blk-mq.c 69.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41 42 43 44

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
45
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
46
{
47 48 49
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
50 51
}

52 53 54 55 56 57
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
58 59
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 61 62 63 64
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
65
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 67
}

68
void blk_mq_freeze_queue_start(struct request_queue *q)
69
{
70
	int freeze_depth;
71

72 73
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
74
		percpu_ref_kill(&q->q_usage_counter);
75
		blk_mq_run_hw_queues(q, false);
76
	}
77
}
78
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
79

80
void blk_mq_freeze_queue_wait(struct request_queue *q)
81
{
82
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
83
}
84
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
85

86 87 88 89 90 91 92 93
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
94

95 96 97 98
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
99
void blk_freeze_queue(struct request_queue *q)
100
{
101 102 103 104 105 106 107
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
108 109 110
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
111 112 113 114 115 116 117 118 119

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
120
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
121

122
void blk_mq_unfreeze_queue(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127 128
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
129
		percpu_ref_reinit(&q->q_usage_counter);
130
		wake_up_all(&q->mq_freeze_wq);
131
	}
132
}
133
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

162 163 164 165 166 167 168 169
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
170 171 172 173 174 175 176

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
177 178
}

179 180 181 182 183 184
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

185 186
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
187
{
188 189 190
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
191
	rq->mq_ctx = ctx;
192
	rq->cmd_flags = op;
193 194
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
195 196 197 198 199 200
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
201
	rq->start_time = jiffies;
202 203
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
204
	set_start_time_ns(rq);
205 206 207 208 209 210 211 212 213 214 215 216
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
217 218
	rq->timeout = 0;

219 220 221 222
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

223
	ctx->rq_dispatched[op_is_sync(op)]++;
224
}
225
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
226

227 228
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
229 230 231 232
{
	struct request *rq;
	unsigned int tag;

233
	tag = blk_mq_get_tag(data);
234
	if (tag != BLK_MQ_TAG_FAIL) {
235 236 237
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
238

239 240 241 242
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
243 244 245 246
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
247 248
			rq->tag = tag;
			rq->internal_tag = -1;
249
			data->hctx->tags->rqs[rq->tag] = rq;
250 251
		}

252
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253 254 255 256 257
		return rq;
	}

	return NULL;
}
258
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
259

260 261
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
262
{
263
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
264
	struct request *rq;
265
	int ret;
266

267
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268 269
	if (ret)
		return ERR_PTR(ret);
270

271
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
272

273 274 275 276
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
277
		return ERR_PTR(-EWOULDBLOCK);
278 279 280 281

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
282 283
	return rq;
}
284
EXPORT_SYMBOL(blk_mq_alloc_request);
285

M
Ming Lin 已提交
286 287 288
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
289
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
290
	struct request *rq;
291
	unsigned int cpu;
M
Ming Lin 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

310 311 312 313
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
314 315 316 317
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
318
	}
319 320
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
321

322
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
323

324
	blk_mq_put_ctx(alloc_data.ctx);
325
	blk_queue_exit(q);
326 327 328 329 330

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
331 332 333
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

334 335
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
336
{
337
	const int sched_tag = rq->internal_tag;
338 339
	struct request_queue *q = rq->q;

340
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
341
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
342 343

	wbt_done(q->rq_wb, &rq->issue_stat);
344
	rq->rq_flags = 0;
345

346
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
347
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
348 349 350 351
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
352
	blk_mq_sched_restart_queues(hctx);
353
	blk_queue_exit(q);
354 355
}

356
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
357
				     struct request *rq)
358 359 360 361
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
362 363 364 365 366 367
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
368 369 370 371
}

void blk_mq_free_request(struct request *rq)
{
372
	blk_mq_sched_put_request(rq);
373
}
J
Jens Axboe 已提交
374
EXPORT_SYMBOL_GPL(blk_mq_free_request);
375

376
inline void __blk_mq_end_request(struct request *rq, int error)
377
{
M
Ming Lei 已提交
378 379
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
380
	if (rq->end_io) {
J
Jens Axboe 已提交
381
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
382
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
383 384 385
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
386
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
387
	}
388
}
389
EXPORT_SYMBOL(__blk_mq_end_request);
390

391
void blk_mq_end_request(struct request *rq, int error)
392 393 394
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
395
	__blk_mq_end_request(rq, error);
396
}
397
EXPORT_SYMBOL(blk_mq_end_request);
398

399
static void __blk_mq_complete_request_remote(void *data)
400
{
401
	struct request *rq = data;
402

403
	rq->q->softirq_done_fn(rq);
404 405
}

406
static void blk_mq_ipi_complete_request(struct request *rq)
407 408
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
409
	bool shared = false;
410 411
	int cpu;

C
Christoph Hellwig 已提交
412
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
413 414 415
		rq->q->softirq_done_fn(rq);
		return;
	}
416 417

	cpu = get_cpu();
C
Christoph Hellwig 已提交
418 419 420 421
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
422
		rq->csd.func = __blk_mq_complete_request_remote;
423 424
		rq->csd.info = rq;
		rq->csd.flags = 0;
425
		smp_call_function_single_async(ctx->cpu, &rq->csd);
426
	} else {
427
		rq->q->softirq_done_fn(rq);
428
	}
429 430
	put_cpu();
}
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

447
static void __blk_mq_complete_request(struct request *rq)
448 449 450
{
	struct request_queue *q = rq->q;

451 452
	blk_mq_stat_add(rq);

453
	if (!q->softirq_done_fn)
454
		blk_mq_end_request(rq, rq->errors);
455 456 457 458
	else
		blk_mq_ipi_complete_request(rq);
}

459 460 461 462 463 464 465 466
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
467
void blk_mq_complete_request(struct request *rq, int error)
468
{
469 470 471
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
472
		return;
473 474
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
475
		__blk_mq_complete_request(rq);
476
	}
477 478
}
EXPORT_SYMBOL(blk_mq_complete_request);
479

480 481 482 483 484 485
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

486
void blk_mq_start_request(struct request *rq)
487 488 489
{
	struct request_queue *q = rq->q;

490 491
	blk_mq_sched_started_request(rq);

492 493
	trace_block_rq_issue(q, rq);

494 495 496
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
497
		wbt_issue(q->rq_wb, &rq->issue_stat);
498 499
	}

500
	blk_add_timer(rq);
501

502 503 504 505 506 507
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

508 509 510 511 512 513
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
514 515 516 517
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518 519 520 521 522 523 524 525 526

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
527
}
528
EXPORT_SYMBOL(blk_mq_start_request);
529

530
static void __blk_mq_requeue_request(struct request *rq)
531 532 533 534
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
535
	wbt_requeue(q->rq_wb, &rq->issue_stat);
536
	blk_mq_sched_requeue_request(rq);
537

538 539 540 541
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
542 543
}

544
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 546 547 548
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
549
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 551 552
}
EXPORT_SYMBOL(blk_mq_requeue_request);

553 554 555
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
556
		container_of(work, struct request_queue, requeue_work.work);
557 558 559 560 561 562 563 564 565
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 568
			continue;

569
		rq->rq_flags &= ~RQF_SOFTBARRIER;
570
		list_del_init(&rq->queuelist);
571
		blk_mq_sched_insert_request(rq, true, false, false, true);
572 573 574 575 576
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
577
		blk_mq_sched_insert_request(rq, false, false, false, true);
578 579
	}

580
	blk_mq_run_hw_queues(q, false);
581 582
}

583 584
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
585 586 587 588 589 590 591 592
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
593
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594 595 596

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
597
		rq->rq_flags |= RQF_SOFTBARRIER;
598 599 600 601 602
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
603 604 605

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
606 607 608 609 610
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
611
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 613 614
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

615 616 617 618 619 620 621 622
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

643 644
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
645 646
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
647
		return tags->rqs[tag];
648
	}
649 650

	return NULL;
651 652 653
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

654
struct blk_mq_timeout_data {
655 656
	unsigned long next;
	unsigned int next_set;
657 658
};

659
void blk_mq_rq_timed_out(struct request *req, bool reserved)
660
{
J
Jens Axboe 已提交
661
	const struct blk_mq_ops *ops = req->q->mq_ops;
662
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663 664 665 666 667 668 669 670 671 672

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
673 674
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
675

676
	if (ops->timeout)
677
		ret = ops->timeout(req, reserved);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
693
}
694

695 696 697 698
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
699

700
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
701
		return;
702

703 704
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
705
			blk_mq_rq_timed_out(rq, reserved);
706 707 708 709
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
710 711
}

712
static void blk_mq_timeout_work(struct work_struct *work)
713
{
714 715
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
716 717 718 719 720
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
721

722 723 724 725 726 727 728 729 730 731 732 733 734 735
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
736 737
		return;

738
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739

740 741 742
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
743
	} else {
744 745
		struct blk_mq_hw_ctx *hctx;

746 747 748 749 750
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
751
	}
752
	blk_queue_exit(q);
753 754 755 756 757 758 759 760 761 762 763 764 765 766
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
767
		bool merged = false;
768 769 770 771 772 773 774

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

775 776 777 778
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
779
			break;
780 781 782
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
783
			break;
784 785
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
786
			break;
787 788
		default:
			continue;
789
		}
790 791 792 793

		if (merged)
			ctx->rq_merged++;
		return merged;
794 795 796 797 798
	}

	return false;
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

817 818 819 820
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
821
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822
{
823 824 825 826
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
827

828
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829
}
830
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831

832 833 834 835
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
836

837
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 839
}

840 841
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
842 843 844 845 846 847 848 849 850 851 852 853 854 855
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

856 857 858
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

859 860
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
861 862 863 864
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
865 866 867 868 869 870 871
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

872 873
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
874 875 876 877 878 879 880 881 882 883
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

966
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
967 968 969
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
970 971
	LIST_HEAD(driver_list);
	struct list_head *dptr;
972
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
973

974 975 976 977 978 979
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

980 981 982
	/*
	 * Now process all the entries, sending them to the driver.
	 */
983
	errors = queued = 0;
984
	while (!list_empty(list)) {
985
		struct blk_mq_queue_data bd;
986

987
		rq = list_first_entry(list, struct request, queuelist);
988 989 990
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
991 992

			/*
993 994
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
995
			 */
996 997 998 999 1000 1001 1002 1003 1004
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
1005
				break;
1006
			}
1007
		}
1008

1009 1010
		list_del_init(&rq->queuelist);

1011 1012
		bd.rq = rq;
		bd.list = dptr;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1026 1027

		ret = q->mq_ops->queue_rq(hctx, &bd);
1028 1029 1030
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1031
			break;
1032
		case BLK_MQ_RQ_QUEUE_BUSY:
1033
			blk_mq_put_driver_tag_hctx(hctx, rq);
1034
			list_add(&rq->queuelist, list);
1035
			__blk_mq_requeue_request(rq);
1036 1037 1038 1039
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1040
			errors++;
1041
			rq->errors = -EIO;
1042
			blk_mq_end_request(rq, rq->errors);
1043 1044 1045 1046 1047
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1048 1049 1050 1051 1052

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
1053
		if (!dptr && list->next != list->prev)
1054
			dptr = &driver_list;
1055 1056
	}

1057
	hctx->dispatched[queued_to_index(queued)]++;
1058 1059 1060 1061 1062

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1063
	if (!list_empty(list)) {
1064 1065 1066 1067 1068 1069 1070
		/*
		 * If we got a driver tag for the next request already,
		 * free it again.
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1071
		spin_lock(&hctx->lock);
1072
		list_splice_init(list, &hctx->dispatch);
1073
		spin_unlock(&hctx->lock);
1074

1075 1076 1077 1078 1079 1080 1081 1082
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1083
		 *
1084 1085
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1086
		 */
1087 1088
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1089
			blk_mq_run_hw_queue(hctx, true);
1090
	}
1091

1092
	return (queued + errors) != 0;
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1104
		blk_mq_sched_dispatch_requests(hctx);
1105 1106 1107
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1108
		blk_mq_sched_dispatch_requests(hctx);
1109 1110 1111 1112
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1113 1114 1115 1116 1117 1118 1119 1120
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1121 1122
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1123 1124

	if (--hctx->next_cpu_batch <= 0) {
1125
		int next_cpu;
1126 1127 1128 1129 1130 1131 1132 1133 1134

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1135
	return hctx->next_cpu;
1136 1137
}

1138 1139
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1140 1141
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1142 1143
		return;

1144
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1145 1146
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1147
			__blk_mq_run_hw_queue(hctx);
1148
			put_cpu();
1149 1150
			return;
		}
1151

1152
		put_cpu();
1153
	}
1154

1155
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1156 1157
}

1158
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1159 1160 1161 1162 1163
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1164
		if (!blk_mq_hctx_has_pending(hctx) ||
1165
		    blk_mq_hctx_stopped(hctx))
1166 1167
			continue;

1168
		blk_mq_run_hw_queue(hctx, async);
1169 1170
	}
}
1171
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1193 1194
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1195
	cancel_work(&hctx->run_work);
1196
	cancel_delayed_work(&hctx->delay_work);
1197 1198 1199 1200
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1211 1212 1213
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1214

1215
	blk_mq_run_hw_queue(hctx, false);
1216 1217 1218
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1239
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1240 1241 1242 1243
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1244 1245
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1246 1247 1248
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1249
static void blk_mq_run_work_fn(struct work_struct *work)
1250 1251 1252
{
	struct blk_mq_hw_ctx *hctx;

1253
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1254

1255 1256 1257
	__blk_mq_run_hw_queue(hctx);
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1270 1271
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1272

1273
	blk_mq_stop_hw_queue(hctx);
1274 1275
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1276 1277 1278
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1279 1280 1281
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1282
{
J
Jens Axboe 已提交
1283 1284
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1285 1286
	trace_block_rq_insert(hctx->queue, rq);

1287 1288 1289 1290
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1291
}
1292

1293 1294
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1295 1296 1297
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1298
	__blk_mq_insert_req_list(hctx, rq, at_head);
1299 1300 1301
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1302 1303
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1315
		BUG_ON(rq->mq_ctx != ctx);
1316
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1317
		__blk_mq_insert_req_list(hctx, rq, false);
1318
	}
1319
	blk_mq_hctx_mark_pending(hctx, ctx);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1356 1357 1358 1359
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1376 1377 1378
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1379 1380 1381 1382 1383 1384
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1385

1386
	blk_account_io_start(rq, true);
1387 1388
}

1389 1390 1391 1392 1393 1394
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1395 1396 1397
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1398
{
1399
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1400 1401 1402 1403 1404 1405 1406
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1407 1408
		struct request_queue *q = hctx->queue;

1409 1410 1411 1412 1413
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1414

1415
		spin_unlock(&ctx->lock);
1416
		__blk_mq_finish_request(hctx, ctx, rq);
1417
		return true;
1418
	}
1419
}
1420

1421 1422
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1423 1424 1425 1426
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1427 1428
}

1429 1430
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
				      bool may_sleep)
1431 1432 1433 1434 1435 1436 1437
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1438 1439 1440
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1441

1442
	if (q->elevator)
1443 1444
		goto insert;

1445 1446 1447 1448 1449
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1450 1451 1452 1453 1454 1455
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1456 1457
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1458
		return;
1459
	}
1460

1461 1462 1463 1464 1465 1466
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1467
		return;
1468
	}
1469

1470
insert:
1471
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1472 1473
}

1474 1475 1476 1477 1478
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1479
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1480
{
1481
	const int is_sync = op_is_sync(bio->bi_opf);
1482
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1483
	struct blk_mq_alloc_data data = { .flags = 0 };
1484
	struct request *rq;
1485
	unsigned int request_count = 0, srcu_idx;
1486
	struct blk_plug *plug;
1487
	struct request *same_queue_rq = NULL;
1488
	blk_qc_t cookie;
J
Jens Axboe 已提交
1489
	unsigned int wb_acct;
1490 1491 1492 1493

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1494
		bio_io_error(bio);
1495
		return BLK_QC_T_NONE;
1496 1497
	}

1498 1499
	blk_queue_split(q, &bio, q->bio_split);

1500 1501 1502
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1503

1504 1505 1506
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1507 1508
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1509 1510 1511
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1512 1513
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1514
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1515 1516 1517
	}

	wbt_track(&rq->issue_stat, wb_acct);
1518

1519
	cookie = request_to_qc_t(data.hctx, rq);
1520 1521

	if (unlikely(is_flush_fua)) {
1522 1523
		if (q->elevator)
			goto elv_insert;
1524 1525
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1526
		goto run_queue;
1527 1528
	}

1529
	plug = current->plug;
1530 1531 1532 1533 1534
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1535 1536 1537
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1538 1539 1540 1541

		blk_mq_bio_to_request(rq, bio);

		/*
1542
		 * We do limited plugging. If the bio can be merged, do that.
1543 1544
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1545
		 */
1546
		if (plug) {
1547 1548
			/*
			 * The plug list might get flushed before this. If that
1549 1550 1551
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1552 1553
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1554
				list_del_init(&old_rq->queuelist);
1555
			}
1556 1557 1558 1559 1560
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1561
			goto done;
1562 1563 1564

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1565
			blk_mq_try_issue_directly(old_rq, &cookie, false);
1566 1567 1568
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1569
			blk_mq_try_issue_directly(old_rq, &cookie, true);
1570 1571
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1572
		goto done;
1573 1574
	}

1575
	if (q->elevator) {
1576
elv_insert:
1577 1578
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1579
		blk_mq_sched_insert_request(rq, false, true,
1580
						!is_sync || is_flush_fua, true);
1581 1582
		goto done;
	}
1583 1584 1585 1586 1587 1588 1589
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1590
run_queue:
1591 1592 1593
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1594 1595
done:
	return cookie;
1596 1597 1598 1599 1600 1601
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1602
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1603
{
1604
	const int is_sync = op_is_sync(bio->bi_opf);
1605
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1606 1607
	struct blk_plug *plug;
	unsigned int request_count = 0;
1608
	struct blk_mq_alloc_data data = { .flags = 0 };
1609
	struct request *rq;
1610
	blk_qc_t cookie;
J
Jens Axboe 已提交
1611
	unsigned int wb_acct;
1612 1613 1614 1615

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1616
		bio_io_error(bio);
1617
		return BLK_QC_T_NONE;
1618 1619
	}

1620 1621
	blk_queue_split(q, &bio, q->bio_split);

1622 1623 1624 1625 1626
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1627

1628 1629 1630
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1631 1632
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1633 1634 1635
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1636 1637
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1638
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1639 1640 1641
	}

	wbt_track(&rq->issue_stat, wb_acct);
1642

1643
	cookie = request_to_qc_t(data.hctx, rq);
1644 1645

	if (unlikely(is_flush_fua)) {
1646 1647
		if (q->elevator)
			goto elv_insert;
1648 1649
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1650
		goto run_queue;
1651 1652 1653 1654 1655 1656 1657
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1658 1659
	plug = current->plug;
	if (plug) {
1660 1661
		struct request *last = NULL;

1662
		blk_mq_bio_to_request(rq, bio);
1663 1664 1665 1666 1667 1668 1669

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1670
		if (!request_count)
1671
			trace_block_plug(q);
1672 1673
		else
			last = list_entry_rq(plug->mq_list.prev);
1674 1675 1676

		blk_mq_put_ctx(data.ctx);

1677 1678
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1679 1680
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1681
		}
1682

1683
		list_add_tail(&rq->queuelist, &plug->mq_list);
1684
		return cookie;
1685 1686
	}

1687
	if (q->elevator) {
1688
elv_insert:
1689 1690
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1691
		blk_mq_sched_insert_request(rq, false, true,
1692
						!is_sync || is_flush_fua, true);
1693 1694
		goto done;
	}
1695 1696 1697 1698 1699 1700 1701
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1702
run_queue:
1703
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1704 1705
	}

1706
	blk_mq_put_ctx(data.ctx);
1707
done:
1708
	return cookie;
1709 1710
}

1711 1712
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1713
{
1714
	struct page *page;
1715

1716
	if (tags->rqs && set->ops->exit_request) {
1717
		int i;
1718

1719
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1720 1721 1722
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1723
				continue;
J
Jens Axboe 已提交
1724
			set->ops->exit_request(set->driver_data, rq,
1725
						hctx_idx, i);
J
Jens Axboe 已提交
1726
			tags->static_rqs[i] = NULL;
1727
		}
1728 1729
	}

1730 1731
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1732
		list_del_init(&page->lru);
1733 1734 1735 1736 1737
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1738 1739
		__free_pages(page, page->private);
	}
1740
}
1741

1742 1743
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1744
	kfree(tags->rqs);
1745
	tags->rqs = NULL;
J
Jens Axboe 已提交
1746 1747
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1748

1749
	blk_mq_free_tags(tags);
1750 1751
}

1752 1753 1754 1755
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1756
{
1757
	struct blk_mq_tags *tags;
1758
	int node;
1759

1760 1761 1762 1763 1764
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1765
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1766 1767
	if (!tags)
		return NULL;
1768

1769
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1770
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1771
				 node);
1772 1773 1774 1775
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1776

J
Jens Axboe 已提交
1777 1778
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1779
				 node);
J
Jens Axboe 已提交
1780 1781 1782 1783 1784 1785
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1799 1800 1801 1802 1803
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1804 1805 1806

	INIT_LIST_HEAD(&tags->page_list);

1807 1808 1809 1810
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1811
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1812
				cache_line_size());
1813
	left = rq_size * depth;
1814

1815
	for (i = 0; i < depth; ) {
1816 1817 1818 1819 1820
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1821
		while (this_order && left < order_to_size(this_order - 1))
1822 1823 1824
			this_order--;

		do {
1825
			page = alloc_pages_node(node,
1826
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1827
				this_order);
1828 1829 1830 1831 1832 1833 1834 1835 1836
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1837
			goto fail;
1838 1839

		page->private = this_order;
1840
		list_add_tail(&page->lru, &tags->page_list);
1841 1842

		p = page_address(page);
1843 1844 1845 1846
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1847
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1848
		entries_per_page = order_to_size(this_order) / rq_size;
1849
		to_do = min(entries_per_page, depth - i);
1850 1851
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1852 1853 1854
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1855 1856
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1857
						rq, hctx_idx, i,
1858
						node)) {
J
Jens Axboe 已提交
1859
					tags->static_rqs[i] = NULL;
1860
					goto fail;
1861
				}
1862 1863
			}

1864 1865 1866 1867
			p += rq_size;
			i++;
		}
	}
1868
	return 0;
1869

1870
fail:
1871 1872
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1873 1874
}

J
Jens Axboe 已提交
1875 1876 1877 1878 1879
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1880
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1881
{
1882
	struct blk_mq_hw_ctx *hctx;
1883 1884 1885
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1886
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1887
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1888 1889 1890 1891 1892 1893 1894 1895 1896

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1897
		return 0;
1898

J
Jens Axboe 已提交
1899 1900 1901
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1902 1903

	blk_mq_run_hw_queue(hctx, true);
1904
	return 0;
1905 1906
}

1907
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1908
{
1909 1910
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1911 1912
}

1913
/* hctx->ctxs will be freed in queue's release handler */
1914 1915 1916 1917
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1918 1919
	unsigned flush_start_tag = set->queue_depth;

1920 1921
	blk_mq_tag_idle(hctx);

1922 1923 1924 1925 1926
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1927 1928 1929
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1930 1931 1932
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1933
	blk_mq_remove_cpuhp(hctx);
1934
	blk_free_flush_queue(hctx->fq);
1935
	sbitmap_free(&hctx->ctx_map);
1936 1937
}

M
Ming Lei 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1947
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1948 1949 1950
	}
}

1951 1952 1953
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1954
{
1955
	int node;
1956
	unsigned flush_start_tag = set->queue_depth;
1957 1958 1959 1960 1961

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1962
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1963 1964 1965 1966 1967
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1968
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1969

1970
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1971 1972

	hctx->tags = set->tags[hctx_idx];
1973 1974

	/*
1975 1976
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1977
	 */
1978 1979 1980 1981
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1982

1983 1984
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1985
		goto free_ctxs;
1986

1987
	hctx->nr_ctx = 0;
1988

1989 1990 1991
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1992

1993 1994 1995
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1996

1997 1998 1999 2000 2001
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
2002

2003 2004 2005
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

2006
	return 0;
2007

2008 2009 2010 2011 2012
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2013
 free_bitmap:
2014
	sbitmap_free(&hctx->ctx_map);
2015 2016 2017
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2018
	blk_mq_remove_cpuhp(hctx);
2019 2020
	return -1;
}
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
2035 2036
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2037 2038 2039 2040 2041

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
2042
		hctx = blk_mq_map_queue(q, i);
2043

2044 2045 2046 2047 2048
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2049
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2050 2051 2052
	}
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2075 2076 2077 2078 2079
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2080 2081
}

2082 2083
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2084
{
2085
	unsigned int i, hctx_idx;
2086 2087
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2088
	struct blk_mq_tag_set *set = q->tag_set;
2089

2090 2091 2092 2093 2094
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2095
	queue_for_each_hw_ctx(q, hctx, i) {
2096
		cpumask_clear(hctx->cpumask);
2097 2098 2099 2100 2101 2102
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2103
	for_each_possible_cpu(i) {
2104
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2105
		if (!cpumask_test_cpu(i, online_mask))
2106 2107
			continue;

2108 2109
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2110 2111
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2112 2113 2114 2115 2116 2117
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2118
			q->mq_map[i] = 0;
2119 2120
		}

2121
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2122
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2123

2124
		cpumask_set_cpu(i, hctx->cpumask);
2125 2126 2127
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2128

2129 2130
	mutex_unlock(&q->sysfs_lock);

2131
	queue_for_each_hw_ctx(q, hctx, i) {
2132
		/*
2133 2134
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2135 2136
		 */
		if (!hctx->nr_ctx) {
2137 2138 2139 2140
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2141 2142 2143
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2144
			hctx->tags = NULL;
2145 2146 2147
			continue;
		}

M
Ming Lei 已提交
2148 2149 2150
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2151 2152 2153 2154 2155
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2156
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2157

2158 2159 2160
		/*
		 * Initialize batch roundrobin counts
		 */
2161 2162 2163
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2164 2165
}

2166
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2167 2168 2169 2170
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2182 2183 2184

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2185
		queue_set_hctx_shared(q, shared);
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2196 2197 2198 2199 2200 2201
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2202 2203 2204 2205 2206 2207 2208 2209 2210
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2211 2212 2213 2214 2215 2216 2217 2218 2219

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2220
	list_add_tail(&q->tag_set_list, &set->tag_list);
2221

2222 2223 2224
	mutex_unlock(&set->tag_list_lock);
}

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2236 2237
	blk_mq_sched_teardown(q);

2238
	/* hctx kobj stays in hctx */
2239 2240 2241
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2242
		kobject_put(&hctx->kobj);
2243
	}
2244

2245 2246
	q->mq_map = NULL;

2247 2248
	kfree(q->queue_hw_ctx);

2249 2250 2251 2252 2253 2254
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2255 2256 2257
	free_percpu(q->queue_ctx);
}

2258
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2274 2275
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2276
{
K
Keith Busch 已提交
2277 2278
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2279

K
Keith Busch 已提交
2280
	blk_mq_sysfs_unregister(q);
2281
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2282
		int node;
2283

K
Keith Busch 已提交
2284 2285 2286 2287
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2288 2289
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2290
		if (!hctxs[i])
K
Keith Busch 已提交
2291
			break;
2292

2293
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2294 2295 2296 2297 2298
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2299

2300
		atomic_set(&hctxs[i]->nr_active, 0);
2301
		hctxs[i]->numa_node = node;
2302
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2303 2304 2305 2306 2307 2308 2309 2310

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2311
	}
K
Keith Busch 已提交
2312 2313 2314 2315
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2316 2317
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2331 2332 2333
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2334 2335
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2336
		goto err_exit;
K
Keith Busch 已提交
2337

2338 2339 2340
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2341 2342 2343 2344 2345
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2346
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2347 2348 2349 2350

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2351

2352
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2353
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2354 2355 2356

	q->nr_queues = nr_cpu_ids;

2357
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2358

2359 2360 2361
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2362 2363
	q->sg_reserved_size = INT_MAX;

2364
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2365 2366 2367
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2368 2369 2370 2371 2372
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2373 2374 2375 2376 2377
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2378 2379 2380 2381 2382
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2383 2384
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2385

2386
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2387

2388
	get_online_cpus();
2389 2390
	mutex_lock(&all_q_mutex);

2391
	list_add_tail(&q->all_q_node, &all_q_list);
2392
	blk_mq_add_queue_tag_set(set, q);
2393
	blk_mq_map_swqueue(q, cpu_online_mask);
2394

2395
	mutex_unlock(&all_q_mutex);
2396
	put_online_cpus();
2397

2398 2399 2400 2401 2402 2403 2404 2405
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2406
	return q;
2407

2408
err_hctxs:
K
Keith Busch 已提交
2409
	kfree(q->queue_hw_ctx);
2410
err_percpu:
K
Keith Busch 已提交
2411
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2412 2413
err_exit:
	q->mq_ops = NULL;
2414 2415
	return ERR_PTR(-ENOMEM);
}
2416
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2417 2418 2419

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2420
	struct blk_mq_tag_set	*set = q->tag_set;
2421

2422 2423 2424 2425
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2426 2427
	wbt_exit(q);

2428 2429
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2430
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2431 2432 2433
}

/* Basically redo blk_mq_init_queue with queue frozen */
2434 2435
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2436
{
2437
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2438

2439 2440
	blk_mq_sysfs_unregister(q);

2441 2442 2443 2444 2445 2446
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2447
	blk_mq_map_swqueue(q, online_mask);
2448

2449
	blk_mq_sysfs_register(q);
2450 2451
}

2452 2453 2454 2455 2456 2457 2458 2459
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2460 2461 2462 2463
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2464 2465 2466 2467 2468 2469 2470 2471 2472
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2473
	list_for_each_entry(q, &all_q_list, all_q_node)
2474 2475
		blk_mq_freeze_queue_wait(q);

2476
	list_for_each_entry(q, &all_q_list, all_q_node)
2477
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2478 2479 2480 2481

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2482
	mutex_unlock(&all_q_mutex);
2483 2484 2485 2486
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2487
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2503 2504 2505 2506
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2507 2508 2509 2510 2511 2512 2513
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2514 2515
}

2516 2517 2518 2519
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2520 2521
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2522 2523 2524 2525 2526 2527
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2528
		blk_mq_free_rq_map(set->tags[i]);
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2568 2569 2570 2571 2572 2573
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2574 2575
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2576 2577
	int ret;

B
Bart Van Assche 已提交
2578 2579
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2580 2581
	if (!set->nr_hw_queues)
		return -EINVAL;
2582
	if (!set->queue_depth)
2583 2584 2585 2586
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2587
	if (!set->ops->queue_rq)
2588 2589
		return -EINVAL;

2590 2591 2592 2593 2594
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2595

2596 2597 2598 2599 2600 2601 2602 2603 2604
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2605 2606 2607 2608 2609
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2610

K
Keith Busch 已提交
2611
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2612 2613
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2614
		return -ENOMEM;
2615

2616 2617 2618
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2619 2620 2621
	if (!set->mq_map)
		goto out_free_tags;

2622 2623 2624 2625 2626 2627 2628 2629 2630
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2631
		goto out_free_mq_map;
2632

2633 2634 2635
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2636
	return 0;
2637 2638 2639 2640 2641

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2642 2643
	kfree(set->tags);
	set->tags = NULL;
2644
	return ret;
2645 2646 2647 2648 2649 2650 2651
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2652 2653
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2654

2655 2656 2657
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2658
	kfree(set->tags);
2659
	set->tags = NULL;
2660 2661 2662
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2663 2664 2665 2666 2667 2668
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2669
	if (!set)
2670 2671
		return -EINVAL;

2672 2673 2674
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2675 2676
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2677 2678
		if (!hctx->tags)
			continue;
2679 2680 2681 2682
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2683 2684 2685 2686 2687 2688 2689 2690
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2691 2692 2693 2694 2695 2696 2697
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2698 2699 2700
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2701 2702 2703
	return ret;
}

K
Keith Busch 已提交
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

2720 2721 2722 2723
		/*
		 * Manually set the make_request_fn as blk_queue_make_request
		 * resets a lot of the queue settings.
		 */
K
Keith Busch 已提交
2724
		if (q->nr_hw_queues > 1)
2725
			q->make_request_fn = blk_mq_make_request;
K
Keith Busch 已提交
2726
		else
2727
			q->make_request_fn = blk_sq_make_request;
K
Keith Busch 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2774
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2775
				     struct blk_mq_hw_ctx *hctx,
2776 2777 2778 2779
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2780
	unsigned int nsecs;
2781 2782
	ktime_t kt;

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2801 2802 2803 2804 2805 2806 2807 2808
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2809
	kt = nsecs;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2832 2833 2834 2835 2836
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2837 2838 2839 2840 2841 2842 2843
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2844
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2845 2846
		return true;

J
Jens Axboe 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2890 2891 2892 2893
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2894 2895 2896 2897 2898

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2909 2910
static int __init blk_mq_init(void)
{
2911 2912
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2913

2914 2915 2916
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2917 2918 2919
	return 0;
}
subsys_initcall(blk_mq_init);