c_can.c 36.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * CAN bus driver for Bosch C_CAN controller
 *
 * Copyright (C) 2010 ST Microelectronics
 * Bhupesh Sharma <bhupesh.sharma@st.com>
 *
 * Borrowed heavily from the C_CAN driver originally written by:
 * Copyright (C) 2007
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
 *
 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
 * written by:
 * Copyright
 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
 *
 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
 * Bosch C_CAN user manual can be obtained from:
 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
 * users_manual_c_can.pdf
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/list.h>
#include <linux/io.h>
37
#include <linux/pm_runtime.h>
38 39 40 41

#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
42
#include <linux/can/led.h>
43 44 45

#include "c_can.h"

46 47 48 49
/* Number of interface registers */
#define IF_ENUM_REG_LEN		11
#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)

50 51 52
/* control extension register D_CAN specific */
#define CONTROL_EX_PDR		BIT(8)

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/* control register */
#define CONTROL_TEST		BIT(7)
#define CONTROL_CCE		BIT(6)
#define CONTROL_DISABLE_AR	BIT(5)
#define CONTROL_ENABLE_AR	(0 << 5)
#define CONTROL_EIE		BIT(3)
#define CONTROL_SIE		BIT(2)
#define CONTROL_IE		BIT(1)
#define CONTROL_INIT		BIT(0)

/* test register */
#define TEST_RX			BIT(7)
#define TEST_TX1		BIT(6)
#define TEST_TX2		BIT(5)
#define TEST_LBACK		BIT(4)
#define TEST_SILENT		BIT(3)
#define TEST_BASIC		BIT(2)

/* status register */
72
#define STATUS_PDA		BIT(10)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#define STATUS_BOFF		BIT(7)
#define STATUS_EWARN		BIT(6)
#define STATUS_EPASS		BIT(5)
#define STATUS_RXOK		BIT(4)
#define STATUS_TXOK		BIT(3)

/* error counter register */
#define ERR_CNT_TEC_MASK	0xff
#define ERR_CNT_TEC_SHIFT	0
#define ERR_CNT_REC_SHIFT	8
#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
#define ERR_CNT_RP_SHIFT	15
#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)

/* bit-timing register */
#define BTR_BRP_MASK		0x3f
#define BTR_BRP_SHIFT		0
#define BTR_SJW_SHIFT		6
#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
#define BTR_TSEG1_SHIFT		8
#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
#define BTR_TSEG2_SHIFT		12
#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)

/* brp extension register */
#define BRP_EXT_BRPE_MASK	0x0f
#define BRP_EXT_BRPE_SHIFT	0

/* IFx command request */
#define IF_COMR_BUSY		BIT(15)

/* IFx command mask */
#define IF_COMM_WR		BIT(7)
#define IF_COMM_MASK		BIT(6)
#define IF_COMM_ARB		BIT(5)
#define IF_COMM_CONTROL		BIT(4)
#define IF_COMM_CLR_INT_PND	BIT(3)
#define IF_COMM_TXRQST		BIT(2)
#define IF_COMM_DATAA		BIT(1)
#define IF_COMM_DATAB		BIT(0)
#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
				IF_COMM_CONTROL | IF_COMM_TXRQST | \
				IF_COMM_DATAA | IF_COMM_DATAB)

117 118 119 120 121 122 123 124
/* For the low buffers we clear the interrupt bit, but keep newdat */
#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
				 IF_COMM_DATAA | IF_COMM_DATAB)

/* For the high buffers we clear the interrupt bit and newdat */
#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_TXRQST)

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/* IFx arbitration */
#define IF_ARB_MSGVAL		BIT(15)
#define IF_ARB_MSGXTD		BIT(14)
#define IF_ARB_TRANSMIT		BIT(13)

/* IFx message control */
#define IF_MCONT_NEWDAT		BIT(15)
#define IF_MCONT_MSGLST		BIT(14)
#define IF_MCONT_INTPND		BIT(13)
#define IF_MCONT_UMASK		BIT(12)
#define IF_MCONT_TXIE		BIT(11)
#define IF_MCONT_RXIE		BIT(10)
#define IF_MCONT_RMTEN		BIT(9)
#define IF_MCONT_TXRQST		BIT(8)
#define IF_MCONT_EOB		BIT(7)
#define IF_MCONT_DLC_MASK	0xf

T
Thomas Gleixner 已提交
142 143 144 145 146 147
/*
 * Use IF1 for RX and IF2 for TX
 */
#define IF_RX			0
#define IF_TX			1

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * IFx register masks:
 * allow easy operation on 16-bit registers when the
 * argument is 32-bit instead
 */
#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)

/* message object split */
#define C_CAN_NO_OF_OBJECTS	32
#define C_CAN_MSG_OBJ_RX_NUM	16
#define C_CAN_MSG_OBJ_TX_NUM	16

#define C_CAN_MSG_OBJ_RX_FIRST	1
#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
				C_CAN_MSG_OBJ_RX_NUM - 1)

#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
				C_CAN_MSG_OBJ_TX_NUM - 1)

#define C_CAN_MSG_OBJ_RX_SPLIT	9
#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)

#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
#define RECEIVE_OBJECT_BITS	0x0000ffff

/* status interrupt */
#define STATUS_INTERRUPT	0x8000

/* global interrupt masks */
#define ENABLE_ALL_INTERRUPTS	1
#define DISABLE_ALL_INTERRUPTS	0

/* minimum timeout for checking BUSY status */
#define MIN_TIMEOUT_VALUE	6

185 186 187
/* Wait for ~1 sec for INIT bit */
#define INIT_WAIT_MS		1000

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/* napi related */
#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM

/* c_can lec values */
enum c_can_lec_type {
	LEC_NO_ERROR = 0,
	LEC_STUFF_ERROR,
	LEC_FORM_ERROR,
	LEC_ACK_ERROR,
	LEC_BIT1_ERROR,
	LEC_BIT0_ERROR,
	LEC_CRC_ERROR,
	LEC_UNUSED,
};

/*
 * c_can error types:
 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 */
enum c_can_bus_error_types {
	C_CAN_NO_ERROR = 0,
	C_CAN_BUS_OFF,
	C_CAN_ERROR_WARNING,
	C_CAN_ERROR_PASSIVE,
};

214
static const struct can_bittiming_const c_can_bittiming_const = {
215 216 217 218 219 220 221 222 223 224 225
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
	.brp_inc = 1,
};

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_enable(priv->device);
}

static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_disable(priv->device);
}

static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_get_sync(priv->device);
}

static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_put_sync(priv->device);
}

250 251 252 253 254 255
static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
{
	if (priv->raminit)
		priv->raminit(priv, enable);
}

256 257 258 259 260 261 262 263 264 265 266 267
static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
{
	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
			C_CAN_MSG_OBJ_TX_FIRST;
}

static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
{
	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
			C_CAN_MSG_OBJ_TX_FIRST;
}

268
static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
269
{
270 271
	u32 val = priv->read_reg(priv, index);
	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
272 273 274 275 276 277 278
	return val;
}

static void c_can_enable_all_interrupts(struct c_can_priv *priv,
						int enable)
{
	unsigned int cntrl_save = priv->read_reg(priv,
279
						C_CAN_CTRL_REG);
280 281 282 283 284 285

	if (enable)
		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
	else
		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);

286
	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
287 288 289 290 291 292 293
}

static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
{
	int count = MIN_TIMEOUT_VALUE;

	while (count && priv->read_reg(priv,
294
				C_CAN_IFACE(COMREQ_REG, iface)) &
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
				IF_COMR_BUSY) {
		count--;
		udelay(1);
	}

	if (!count)
		return 1;

	return 0;
}

static inline void c_can_object_get(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
317
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
318
			IFX_WRITE_LOW_16BIT(mask));
319
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object get\n");
}

static inline void c_can_object_put(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
337
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
338
			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
339
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object put\n");
}

static void c_can_write_msg_object(struct net_device *dev,
			int iface, struct can_frame *frame, int objno)
{
	int i;
	u16 flags = 0;
	unsigned int id;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(frame->can_id & CAN_RTR_FLAG))
		flags |= IF_ARB_TRANSMIT;

	if (frame->can_id & CAN_EFF_FLAG) {
		id = frame->can_id & CAN_EFF_MASK;
		flags |= IF_ARB_MSGXTD;
	} else
		id = ((frame->can_id & CAN_SFF_MASK) << 18);

	flags |= IF_ARB_MSGVAL;

365
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
366
				IFX_WRITE_LOW_16BIT(id));
367
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
368 369 370
				IFX_WRITE_HIGH_16BIT(id));

	for (i = 0; i < frame->can_dlc; i += 2) {
371
		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
372 373 374 375
				frame->data[i] | (frame->data[i + 1] << 8));
	}

	/* enable interrupt for this message object */
376
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
377 378 379 380 381 382 383 384 385 386 387 388 389
			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
			frame->can_dlc);
	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
}

static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
						int iface,
						int ctrl_mask)
{
	int i;
	struct c_can_priv *priv = netdev_priv(dev);

	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
390
		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
391
				ctrl_mask & ~IF_MCONT_NEWDAT);
392 393 394 395
		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
	}
}

396 397
static int c_can_handle_lost_msg_obj(struct net_device *dev,
				     int iface, int objno, u32 ctrl)
398 399
{
	struct net_device_stats *stats = &dev->stats;
400
	struct c_can_priv *priv = netdev_priv(dev);
401
	struct can_frame *frame;
402
	struct sk_buff *skb;
403

404 405
	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
T
Thomas Gleixner 已提交
406
	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
407 408 409 410

	/* create an error msg */
	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
411
		return 0;
412 413 414 415 416 417 418

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
	stats->rx_errors++;
	stats->rx_over_errors++;

	netif_receive_skb(skb);
419
	return 1;
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
}

static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
{
	u16 flags, data;
	int i;
	unsigned int val;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_skb(dev, &frame);
	if (!skb) {
		stats->rx_dropped++;
		return -ENOMEM;
	}

	frame->can_dlc = get_can_dlc(ctrl & 0x0F);

440 441
	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
442 443 444 445 446 447 448 449 450 451 452 453
		(flags << 16);

	if (flags & IF_ARB_MSGXTD)
		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		frame->can_id = (val >> 18) & CAN_SFF_MASK;

	if (flags & IF_ARB_TRANSMIT)
		frame->can_id |= CAN_RTR_FLAG;
	else {
		for (i = 0; i < frame->can_dlc; i += 2) {
			data = priv->read_reg(priv,
454
				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
455 456 457 458 459 460 461 462 463 464
			frame->data[i] = data;
			frame->data[i + 1] = data >> 8;
		}
	}

	netif_receive_skb(skb);

	stats->rx_packets++;
	stats->rx_bytes += frame->can_dlc;

465 466
	can_led_event(dev, CAN_LED_EVENT_RX);

467 468 469 470 471 472 473 474 475
	return 0;
}

static void c_can_setup_receive_object(struct net_device *dev, int iface,
					int objno, unsigned int mask,
					unsigned int id, unsigned int mcont)
{
	struct c_can_priv *priv = netdev_priv(dev);

476
	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
477
			IFX_WRITE_LOW_16BIT(mask));
478 479 480 481

	/* According to C_CAN documentation, the reserved bit
	 * in IFx_MASK2 register is fixed 1
	 */
482
	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
483
			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
484

485
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
486
			IFX_WRITE_LOW_16BIT(id));
487
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
488 489
			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));

490
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
491 492 493
	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
494
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
495 496 497 498 499 500
}

static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
{
	struct c_can_priv *priv = netdev_priv(dev);

501 502 503
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
504 505 506 507

	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
508
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
509 510 511 512
}

static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
{
513
	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

	/*
	 * as transmission request register's bit n-1 corresponds to
	 * message object n, we need to handle the same properly.
	 */
	if (val & (1 << (objno - 1)))
		return 1;

	return 0;
}

static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
					struct net_device *dev)
{
	u32 msg_obj_no;
	struct c_can_priv *priv = netdev_priv(dev);
	struct can_frame *frame = (struct can_frame *)skb->data;

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

535
	spin_lock_bh(&priv->xmit_lock);
536 537 538
	msg_obj_no = get_tx_next_msg_obj(priv);

	/* prepare message object for transmission */
T
Thomas Gleixner 已提交
539
	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
540 541 542 543 544 545 546 547 548 549
	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);

	/*
	 * we have to stop the queue in case of a wrap around or
	 * if the next TX message object is still in use
	 */
	priv->tx_next++;
	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
		netif_stop_queue(dev);
550
	spin_unlock_bh(&priv->xmit_lock);
551 552 553 554

	return NETDEV_TX_OK;
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static int c_can_wait_for_ctrl_init(struct net_device *dev,
				    struct c_can_priv *priv, u32 init)
{
	int retry = 0;

	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
		udelay(10);
		if (retry++ > 1000) {
			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
			return -EIO;
		}
	}
	return 0;
}

570 571 572 573 574 575 576
static int c_can_set_bittiming(struct net_device *dev)
{
	unsigned int reg_btr, reg_brpe, ctrl_save;
	u8 brp, brpe, sjw, tseg1, tseg2;
	u32 ten_bit_brp;
	struct c_can_priv *priv = netdev_priv(dev);
	const struct can_bittiming *bt = &priv->can.bittiming;
577
	int res;
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

	/* c_can provides a 6-bit brp and 4-bit brpe fields */
	ten_bit_brp = bt->brp - 1;
	brp = ten_bit_brp & BTR_BRP_MASK;
	brpe = ten_bit_brp >> 6;

	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
			(tseg2 << BTR_TSEG2_SHIFT);
	reg_brpe = brpe & BRP_EXT_BRPE_MASK;

	netdev_info(dev,
		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);

594
	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
595 596 597 598 599 600
	ctrl_save &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
	if (res)
		return res;

601 602 603
	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
604

605
	return c_can_wait_for_ctrl_init(dev, priv, 0);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
}

/*
 * Configure C_CAN message objects for Tx and Rx purposes:
 * C_CAN provides a total of 32 message objects that can be configured
 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 * See user guide document for further details on configuring message
 * objects.
 */
static void c_can_configure_msg_objects(struct net_device *dev)
{
	int i;

	/* first invalidate all message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
T
Thomas Gleixner 已提交
623
		c_can_inval_msg_object(dev, IF_RX, i);
624 625 626

	/* setup receive message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
T
Thomas Gleixner 已提交
627
		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
628 629
			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);

T
Thomas Gleixner 已提交
630
	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
631 632 633 634 635 636 637 638 639
			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
}

/*
 * Configure C_CAN chip:
 * - enable/disable auto-retransmission
 * - set operating mode
 * - configure message objects
 */
640
static int c_can_chip_config(struct net_device *dev)
641 642 643
{
	struct c_can_priv *priv = netdev_priv(dev);

644
	/* enable automatic retransmission */
645
	priv->write_reg(priv, C_CAN_CTRL_REG,
646
			CONTROL_ENABLE_AR);
647

648 649
	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
650
		/* loopback + silent mode : useful for hot self-test */
651
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
652
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
653
		priv->write_reg(priv, C_CAN_TEST_REG,
654 655 656
				TEST_LBACK | TEST_SILENT);
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* loopback mode : useful for self-test function */
657
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
658
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
659
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
660 661
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* silent mode : bus-monitoring mode */
662
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
663
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
664
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
665 666
	} else
		/* normal mode*/
667
		priv->write_reg(priv, C_CAN_CTRL_REG,
668 669 670 671 672 673
				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);

	/* configure message objects */
	c_can_configure_msg_objects(dev);

	/* set a `lec` value so that we can check for updates later */
674
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
675 676

	/* set bittiming params */
677
	return c_can_set_bittiming(dev);
678 679
}

680
static int c_can_start(struct net_device *dev)
681 682
{
	struct c_can_priv *priv = netdev_priv(dev);
683
	int err;
684 685

	/* basic c_can configuration */
686 687 688
	err = c_can_chip_config(dev);
	if (err)
		return err;
689 690 691 692 693

	priv->can.state = CAN_STATE_ERROR_ACTIVE;

	/* reset tx helper pointers */
	priv->tx_next = priv->tx_echo = 0;
694 695 696

	/* enable status change, error and module interrupts */
	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
697 698

	return 0;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
}

static void c_can_stop(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/* disable all interrupts */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);

	/* set the state as STOPPED */
	priv->can.state = CAN_STATE_STOPPED;
}

static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
{
714 715
	int err;

716 717
	switch (mode) {
	case CAN_MODE_START:
718 719 720
		err = c_can_start(dev);
		if (err)
			return err;
721 722 723 724 725 726 727 728 729
		netif_wake_queue(dev);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

730 731
static int __c_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
732 733 734 735
{
	unsigned int reg_err_counter;
	struct c_can_priv *priv = netdev_priv(dev);

736
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
737 738 739 740
	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
				ERR_CNT_REC_SHIFT;
	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;

741 742 743 744 745 746 747 748 749 750 751
	return 0;
}

static int c_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_get_sync(priv);
	err = __c_can_get_berr_counter(dev, bec);
752 753
	c_can_pm_runtime_put_sync(priv);

754
	return err;
755 756 757 758 759 760 761 762 763 764 765
}

/*
 * theory of operation:
 *
 * priv->tx_echo holds the number of the oldest can_frame put for
 * transmission into the hardware, but not yet ACKed by the CAN tx
 * complete IRQ.
 *
 * We iterate from priv->tx_echo to priv->tx_next and check if the
 * packet has been transmitted, echo it back to the CAN framework.
766
 * If we discover a not yet transmitted packet, stop looking for more.
767 768 769 770 771 772 773 774
 */
static void c_can_do_tx(struct net_device *dev)
{
	u32 val;
	u32 msg_obj_no;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;

775 776 777
	spin_lock_bh(&priv->xmit_lock);

	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
778
		msg_obj_no = get_tx_echo_msg_obj(priv);
779
		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
780
		if (!(val & (1 << (msg_obj_no - 1)))) {
781 782
			can_get_echo_skb(dev,
					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
T
Thomas Gleixner 已提交
783
			c_can_object_get(dev, IF_TX, msg_obj_no, IF_COMM_ALL);
784
			stats->tx_bytes += priv->read_reg(priv,
T
Thomas Gleixner 已提交
785
					C_CAN_IFACE(MSGCTRL_REG, IF_TX))
786 787
					& IF_MCONT_DLC_MASK;
			stats->tx_packets++;
788
			can_led_event(dev, CAN_LED_EVENT_TX);
T
Thomas Gleixner 已提交
789
			c_can_inval_msg_object(dev, IF_TX, msg_obj_no);
790 791
		} else {
			break;
792 793 794 795 796 797 798
		}
	}

	/* restart queue if wrap-up or if queue stalled on last pkt */
	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
		netif_wake_queue(dev);
799 800

	spin_unlock_bh(&priv->xmit_lock);
801 802
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/*
 * If we have a gap in the pending bits, that means we either
 * raced with the hardware or failed to readout all upper
 * objects in the last run due to quota limit.
 */
static u32 c_can_adjust_pending(u32 pend)
{
	u32 weight, lasts;

	if (pend == RECEIVE_OBJECT_BITS)
		return pend;

	/*
	 * If the last set bit is larger than the number of pending
	 * bits we have a gap.
	 */
	weight = hweight32(pend);
	lasts = fls(pend);

	/* If the bits are linear, nothing to do */
	if (lasts == weight)
		return pend;

	/*
	 * Find the first set bit after the gap. We walk backwards
	 * from the last set bit.
	 */
	for (lasts--; pend & (1 << (lasts - 1)); lasts--);

	return pend & ~((1 << lasts) - 1);
}

835 836 837
static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
			      u32 pend, int quota)
{
838
	u32 pkts = 0, ctrl, obj, mcmd;
839 840 841 842

	while ((obj = ffs(pend)) && quota > 0) {
		pend &= ~BIT(obj - 1);

843 844 845 846
		mcmd = obj < C_CAN_MSG_RX_LOW_LAST ?
			IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;

		c_can_object_get(dev, IF_RX, obj, mcmd);
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));

		if (ctrl & IF_MCONT_MSGLST) {
			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);

			pkts += n;
			quota -= n;
			continue;
		}

		/*
		 * This really should not happen, but this covers some
		 * odd HW behaviour. Do not remove that unless you
		 * want to brick your machine.
		 */
		if (!(ctrl & IF_MCONT_NEWDAT))
			continue;

		/* read the data from the message object */
		c_can_read_msg_object(dev, IF_RX, ctrl);

868
		if (obj == C_CAN_MSG_RX_LOW_LAST)
869 870 871 872 873 874 875 876 877 878
			/* activate all lower message objects */
			c_can_activate_all_lower_rx_msg_obj(dev, IF_RX, ctrl);

		pkts++;
		quota--;
	}

	return pkts;
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
/*
 * theory of operation:
 *
 * c_can core saves a received CAN message into the first free message
 * object it finds free (starting with the lowest). Bits NEWDAT and
 * INTPND are set for this message object indicating that a new message
 * has arrived. To work-around this issue, we keep two groups of message
 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 *
 * To ensure in-order frame reception we use the following
 * approach while re-activating a message object to receive further
 * frames:
 * - if the current message object number is lower than
 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
 *   the INTPND bit.
 * - if the current message object number is equal to
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
 *   receive message objects.
 * - if the current message object number is greater than
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
 *   only this message object.
 */
static int c_can_do_rx_poll(struct net_device *dev, int quota)
{
	struct c_can_priv *priv = netdev_priv(dev);
904
	u32 pkts = 0, pend = 0, toread, n;
905 906 907 908 909 910 911 912

	/*
	 * It is faster to read only one 16bit register. This is only possible
	 * for a maximum number of 16 objects.
	 */
	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
			"Implementation does not support more message objects than 16");

913 914 915 916
	while (quota > 0) {
		if (!pend) {
			pend = priv->read_reg(priv, C_CAN_INTPND1_REG);
			if (!pend)
917
				break;
918 919 920 921
			/*
			 * If the pending field has a gap, handle the
			 * bits above the gap first.
			 */
922
			toread = c_can_adjust_pending(pend);
923
		} else {
924
			toread = pend;
925 926
		}
		/* Remove the bits from pend */
927 928 929 930 931
		pend &= ~toread;
		/* Read the objects */
		n = c_can_read_objects(dev, priv, toread, quota);
		pkts += n;
		quota -= n;
932
	}
933
	return pkts;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
}

static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
{
	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
		(priv->current_status & LEC_UNUSED);
}

static int c_can_handle_state_change(struct net_device *dev,
				enum c_can_bus_error_types error_type)
{
	unsigned int reg_err_counter;
	unsigned int rx_err_passive;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;

L
Lucas De Marchi 已提交
953
	/* propagate the error condition to the CAN stack */
954 955 956 957
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

958
	__c_can_get_berr_counter(dev, &bec);
959
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
				ERR_CNT_RP_SHIFT;

	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		priv->can.can_stats.error_warning++;
		priv->can.state = CAN_STATE_ERROR_WARNING;
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;

		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		priv->can.can_stats.error_passive++;
		priv->can.state = CAN_STATE_ERROR_PASSIVE;
		cf->can_id |= CAN_ERR_CRTL;
		if (rx_err_passive)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;

		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		priv->can.state = CAN_STATE_BUS_OFF;
		cf->can_id |= CAN_ERR_BUSOFF;
		/*
		 * disable all interrupts in bus-off mode to ensure that
		 * the CPU is not hogged down
		 */
		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
		can_bus_off(dev);
		break;
	default:
		break;
	}

	netif_receive_skb(skb);
	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;

	return 1;
}

static int c_can_handle_bus_err(struct net_device *dev,
				enum c_can_lec_type lec_type)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

	/*
	 * early exit if no lec update or no error.
	 * no lec update means that no CAN bus event has been detected
	 * since CPU wrote 0x7 value to status reg.
	 */
	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
		return 0;

L
Lucas De Marchi 已提交
1027
	/* propagate the error condition to the CAN stack */
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/*
	 * check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */

	/* common for all type of bus errors */
	priv->can.can_stats.bus_error++;
	stats->rx_errors++;
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
	cf->data[2] |= CAN_ERR_PROT_UNSPEC;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
1054
		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
				CAN_ERR_PROT_LOC_ACK_DEL);
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
1067
		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1068 1069 1070 1071 1072 1073 1074
				CAN_ERR_PROT_LOC_CRC_DEL);
		break;
	default:
		break;
	}

	/* set a `lec` value so that we can check for updates later */
1075
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

	netif_receive_skb(skb);
	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;

	return 1;
}

static int c_can_poll(struct napi_struct *napi, int quota)
{
	u16 irqstatus;
	int lec_type = 0;
	int work_done = 0;
	struct net_device *dev = napi->dev;
	struct c_can_priv *priv = netdev_priv(dev);

1092
	irqstatus = priv->irqstatus;
1093 1094 1095 1096 1097 1098
	if (!irqstatus)
		goto end;

	/* status events have the highest priority */
	if (irqstatus == STATUS_INTERRUPT) {
		priv->current_status = priv->read_reg(priv,
1099
					C_CAN_STS_REG);
1100 1101 1102

		/* handle Tx/Rx events */
		if (priv->current_status & STATUS_TXOK)
1103
			priv->write_reg(priv, C_CAN_STS_REG,
1104 1105 1106
					priv->current_status & ~STATUS_TXOK);

		if (priv->current_status & STATUS_RXOK)
1107
			priv->write_reg(priv, C_CAN_STS_REG,
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
					priv->current_status & ~STATUS_RXOK);

		/* handle state changes */
		if ((priv->current_status & STATUS_EWARN) &&
				(!(priv->last_status & STATUS_EWARN))) {
			netdev_dbg(dev, "entered error warning state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_ERROR_WARNING);
		}
		if ((priv->current_status & STATUS_EPASS) &&
				(!(priv->last_status & STATUS_EPASS))) {
			netdev_dbg(dev, "entered error passive state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_ERROR_PASSIVE);
		}
		if ((priv->current_status & STATUS_BOFF) &&
				(!(priv->last_status & STATUS_BOFF))) {
			netdev_dbg(dev, "entered bus off state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_BUS_OFF);
		}

		/* handle bus recovery events */
		if ((!(priv->current_status & STATUS_BOFF)) &&
				(priv->last_status & STATUS_BOFF)) {
			netdev_dbg(dev, "left bus off state\n");
			priv->can.state = CAN_STATE_ERROR_ACTIVE;
		}
		if ((!(priv->current_status & STATUS_EPASS)) &&
				(priv->last_status & STATUS_EPASS)) {
			netdev_dbg(dev, "left error passive state\n");
			priv->can.state = CAN_STATE_ERROR_ACTIVE;
		}

		priv->last_status = priv->current_status;

		/* handle lec errors on the bus */
		lec_type = c_can_has_and_handle_berr(priv);
		if (lec_type)
			work_done += c_can_handle_bus_err(dev, lec_type);
	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
		/* handle events corresponding to receive message objects */
		work_done += c_can_do_rx_poll(dev, (quota - work_done));
	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
		/* handle events corresponding to transmit message objects */
		c_can_do_tx(dev);
	}

end:
	if (work_done < quota) {
		napi_complete(napi);
		/* enable all IRQs */
		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
	}

	return work_done;
}

static irqreturn_t c_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct c_can_priv *priv = netdev_priv(dev);

1173
	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1174
	if (!priv->irqstatus)
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		return IRQ_NONE;

	/* disable all interrupts and schedule the NAPI */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
	napi_schedule(&priv->napi);

	return IRQ_HANDLED;
}

static int c_can_open(struct net_device *dev)
{
	int err;
	struct c_can_priv *priv = netdev_priv(dev);

1189
	c_can_pm_runtime_get_sync(priv);
1190
	c_can_reset_ram(priv, true);
1191

1192 1193 1194 1195
	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
1196
		goto exit_open_fail;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	}

	/* register interrupt handler */
	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
				dev);
	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

1207 1208 1209 1210
	/* start the c_can controller */
	err = c_can_start(dev);
	if (err)
		goto exit_start_fail;
1211

1212 1213
	can_led_event(dev, CAN_LED_EVENT_OPEN);

1214
	napi_enable(&priv->napi);
1215 1216 1217 1218
	netif_start_queue(dev);

	return 0;

1219 1220
exit_start_fail:
	free_irq(dev->irq, dev);
1221 1222
exit_irq_fail:
	close_candev(dev);
1223
exit_open_fail:
1224
	c_can_reset_ram(priv, false);
1225
	c_can_pm_runtime_put_sync(priv);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	return err;
}

static int c_can_close(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	netif_stop_queue(dev);
	napi_disable(&priv->napi);
	c_can_stop(dev);
	free_irq(dev->irq, dev);
	close_candev(dev);
1238 1239

	c_can_reset_ram(priv, false);
1240
	c_can_pm_runtime_put_sync(priv);
1241

1242 1243
	can_led_event(dev, CAN_LED_EVENT_STOP);

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	return 0;
}

struct net_device *alloc_c_can_dev(void)
{
	struct net_device *dev;
	struct c_can_priv *priv;

	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
	if (!dev)
		return NULL;

	priv = netdev_priv(dev);
1257
	spin_lock_init(&priv->xmit_lock);
1258 1259 1260 1261 1262 1263
	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);

	priv->dev = dev;
	priv->can.bittiming_const = &c_can_bittiming_const;
	priv->can.do_set_mode = c_can_set_mode;
	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1264
	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1265 1266 1267 1268 1269 1270 1271
					CAN_CTRLMODE_LISTENONLY |
					CAN_CTRLMODE_BERR_REPORTING;

	return dev;
}
EXPORT_SYMBOL_GPL(alloc_c_can_dev);

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
#ifdef CONFIG_PM
int c_can_power_down(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	/* set PDR value so the device goes to power down mode */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val |= CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);

	/* Wait for the PDA bit to get set */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

	c_can_stop(dev);

1300
	c_can_reset_ram(priv, false);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	c_can_pm_runtime_put_sync(priv);

	return 0;
}
EXPORT_SYMBOL_GPL(c_can_power_down);

int c_can_power_up(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	c_can_pm_runtime_get_sync(priv);
1319
	c_can_reset_ram(priv, true);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	/* Clear PDR and INIT bits */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val &= ~CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
	val = priv->read_reg(priv, C_CAN_CTRL_REG);
	val &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, val);

	/* Wait for the PDA bit to get clear */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

1338
	return c_can_start(dev);
1339 1340 1341 1342
}
EXPORT_SYMBOL_GPL(c_can_power_up);
#endif

1343 1344
void free_c_can_dev(struct net_device *dev)
{
1345 1346 1347
	struct c_can_priv *priv = netdev_priv(dev);

	netif_napi_del(&priv->napi);
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	free_candev(dev);
}
EXPORT_SYMBOL_GPL(free_c_can_dev);

static const struct net_device_ops c_can_netdev_ops = {
	.ndo_open = c_can_open,
	.ndo_stop = c_can_close,
	.ndo_start_xmit = c_can_start_xmit,
};

int register_c_can_dev(struct net_device *dev)
{
1360 1361 1362 1363 1364
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_enable(priv);

1365 1366 1367
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &c_can_netdev_ops;

1368 1369 1370
	err = register_candev(dev);
	if (err)
		c_can_pm_runtime_disable(priv);
1371 1372
	else
		devm_can_led_init(dev);
1373 1374

	return err;
1375 1376 1377 1378 1379 1380 1381 1382
}
EXPORT_SYMBOL_GPL(register_c_can_dev);

void unregister_c_can_dev(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	unregister_candev(dev);
1383 1384

	c_can_pm_runtime_disable(priv);
1385 1386 1387 1388 1389 1390
}
EXPORT_SYMBOL_GPL(unregister_c_can_dev);

MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");