887 888 889 890 891 892 893

/*
 * Performance counters information is not part of CRAT but we would like to
 * put them in the sysfs under topology directory for Thunk to get the data.
 * This function is called before updating the sysfs.
 */
static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
{
894 895
	/* These are the only counters supported so far */
	return kfd_iommu_add_perf_counters(kdev);
896 897
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911
/* kfd_add_non_crat_information - Add information that is not currently
 *	defined in CRAT but is necessary for KFD topology
 * @dev - topology device to which addition info is added
 */
static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
{
	/* Check if CPU only node. */
	if (!kdev->gpu) {
		/* Add system memory information */
		dmi_walk(find_system_memory, kdev);
	}
	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
}

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
 *	Ignore CRAT for all other devices. AMD APU is identified if both CPU
 *	and GPU cores are present.
 * @device_list - topology device list created by parsing ACPI CRAT table.
 * @return - TRUE if invalid, FALSE is valid.
 */
static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
{
	struct kfd_topology_device *dev;

	list_for_each_entry(dev, device_list, list) {
		if (dev->node_props.cpu_cores_count &&
			dev->node_props.simd_count)
			return false;
	}
	pr_info("Ignoring ACPI CRAT on non-APU system\n");
	return true;
}

931 932
int kfd_topology_init(void)
{
933
	void *crat_image = NULL;
934 935
	size_t image_size = 0;
	int ret;
936
	struct list_head temp_topology_device_list;
937 938 939
	int cpu_only_node = 0;
	struct kfd_topology_device *kdev;
	int proximity_domain;
940

941 942 943 944
	/* topology_device_list - Master list of all topology devices
	 * temp_topology_device_list - temporary list created while parsing CRAT
	 * or VCRAT. Once parsing is complete the contents of list is moved to
	 * topology_device_list
945
	 */
946 947

	/* Initialize the head for the both the lists */
948
	INIT_LIST_HEAD(&topology_device_list);
949
	INIT_LIST_HEAD(&temp_topology_device_list);
950 951 952 953
	init_rwsem(&topology_lock);

	memset(&sys_props, 0, sizeof(sys_props));

954 955 956 957 958 959 960
	/* Proximity domains in ACPI CRAT tables start counting at
	 * 0. The same should be true for virtual CRAT tables created
	 * at this stage. GPUs added later in kfd_topology_add_device
	 * use a counter.
	 */
	proximity_domain = 0;

961
	/*
962
	 * Get the CRAT image from the ACPI. If ACPI doesn't have one
963
	 * or if ACPI CRAT is invalid create a virtual CRAT.
964 965
	 * NOTE: The current implementation expects all AMD APUs to have
	 *	CRAT. If no CRAT is available, it is assumed to be a CPU
966
	 */
967 968
	ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
	if (!ret) {
969
		ret = kfd_parse_crat_table(crat_image,
970 971
					   &temp_topology_device_list,
					   proximity_domain);
972 973
		if (ret ||
		    kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
			kfd_release_topology_device_list(
				&temp_topology_device_list);
			kfd_destroy_crat_image(crat_image);
			crat_image = NULL;
		}
	}

	if (!crat_image) {
		ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
						    COMPUTE_UNIT_CPU, NULL,
						    proximity_domain);
		cpu_only_node = 1;
		if (ret) {
			pr_err("Error creating VCRAT table for CPU\n");
			return ret;
		}

		ret = kfd_parse_crat_table(crat_image,
					   &temp_topology_device_list,
					   proximity_domain);
		if (ret) {
			pr_err("Error parsing VCRAT table for CPU\n");
996
			goto err;
997
		}
998 999
	}

1000 1001 1002 1003
	kdev = list_first_entry(&temp_topology_device_list,
				struct kfd_topology_device, list);
	kfd_add_perf_to_topology(kdev);

1004
	down_write(&topology_lock);
1005 1006
	kfd_topology_update_device_list(&temp_topology_device_list,
					&topology_device_list);
1007
	atomic_set(&topology_crat_proximity_domain, sys_props.num_devices-1);
1008 1009 1010
	ret = kfd_topology_update_sysfs();
	up_write(&topology_lock);

1011 1012
	if (!ret) {
		sys_props.generation_count++;
1013 1014
		kfd_update_system_properties();
		kfd_debug_print_topology();
1015
		pr_info("Finished initializing topology\n");
1016
	} else
1017 1018
		pr_err("Failed to update topology in sysfs ret=%d\n", ret);

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	/* For nodes with GPU, this information gets added
	 * when GPU is detected (kfd_topology_add_device).
	 */
	if (cpu_only_node) {
		/* Add additional information to CPU only node created above */
		down_write(&topology_lock);
		kdev = list_first_entry(&topology_device_list,
				struct kfd_topology_device, list);
		up_write(&topology_lock);
		kfd_add_non_crat_information(kdev);
	}

1031
err:
1032
	kfd_destroy_crat_image(crat_image);
1033 1034 1035 1036 1037
	return ret;
}

void kfd_topology_shutdown(void)
{
1038
	down_write(&topology_lock);
1039 1040
	kfd_topology_release_sysfs();
	kfd_release_live_view();
1041
	up_write(&topology_lock);
1042 1043 1044 1045 1046 1047
}

static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
{
	uint32_t hashout;
	uint32_t buf[7];
1048
	uint64_t local_mem_size;
1049
	int i;
1050
	struct kfd_local_mem_info local_mem_info;
1051 1052 1053 1054

	if (!gpu)
		return 0;

1055 1056 1057 1058
	gpu->kfd2kgd->get_local_mem_info(gpu->kgd, &local_mem_info);

	local_mem_size = local_mem_info.local_mem_size_private +
			local_mem_info.local_mem_size_public;
1059

1060 1061 1062 1063 1064
	buf[0] = gpu->pdev->devfn;
	buf[1] = gpu->pdev->subsystem_vendor;
	buf[2] = gpu->pdev->subsystem_device;
	buf[3] = gpu->pdev->device;
	buf[4] = gpu->pdev->bus->number;
1065 1066
	buf[5] = lower_32_bits(local_mem_size);
	buf[6] = upper_32_bits(local_mem_size);
1067 1068 1069 1070 1071 1072

	for (i = 0, hashout = 0; i < 7; i++)
		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);

	return hashout;
}
1073 1074 1075 1076 1077 1078 1079
/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
 *		the GPU device is not already present in the topology device
 *		list then return NULL. This means a new topology device has to
 *		be created for this GPU.
 * TODO: Rather than assiging @gpu to first topology device withtout
 *		gpu attached, it will better to have more stringent check.
 */
1080 1081 1082
static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
{
	struct kfd_topology_device *dev;
1083
	struct kfd_topology_device *out_dev = NULL;
1084

1085
	down_write(&topology_lock);
1086
	list_for_each_entry(dev, &topology_device_list, list)
1087
		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1088 1089 1090 1091
			dev->gpu = gpu;
			out_dev = dev;
			break;
		}
1092
	up_write(&topology_lock);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	return out_dev;
}

static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
{
	/*
	 * TODO: Generate an event for thunk about the arrival/removal
	 * of the GPU
	 */
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
 *		patch this after CRAT parsing.
 */
static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
{
	struct kfd_mem_properties *mem;
	struct kfd_local_mem_info local_mem_info;

	if (!dev)
		return;

	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
	 * single bank of VRAM local memory.
	 * for dGPUs - VCRAT reports only one bank of Local Memory
	 * for APUs - If CRAT from ACPI reports more than one bank, then
	 *	all the banks will report the same mem_clk_max information
	 */
	dev->gpu->kfd2kgd->get_local_mem_info(dev->gpu->kgd,
		&local_mem_info);

	list_for_each_entry(mem, &dev->mem_props, list)
		mem->mem_clk_max = local_mem_info.mem_clk_max;
}

static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
{
1130 1131 1132 1133 1134
	struct kfd_iolink_properties *link, *cpu_link;
	struct kfd_topology_device *cpu_dev;
	uint32_t cap;
	uint32_t cpu_flag = CRAT_IOLINK_FLAGS_ENABLED;
	uint32_t flag = CRAT_IOLINK_FLAGS_ENABLED;
1135 1136 1137 1138

	if (!dev || !dev->gpu)
		return;

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	pcie_capability_read_dword(dev->gpu->pdev,
			PCI_EXP_DEVCAP2, &cap);

	if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
		     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
		cpu_flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
			CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;

	if (!dev->gpu->pci_atomic_requested ||
	    dev->gpu->device_info->asic_family == CHIP_HAWAII)
		flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
			CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;

	/* GPU only creates direct links so apply flags setting to all */
	list_for_each_entry(link, &dev->io_link_props, list) {
		link->flags = flag;
		cpu_dev = kfd_topology_device_by_proximity_domain(
				link->node_to);
		if (cpu_dev) {
			list_for_each_entry(cpu_link,
					    &cpu_dev->io_link_props, list)
				if (cpu_link->node_to == link->node_from)
					cpu_link->flags = cpu_flag;
		}
	}
1164 1165
}

1166 1167 1168 1169
int kfd_topology_add_device(struct kfd_dev *gpu)
{
	uint32_t gpu_id;
	struct kfd_topology_device *dev;
1170
	struct kfd_cu_info cu_info;
1171 1172
	int res = 0;
	struct list_head temp_topology_device_list;
1173 1174 1175
	void *crat_image = NULL;
	size_t image_size = 0;
	int proximity_domain;
1176 1177

	INIT_LIST_HEAD(&temp_topology_device_list);
1178 1179 1180

	gpu_id = kfd_generate_gpu_id(gpu);

1181
	pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1182

1183 1184 1185 1186 1187 1188 1189
	proximity_domain = atomic_inc_return(&topology_crat_proximity_domain);

	/* Check to see if this gpu device exists in the topology_device_list.
	 * If so, assign the gpu to that device,
	 * else create a Virtual CRAT for this gpu device and then parse that
	 * CRAT to create a new topology device. Once created assign the gpu to
	 * that topology device
1190 1191 1192
	 */
	dev = kfd_assign_gpu(gpu);
	if (!dev) {
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		res = kfd_create_crat_image_virtual(&crat_image, &image_size,
						    COMPUTE_UNIT_GPU, gpu,
						    proximity_domain);
		if (res) {
			pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
			       gpu_id);
			return res;
		}
		res = kfd_parse_crat_table(crat_image,
					   &temp_topology_device_list,
					   proximity_domain);
		if (res) {
			pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
			       gpu_id);
1207 1208
			goto err;
		}
1209 1210 1211 1212 1213

		down_write(&topology_lock);
		kfd_topology_update_device_list(&temp_topology_device_list,
			&topology_device_list);

1214 1215
		/* Update the SYSFS tree, since we added another topology
		 * device
1216
		 */
1217
		res = kfd_topology_update_sysfs();
1218 1219
		up_write(&topology_lock);

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		if (!res)
			sys_props.generation_count++;
		else
			pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
						gpu_id, res);
		dev = kfd_assign_gpu(gpu);
		if (WARN_ON(!dev)) {
			res = -ENODEV;
			goto err;
		}
1230 1231 1232 1233
	}

	dev->gpu_id = gpu_id;
	gpu->id = gpu_id;
1234 1235 1236 1237 1238 1239 1240 1241 1242

	/* TODO: Move the following lines to function
	 *	kfd_add_non_crat_information
	 */

	/* Fill-in additional information that is not available in CRAT but
	 * needed for the topology
	 */

1243
	dev->gpu->kfd2kgd->get_cu_info(dev->gpu->kgd, &cu_info);
1244 1245 1246
	dev->node_props.simd_arrays_per_engine =
		cu_info.num_shader_arrays_per_engine;

1247 1248
	dev->node_props.vendor_id = gpu->pdev->vendor;
	dev->node_props.device_id = gpu->pdev->device;
1249 1250
	dev->node_props.location_id = PCI_DEVID(gpu->pdev->bus->number,
		gpu->pdev->devfn);
1251 1252 1253 1254
	dev->node_props.max_engine_clk_fcompute =
		dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(dev->gpu->kgd);
	dev->node_props.max_engine_clk_ccompute =
		cpufreq_quick_get_max(0) / 1000;
1255 1256
	dev->node_props.drm_render_minor =
		gpu->shared_resources.drm_render_minor;
1257

1258 1259
	dev->node_props.hive_id = gpu->hive_id;

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	kfd_fill_mem_clk_max_info(dev);
	kfd_fill_iolink_non_crat_info(dev);

	switch (dev->gpu->device_info->asic_family) {
	case CHIP_KAVERI:
	case CHIP_HAWAII:
	case CHIP_TONGA:
		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
		break;
	case CHIP_CARRIZO:
	case CHIP_FIJI:
	case CHIP_POLARIS10:
	case CHIP_POLARIS11:
1275
		pr_debug("Adding doorbell packet type capability\n");
1276 1277 1278 1279
		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
		break;
1280 1281 1282 1283 1284 1285
	case CHIP_VEGA10:
	case CHIP_RAVEN:
		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
		break;
1286 1287 1288
	default:
		WARN(1, "Unexpected ASIC family %u",
		     dev->gpu->device_info->asic_family);
1289 1290
	}

1291 1292 1293
	/* Fix errors in CZ CRAT.
	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
	 *		because it doesn't consider masked out CUs
1294 1295
	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
	 * capability flag: Carrizo CRAT doesn't report IOMMU flags
1296
	 */
1297
	if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
1298 1299
		dev->node_props.simd_count =
			cu_info.simd_per_cu * cu_info.cu_active_number;
1300 1301 1302
		dev->node_props.max_waves_per_simd = 10;
		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
	}
1303 1304 1305

	kfd_debug_print_topology();

1306
	if (!res)
1307
		kfd_notify_gpu_change(gpu_id, 1);
1308
err:
1309
	kfd_destroy_crat_image(crat_image);
1310 1311 1312 1313 1314
	return res;
}

int kfd_topology_remove_device(struct kfd_dev *gpu)
{
1315
	struct kfd_topology_device *dev, *tmp;
1316 1317 1318 1319 1320
	uint32_t gpu_id;
	int res = -ENODEV;

	down_write(&topology_lock);

1321
	list_for_each_entry_safe(dev, tmp, &topology_device_list, list)
1322 1323 1324 1325
		if (dev->gpu == gpu) {
			gpu_id = dev->gpu_id;
			kfd_remove_sysfs_node_entry(dev);
			kfd_release_topology_device(dev);
1326
			sys_props.num_devices--;
1327 1328 1329 1330 1331 1332 1333 1334
			res = 0;
			if (kfd_topology_update_sysfs() < 0)
				kfd_topology_release_sysfs();
			break;
		}

	up_write(&topology_lock);

1335
	if (!res)
1336 1337 1338 1339 1340
		kfd_notify_gpu_change(gpu_id, 0);

	return res;
}

1341 1342 1343 1344 1345
/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
 *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
 *	returned through @kdev
 * Return -	0: On success (@kdev will be NULL for non GPU nodes)
 *		-1: If end of list
1346
 */
1347
int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
1348 1349 1350 1351 1352
{

	struct kfd_topology_device *top_dev;
	uint8_t device_idx = 0;

1353
	*kdev = NULL;
1354 1355 1356 1357
	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list) {
		if (device_idx == idx) {
1358 1359 1360
			*kdev = top_dev->gpu;
			up_read(&topology_lock);
			return 0;
1361 1362 1363 1364 1365 1366 1367
		}

		device_idx++;
	}

	up_read(&topology_lock);

1368
	return -1;
1369 1370

}
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
{
	const struct cpuinfo_x86 *cpuinfo;
	int first_cpu_of_numa_node;

	if (!cpumask || cpumask == cpu_none_mask)
		return -1;
	first_cpu_of_numa_node = cpumask_first(cpumask);
	if (first_cpu_of_numa_node >= nr_cpu_ids)
		return -1;
	cpuinfo = &cpu_data(first_cpu_of_numa_node);

	return cpuinfo->apicid;
}

/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
 *	of the given NUMA node (numa_node_id)
 * Return -1 on failure
 */
int kfd_numa_node_to_apic_id(int numa_node_id)
{
	if (numa_node_id == -1) {
		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
		return kfd_cpumask_to_apic_id(cpu_online_mask);
	}
	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
#if defined(CONFIG_DEBUG_FS)

int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
{
	struct kfd_topology_device *dev;
	unsigned int i = 0;
	int r = 0;

	down_read(&topology_lock);

	list_for_each_entry(dev, &topology_device_list, list) {
		if (!dev->gpu) {
			i++;
			continue;
		}

		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
		if (r)
			break;
	}

	up_read(&topology_lock);

	return r;
}

int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
{
	struct kfd_topology_device *dev;
	unsigned int i = 0;
	int r = 0;

	down_read(&topology_lock);

	list_for_each_entry(dev, &topology_device_list, list) {
		if (!dev->gpu) {
			i++;
			continue;
		}

		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packets);
		if (r)
			break;
	}

	up_read(&topology_lock);

	return r;
}

#endif