c_can.c 35.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * CAN bus driver for Bosch C_CAN controller
 *
 * Copyright (C) 2010 ST Microelectronics
 * Bhupesh Sharma <bhupesh.sharma@st.com>
 *
 * Borrowed heavily from the C_CAN driver originally written by:
 * Copyright (C) 2007
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
 *
 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
 * written by:
 * Copyright
 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
 *
 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
 * Bosch C_CAN user manual can be obtained from:
 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
 * users_manual_c_can.pdf
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/list.h>
#include <linux/io.h>
37
#include <linux/pm_runtime.h>
38 39 40 41

#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
42
#include <linux/can/led.h>
43 44 45

#include "c_can.h"

46 47 48 49
/* Number of interface registers */
#define IF_ENUM_REG_LEN		11
#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)

50 51 52
/* control extension register D_CAN specific */
#define CONTROL_EX_PDR		BIT(8)

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/* control register */
#define CONTROL_TEST		BIT(7)
#define CONTROL_CCE		BIT(6)
#define CONTROL_DISABLE_AR	BIT(5)
#define CONTROL_ENABLE_AR	(0 << 5)
#define CONTROL_EIE		BIT(3)
#define CONTROL_SIE		BIT(2)
#define CONTROL_IE		BIT(1)
#define CONTROL_INIT		BIT(0)

/* test register */
#define TEST_RX			BIT(7)
#define TEST_TX1		BIT(6)
#define TEST_TX2		BIT(5)
#define TEST_LBACK		BIT(4)
#define TEST_SILENT		BIT(3)
#define TEST_BASIC		BIT(2)

/* status register */
72
#define STATUS_PDA		BIT(10)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#define STATUS_BOFF		BIT(7)
#define STATUS_EWARN		BIT(6)
#define STATUS_EPASS		BIT(5)
#define STATUS_RXOK		BIT(4)
#define STATUS_TXOK		BIT(3)

/* error counter register */
#define ERR_CNT_TEC_MASK	0xff
#define ERR_CNT_TEC_SHIFT	0
#define ERR_CNT_REC_SHIFT	8
#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
#define ERR_CNT_RP_SHIFT	15
#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)

/* bit-timing register */
#define BTR_BRP_MASK		0x3f
#define BTR_BRP_SHIFT		0
#define BTR_SJW_SHIFT		6
#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
#define BTR_TSEG1_SHIFT		8
#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
#define BTR_TSEG2_SHIFT		12
#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)

/* brp extension register */
#define BRP_EXT_BRPE_MASK	0x0f
#define BRP_EXT_BRPE_SHIFT	0

/* IFx command request */
#define IF_COMR_BUSY		BIT(15)

/* IFx command mask */
#define IF_COMM_WR		BIT(7)
#define IF_COMM_MASK		BIT(6)
#define IF_COMM_ARB		BIT(5)
#define IF_COMM_CONTROL		BIT(4)
#define IF_COMM_CLR_INT_PND	BIT(3)
#define IF_COMM_TXRQST		BIT(2)
#define IF_COMM_DATAA		BIT(1)
#define IF_COMM_DATAB		BIT(0)
#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
				IF_COMM_CONTROL | IF_COMM_TXRQST | \
				IF_COMM_DATAA | IF_COMM_DATAB)

117 118 119 120 121 122 123 124
/* For the low buffers we clear the interrupt bit, but keep newdat */
#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
				 IF_COMM_DATAA | IF_COMM_DATAB)

/* For the high buffers we clear the interrupt bit and newdat */
#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_TXRQST)

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/* IFx arbitration */
#define IF_ARB_MSGVAL		BIT(15)
#define IF_ARB_MSGXTD		BIT(14)
#define IF_ARB_TRANSMIT		BIT(13)

/* IFx message control */
#define IF_MCONT_NEWDAT		BIT(15)
#define IF_MCONT_MSGLST		BIT(14)
#define IF_MCONT_INTPND		BIT(13)
#define IF_MCONT_UMASK		BIT(12)
#define IF_MCONT_TXIE		BIT(11)
#define IF_MCONT_RXIE		BIT(10)
#define IF_MCONT_RMTEN		BIT(9)
#define IF_MCONT_TXRQST		BIT(8)
#define IF_MCONT_EOB		BIT(7)
#define IF_MCONT_DLC_MASK	0xf

T
Thomas Gleixner 已提交
142 143 144 145 146 147
/*
 * Use IF1 for RX and IF2 for TX
 */
#define IF_RX			0
#define IF_TX			1

148 149 150 151 152 153 154 155 156 157
/* status interrupt */
#define STATUS_INTERRUPT	0x8000

/* global interrupt masks */
#define ENABLE_ALL_INTERRUPTS	1
#define DISABLE_ALL_INTERRUPTS	0

/* minimum timeout for checking BUSY status */
#define MIN_TIMEOUT_VALUE	6

158 159 160
/* Wait for ~1 sec for INIT bit */
#define INIT_WAIT_MS		1000

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
/* napi related */
#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM

/* c_can lec values */
enum c_can_lec_type {
	LEC_NO_ERROR = 0,
	LEC_STUFF_ERROR,
	LEC_FORM_ERROR,
	LEC_ACK_ERROR,
	LEC_BIT1_ERROR,
	LEC_BIT0_ERROR,
	LEC_CRC_ERROR,
	LEC_UNUSED,
};

/*
 * c_can error types:
 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 */
enum c_can_bus_error_types {
	C_CAN_NO_ERROR = 0,
	C_CAN_BUS_OFF,
	C_CAN_ERROR_WARNING,
	C_CAN_ERROR_PASSIVE,
};

187
static const struct can_bittiming_const c_can_bittiming_const = {
188 189 190 191 192 193 194 195 196 197 198
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
	.brp_inc = 1,
};

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_enable(priv->device);
}

static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_disable(priv->device);
}

static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_get_sync(priv->device);
}

static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_put_sync(priv->device);
}

223 224 225 226 227 228
static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
{
	if (priv->raminit)
		priv->raminit(priv, enable);
}

229 230 231 232 233 234 235 236 237 238 239 240
static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
{
	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
			C_CAN_MSG_OBJ_TX_FIRST;
}

static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
{
	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
			C_CAN_MSG_OBJ_TX_FIRST;
}

241
static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
242
{
243 244
	u32 val = priv->read_reg(priv, index);
	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
245 246 247 248 249 250 251
	return val;
}

static void c_can_enable_all_interrupts(struct c_can_priv *priv,
						int enable)
{
	unsigned int cntrl_save = priv->read_reg(priv,
252
						C_CAN_CTRL_REG);
253 254 255 256 257 258

	if (enable)
		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
	else
		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);

259
	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
260 261 262 263 264 265 266
}

static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
{
	int count = MIN_TIMEOUT_VALUE;

	while (count && priv->read_reg(priv,
267
				C_CAN_IFACE(COMREQ_REG, iface)) &
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
				IF_COMR_BUSY) {
		count--;
		udelay(1);
	}

	if (!count)
		return 1;

	return 0;
}

static inline void c_can_object_get(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
290
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
291
			IFX_WRITE_LOW_16BIT(mask));
292
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object get\n");
}

static inline void c_can_object_put(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
310
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
311
			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
312
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object put\n");
}

static void c_can_write_msg_object(struct net_device *dev,
			int iface, struct can_frame *frame, int objno)
{
	int i;
	u16 flags = 0;
	unsigned int id;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(frame->can_id & CAN_RTR_FLAG))
		flags |= IF_ARB_TRANSMIT;

	if (frame->can_id & CAN_EFF_FLAG) {
		id = frame->can_id & CAN_EFF_MASK;
		flags |= IF_ARB_MSGXTD;
	} else
		id = ((frame->can_id & CAN_SFF_MASK) << 18);

	flags |= IF_ARB_MSGVAL;

338
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
339
				IFX_WRITE_LOW_16BIT(id));
340
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
341 342 343
				IFX_WRITE_HIGH_16BIT(id));

	for (i = 0; i < frame->can_dlc; i += 2) {
344
		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
345 346 347 348
				frame->data[i] | (frame->data[i + 1] << 8));
	}

	/* enable interrupt for this message object */
349
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
350 351 352 353 354 355 356 357 358 359 360 361 362
			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
			frame->can_dlc);
	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
}

static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
						int iface,
						int ctrl_mask)
{
	int i;
	struct c_can_priv *priv = netdev_priv(dev);

	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
363
		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
364
				ctrl_mask & ~IF_MCONT_NEWDAT);
365 366 367 368
		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
	}
}

369 370
static int c_can_handle_lost_msg_obj(struct net_device *dev,
				     int iface, int objno, u32 ctrl)
371 372
{
	struct net_device_stats *stats = &dev->stats;
373
	struct c_can_priv *priv = netdev_priv(dev);
374
	struct can_frame *frame;
375
	struct sk_buff *skb;
376

377 378
	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
T
Thomas Gleixner 已提交
379
	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
380 381 382 383

	/* create an error msg */
	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
384
		return 0;
385 386 387 388 389 390 391

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
	stats->rx_errors++;
	stats->rx_over_errors++;

	netif_receive_skb(skb);
392
	return 1;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
}

static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
{
	u16 flags, data;
	int i;
	unsigned int val;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_skb(dev, &frame);
	if (!skb) {
		stats->rx_dropped++;
		return -ENOMEM;
	}

	frame->can_dlc = get_can_dlc(ctrl & 0x0F);

413 414
	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
415 416 417 418 419 420 421 422 423 424 425 426
		(flags << 16);

	if (flags & IF_ARB_MSGXTD)
		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		frame->can_id = (val >> 18) & CAN_SFF_MASK;

	if (flags & IF_ARB_TRANSMIT)
		frame->can_id |= CAN_RTR_FLAG;
	else {
		for (i = 0; i < frame->can_dlc; i += 2) {
			data = priv->read_reg(priv,
427
				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
428 429 430 431 432 433 434 435 436 437
			frame->data[i] = data;
			frame->data[i + 1] = data >> 8;
		}
	}

	netif_receive_skb(skb);

	stats->rx_packets++;
	stats->rx_bytes += frame->can_dlc;

438 439
	can_led_event(dev, CAN_LED_EVENT_RX);

440 441 442 443 444 445 446 447 448
	return 0;
}

static void c_can_setup_receive_object(struct net_device *dev, int iface,
					int objno, unsigned int mask,
					unsigned int id, unsigned int mcont)
{
	struct c_can_priv *priv = netdev_priv(dev);

449
	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
450
			IFX_WRITE_LOW_16BIT(mask));
451 452 453 454

	/* According to C_CAN documentation, the reserved bit
	 * in IFx_MASK2 register is fixed 1
	 */
455
	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
456
			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
457

458
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
459
			IFX_WRITE_LOW_16BIT(id));
460
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
461 462
			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));

463
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
464 465 466
	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
467
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
468 469 470 471 472 473
}

static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
{
	struct c_can_priv *priv = netdev_priv(dev);

474 475 476
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
477 478 479 480

	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
481
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
482 483 484 485
}

static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
{
486
	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

	/*
	 * as transmission request register's bit n-1 corresponds to
	 * message object n, we need to handle the same properly.
	 */
	if (val & (1 << (objno - 1)))
		return 1;

	return 0;
}

static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
					struct net_device *dev)
{
	u32 msg_obj_no;
	struct c_can_priv *priv = netdev_priv(dev);
	struct can_frame *frame = (struct can_frame *)skb->data;

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

508
	spin_lock_bh(&priv->xmit_lock);
509 510 511
	msg_obj_no = get_tx_next_msg_obj(priv);

	/* prepare message object for transmission */
T
Thomas Gleixner 已提交
512
	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
T
Thomas Gleixner 已提交
513
	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
514 515 516 517 518 519 520 521 522 523
	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);

	/*
	 * we have to stop the queue in case of a wrap around or
	 * if the next TX message object is still in use
	 */
	priv->tx_next++;
	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
		netif_stop_queue(dev);
524
	spin_unlock_bh(&priv->xmit_lock);
525 526 527 528

	return NETDEV_TX_OK;
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static int c_can_wait_for_ctrl_init(struct net_device *dev,
				    struct c_can_priv *priv, u32 init)
{
	int retry = 0;

	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
		udelay(10);
		if (retry++ > 1000) {
			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
			return -EIO;
		}
	}
	return 0;
}

544 545 546 547 548 549 550
static int c_can_set_bittiming(struct net_device *dev)
{
	unsigned int reg_btr, reg_brpe, ctrl_save;
	u8 brp, brpe, sjw, tseg1, tseg2;
	u32 ten_bit_brp;
	struct c_can_priv *priv = netdev_priv(dev);
	const struct can_bittiming *bt = &priv->can.bittiming;
551
	int res;
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

	/* c_can provides a 6-bit brp and 4-bit brpe fields */
	ten_bit_brp = bt->brp - 1;
	brp = ten_bit_brp & BTR_BRP_MASK;
	brpe = ten_bit_brp >> 6;

	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
			(tseg2 << BTR_TSEG2_SHIFT);
	reg_brpe = brpe & BRP_EXT_BRPE_MASK;

	netdev_info(dev,
		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);

568
	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
569 570 571 572 573 574
	ctrl_save &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
	if (res)
		return res;

575 576 577
	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
578

579
	return c_can_wait_for_ctrl_init(dev, priv, 0);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
}

/*
 * Configure C_CAN message objects for Tx and Rx purposes:
 * C_CAN provides a total of 32 message objects that can be configured
 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 * See user guide document for further details on configuring message
 * objects.
 */
static void c_can_configure_msg_objects(struct net_device *dev)
{
	int i;

	/* first invalidate all message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
T
Thomas Gleixner 已提交
597
		c_can_inval_msg_object(dev, IF_RX, i);
598 599 600

	/* setup receive message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
T
Thomas Gleixner 已提交
601
		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
602 603
			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);

T
Thomas Gleixner 已提交
604
	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
605 606 607 608 609 610 611 612 613
			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
}

/*
 * Configure C_CAN chip:
 * - enable/disable auto-retransmission
 * - set operating mode
 * - configure message objects
 */
614
static int c_can_chip_config(struct net_device *dev)
615 616 617
{
	struct c_can_priv *priv = netdev_priv(dev);

618
	/* enable automatic retransmission */
619
	priv->write_reg(priv, C_CAN_CTRL_REG,
620
			CONTROL_ENABLE_AR);
621

622 623
	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
624
		/* loopback + silent mode : useful for hot self-test */
625
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
626
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
627
		priv->write_reg(priv, C_CAN_TEST_REG,
628 629 630
				TEST_LBACK | TEST_SILENT);
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* loopback mode : useful for self-test function */
631
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
632
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
633
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
634 635
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* silent mode : bus-monitoring mode */
636
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
637
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
638
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
639 640
	} else
		/* normal mode*/
641
		priv->write_reg(priv, C_CAN_CTRL_REG,
642 643 644 645 646 647
				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);

	/* configure message objects */
	c_can_configure_msg_objects(dev);

	/* set a `lec` value so that we can check for updates later */
648
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
649 650

	/* set bittiming params */
651
	return c_can_set_bittiming(dev);
652 653
}

654
static int c_can_start(struct net_device *dev)
655 656
{
	struct c_can_priv *priv = netdev_priv(dev);
657
	int err;
658 659

	/* basic c_can configuration */
660 661 662
	err = c_can_chip_config(dev);
	if (err)
		return err;
663 664 665 666 667

	priv->can.state = CAN_STATE_ERROR_ACTIVE;

	/* reset tx helper pointers */
	priv->tx_next = priv->tx_echo = 0;
668 669 670

	/* enable status change, error and module interrupts */
	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
671 672

	return 0;
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
}

static void c_can_stop(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/* disable all interrupts */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);

	/* set the state as STOPPED */
	priv->can.state = CAN_STATE_STOPPED;
}

static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
{
688 689
	int err;

690 691
	switch (mode) {
	case CAN_MODE_START:
692 693 694
		err = c_can_start(dev);
		if (err)
			return err;
695 696 697 698 699 700 701 702 703
		netif_wake_queue(dev);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

704 705
static int __c_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
706 707 708 709
{
	unsigned int reg_err_counter;
	struct c_can_priv *priv = netdev_priv(dev);

710
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
711 712 713 714
	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
				ERR_CNT_REC_SHIFT;
	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;

715 716 717 718 719 720 721 722 723 724 725
	return 0;
}

static int c_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_get_sync(priv);
	err = __c_can_get_berr_counter(dev, bec);
726 727
	c_can_pm_runtime_put_sync(priv);

728
	return err;
729 730 731 732 733 734 735 736 737 738 739
}

/*
 * theory of operation:
 *
 * priv->tx_echo holds the number of the oldest can_frame put for
 * transmission into the hardware, but not yet ACKed by the CAN tx
 * complete IRQ.
 *
 * We iterate from priv->tx_echo to priv->tx_next and check if the
 * packet has been transmitted, echo it back to the CAN framework.
740
 * If we discover a not yet transmitted packet, stop looking for more.
741 742 743 744 745 746 747 748
 */
static void c_can_do_tx(struct net_device *dev)
{
	u32 val;
	u32 msg_obj_no;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;

749 750 751
	spin_lock_bh(&priv->xmit_lock);

	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
752
		msg_obj_no = get_tx_echo_msg_obj(priv);
753
		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
754
		if (!(val & (1 << (msg_obj_no - 1)))) {
755 756
			can_get_echo_skb(dev,
					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
T
Thomas Gleixner 已提交
757
			c_can_object_get(dev, IF_TX, msg_obj_no, IF_COMM_ALL);
758
			stats->tx_bytes += priv->read_reg(priv,
T
Thomas Gleixner 已提交
759
					C_CAN_IFACE(MSGCTRL_REG, IF_TX))
760 761
					& IF_MCONT_DLC_MASK;
			stats->tx_packets++;
762
			can_led_event(dev, CAN_LED_EVENT_TX);
T
Thomas Gleixner 已提交
763
			c_can_inval_msg_object(dev, IF_TX, msg_obj_no);
764 765
		} else {
			break;
766 767 768 769 770 771 772
		}
	}

	/* restart queue if wrap-up or if queue stalled on last pkt */
	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
		netif_wake_queue(dev);
773 774

	spin_unlock_bh(&priv->xmit_lock);
775 776
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/*
 * If we have a gap in the pending bits, that means we either
 * raced with the hardware or failed to readout all upper
 * objects in the last run due to quota limit.
 */
static u32 c_can_adjust_pending(u32 pend)
{
	u32 weight, lasts;

	if (pend == RECEIVE_OBJECT_BITS)
		return pend;

	/*
	 * If the last set bit is larger than the number of pending
	 * bits we have a gap.
	 */
	weight = hweight32(pend);
	lasts = fls(pend);

	/* If the bits are linear, nothing to do */
	if (lasts == weight)
		return pend;

	/*
	 * Find the first set bit after the gap. We walk backwards
	 * from the last set bit.
	 */
	for (lasts--; pend & (1 << (lasts - 1)); lasts--);

	return pend & ~((1 << lasts) - 1);
}

809 810 811
static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
			      u32 pend, int quota)
{
812
	u32 pkts = 0, ctrl, obj, mcmd;
813 814 815 816

	while ((obj = ffs(pend)) && quota > 0) {
		pend &= ~BIT(obj - 1);

817 818 819 820
		mcmd = obj < C_CAN_MSG_RX_LOW_LAST ?
			IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;

		c_can_object_get(dev, IF_RX, obj, mcmd);
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));

		if (ctrl & IF_MCONT_MSGLST) {
			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);

			pkts += n;
			quota -= n;
			continue;
		}

		/*
		 * This really should not happen, but this covers some
		 * odd HW behaviour. Do not remove that unless you
		 * want to brick your machine.
		 */
		if (!(ctrl & IF_MCONT_NEWDAT))
			continue;

		/* read the data from the message object */
		c_can_read_msg_object(dev, IF_RX, ctrl);

842
		if (obj == C_CAN_MSG_RX_LOW_LAST)
843 844 845 846 847 848 849 850 851 852
			/* activate all lower message objects */
			c_can_activate_all_lower_rx_msg_obj(dev, IF_RX, ctrl);

		pkts++;
		quota--;
	}

	return pkts;
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/*
 * theory of operation:
 *
 * c_can core saves a received CAN message into the first free message
 * object it finds free (starting with the lowest). Bits NEWDAT and
 * INTPND are set for this message object indicating that a new message
 * has arrived. To work-around this issue, we keep two groups of message
 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 *
 * To ensure in-order frame reception we use the following
 * approach while re-activating a message object to receive further
 * frames:
 * - if the current message object number is lower than
 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
 *   the INTPND bit.
 * - if the current message object number is equal to
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
 *   receive message objects.
 * - if the current message object number is greater than
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
 *   only this message object.
 */
static int c_can_do_rx_poll(struct net_device *dev, int quota)
{
	struct c_can_priv *priv = netdev_priv(dev);
878
	u32 pkts = 0, pend = 0, toread, n;
879 880 881 882 883 884 885 886

	/*
	 * It is faster to read only one 16bit register. This is only possible
	 * for a maximum number of 16 objects.
	 */
	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
			"Implementation does not support more message objects than 16");

887 888 889 890
	while (quota > 0) {
		if (!pend) {
			pend = priv->read_reg(priv, C_CAN_INTPND1_REG);
			if (!pend)
891
				break;
892 893 894 895
			/*
			 * If the pending field has a gap, handle the
			 * bits above the gap first.
			 */
896
			toread = c_can_adjust_pending(pend);
897
		} else {
898
			toread = pend;
899 900
		}
		/* Remove the bits from pend */
901 902 903 904 905
		pend &= ~toread;
		/* Read the objects */
		n = c_can_read_objects(dev, priv, toread, quota);
		pkts += n;
		quota -= n;
906
	}
907
	return pkts;
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
}

static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
{
	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
		(priv->current_status & LEC_UNUSED);
}

static int c_can_handle_state_change(struct net_device *dev,
				enum c_can_bus_error_types error_type)
{
	unsigned int reg_err_counter;
	unsigned int rx_err_passive;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;

L
Lucas De Marchi 已提交
927
	/* propagate the error condition to the CAN stack */
928 929 930 931
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

932
	__c_can_get_berr_counter(dev, &bec);
933
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
				ERR_CNT_RP_SHIFT;

	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		priv->can.can_stats.error_warning++;
		priv->can.state = CAN_STATE_ERROR_WARNING;
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;

		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		priv->can.can_stats.error_passive++;
		priv->can.state = CAN_STATE_ERROR_PASSIVE;
		cf->can_id |= CAN_ERR_CRTL;
		if (rx_err_passive)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;

		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		priv->can.state = CAN_STATE_BUS_OFF;
		cf->can_id |= CAN_ERR_BUSOFF;
		/*
		 * disable all interrupts in bus-off mode to ensure that
		 * the CPU is not hogged down
		 */
		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
		can_bus_off(dev);
		break;
	default:
		break;
	}

	netif_receive_skb(skb);
	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;

	return 1;
}

static int c_can_handle_bus_err(struct net_device *dev,
				enum c_can_lec_type lec_type)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

	/*
	 * early exit if no lec update or no error.
	 * no lec update means that no CAN bus event has been detected
	 * since CPU wrote 0x7 value to status reg.
	 */
	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
		return 0;

L
Lucas De Marchi 已提交
1001
	/* propagate the error condition to the CAN stack */
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/*
	 * check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */

	/* common for all type of bus errors */
	priv->can.can_stats.bus_error++;
	stats->rx_errors++;
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
	cf->data[2] |= CAN_ERR_PROT_UNSPEC;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
1028
		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
				CAN_ERR_PROT_LOC_ACK_DEL);
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
1041
		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1042 1043 1044 1045 1046 1047 1048
				CAN_ERR_PROT_LOC_CRC_DEL);
		break;
	default:
		break;
	}

	/* set a `lec` value so that we can check for updates later */
1049
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

	netif_receive_skb(skb);
	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;

	return 1;
}

static int c_can_poll(struct napi_struct *napi, int quota)
{
	u16 irqstatus;
	int lec_type = 0;
	int work_done = 0;
	struct net_device *dev = napi->dev;
	struct c_can_priv *priv = netdev_priv(dev);

1066
	irqstatus = priv->irqstatus;
1067 1068 1069 1070 1071 1072
	if (!irqstatus)
		goto end;

	/* status events have the highest priority */
	if (irqstatus == STATUS_INTERRUPT) {
		priv->current_status = priv->read_reg(priv,
1073
					C_CAN_STS_REG);
1074 1075 1076

		/* handle Tx/Rx events */
		if (priv->current_status & STATUS_TXOK)
1077
			priv->write_reg(priv, C_CAN_STS_REG,
1078 1079 1080
					priv->current_status & ~STATUS_TXOK);

		if (priv->current_status & STATUS_RXOK)
1081
			priv->write_reg(priv, C_CAN_STS_REG,
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
					priv->current_status & ~STATUS_RXOK);

		/* handle state changes */
		if ((priv->current_status & STATUS_EWARN) &&
				(!(priv->last_status & STATUS_EWARN))) {
			netdev_dbg(dev, "entered error warning state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_ERROR_WARNING);
		}
		if ((priv->current_status & STATUS_EPASS) &&
				(!(priv->last_status & STATUS_EPASS))) {
			netdev_dbg(dev, "entered error passive state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_ERROR_PASSIVE);
		}
		if ((priv->current_status & STATUS_BOFF) &&
				(!(priv->last_status & STATUS_BOFF))) {
			netdev_dbg(dev, "entered bus off state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_BUS_OFF);
		}

		/* handle bus recovery events */
		if ((!(priv->current_status & STATUS_BOFF)) &&
				(priv->last_status & STATUS_BOFF)) {
			netdev_dbg(dev, "left bus off state\n");
			priv->can.state = CAN_STATE_ERROR_ACTIVE;
		}
		if ((!(priv->current_status & STATUS_EPASS)) &&
				(priv->last_status & STATUS_EPASS)) {
			netdev_dbg(dev, "left error passive state\n");
			priv->can.state = CAN_STATE_ERROR_ACTIVE;
		}

		priv->last_status = priv->current_status;

		/* handle lec errors on the bus */
		lec_type = c_can_has_and_handle_berr(priv);
		if (lec_type)
			work_done += c_can_handle_bus_err(dev, lec_type);
	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
		/* handle events corresponding to receive message objects */
		work_done += c_can_do_rx_poll(dev, (quota - work_done));
	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
		/* handle events corresponding to transmit message objects */
		c_can_do_tx(dev);
	}

end:
	if (work_done < quota) {
		napi_complete(napi);
		/* enable all IRQs */
		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
	}

	return work_done;
}

static irqreturn_t c_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct c_can_priv *priv = netdev_priv(dev);

1147
	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1148
	if (!priv->irqstatus)
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		return IRQ_NONE;

	/* disable all interrupts and schedule the NAPI */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
	napi_schedule(&priv->napi);

	return IRQ_HANDLED;
}

static int c_can_open(struct net_device *dev)
{
	int err;
	struct c_can_priv *priv = netdev_priv(dev);

1163
	c_can_pm_runtime_get_sync(priv);
1164
	c_can_reset_ram(priv, true);
1165

1166 1167 1168 1169
	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
1170
		goto exit_open_fail;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	}

	/* register interrupt handler */
	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
				dev);
	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

1181 1182 1183 1184
	/* start the c_can controller */
	err = c_can_start(dev);
	if (err)
		goto exit_start_fail;
1185

1186 1187
	can_led_event(dev, CAN_LED_EVENT_OPEN);

1188
	napi_enable(&priv->napi);
1189 1190 1191 1192
	netif_start_queue(dev);

	return 0;

1193 1194
exit_start_fail:
	free_irq(dev->irq, dev);
1195 1196
exit_irq_fail:
	close_candev(dev);
1197
exit_open_fail:
1198
	c_can_reset_ram(priv, false);
1199
	c_can_pm_runtime_put_sync(priv);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	return err;
}

static int c_can_close(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	netif_stop_queue(dev);
	napi_disable(&priv->napi);
	c_can_stop(dev);
	free_irq(dev->irq, dev);
	close_candev(dev);
1212 1213

	c_can_reset_ram(priv, false);
1214
	c_can_pm_runtime_put_sync(priv);
1215

1216 1217
	can_led_event(dev, CAN_LED_EVENT_STOP);

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	return 0;
}

struct net_device *alloc_c_can_dev(void)
{
	struct net_device *dev;
	struct c_can_priv *priv;

	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
	if (!dev)
		return NULL;

	priv = netdev_priv(dev);
1231
	spin_lock_init(&priv->xmit_lock);
1232 1233 1234 1235 1236 1237
	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);

	priv->dev = dev;
	priv->can.bittiming_const = &c_can_bittiming_const;
	priv->can.do_set_mode = c_can_set_mode;
	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1238
	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1239 1240 1241 1242 1243 1244 1245
					CAN_CTRLMODE_LISTENONLY |
					CAN_CTRLMODE_BERR_REPORTING;

	return dev;
}
EXPORT_SYMBOL_GPL(alloc_c_can_dev);

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
#ifdef CONFIG_PM
int c_can_power_down(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	/* set PDR value so the device goes to power down mode */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val |= CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);

	/* Wait for the PDA bit to get set */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

	c_can_stop(dev);

1274
	c_can_reset_ram(priv, false);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	c_can_pm_runtime_put_sync(priv);

	return 0;
}
EXPORT_SYMBOL_GPL(c_can_power_down);

int c_can_power_up(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	c_can_pm_runtime_get_sync(priv);
1293
	c_can_reset_ram(priv, true);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	/* Clear PDR and INIT bits */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val &= ~CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
	val = priv->read_reg(priv, C_CAN_CTRL_REG);
	val &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, val);

	/* Wait for the PDA bit to get clear */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

1312
	return c_can_start(dev);
1313 1314 1315 1316
}
EXPORT_SYMBOL_GPL(c_can_power_up);
#endif

1317 1318
void free_c_can_dev(struct net_device *dev)
{
1319 1320 1321
	struct c_can_priv *priv = netdev_priv(dev);

	netif_napi_del(&priv->napi);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	free_candev(dev);
}
EXPORT_SYMBOL_GPL(free_c_can_dev);

static const struct net_device_ops c_can_netdev_ops = {
	.ndo_open = c_can_open,
	.ndo_stop = c_can_close,
	.ndo_start_xmit = c_can_start_xmit,
};

int register_c_can_dev(struct net_device *dev)
{
1334 1335 1336 1337 1338
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_enable(priv);

1339 1340 1341
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &c_can_netdev_ops;

1342 1343 1344
	err = register_candev(dev);
	if (err)
		c_can_pm_runtime_disable(priv);
1345 1346
	else
		devm_can_led_init(dev);
1347 1348

	return err;
1349 1350 1351 1352 1353 1354 1355 1356
}
EXPORT_SYMBOL_GPL(register_c_can_dev);

void unregister_c_can_dev(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	unregister_candev(dev);
1357 1358

	c_can_pm_runtime_disable(priv);
1359 1360 1361 1362 1363 1364
}
EXPORT_SYMBOL_GPL(unregister_c_can_dev);

MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");