block-group.c 115.2 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0

3
#include "misc.h"
4 5
#include "ctree.h"
#include "block-group.h"
6
#include "space-info.h"
7 8 9
#include "disk-io.h"
#include "free-space-cache.h"
#include "free-space-tree.h"
10 11 12
#include "volumes.h"
#include "transaction.h"
#include "ref-verify.h"
13 14
#include "sysfs.h"
#include "tree-log.h"
15
#include "delalloc-space.h"
16
#include "discard.h"
17
#include "raid56.h"
18
#include "zoned.h"
19

20 21 22 23 24 25
/*
 * Return target flags in extended format or 0 if restripe for this chunk_type
 * is not in progress
 *
 * Should be called with balance_lock held
 */
26
static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
{
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
	u64 target = 0;

	if (!bctl)
		return 0;

	if (flags & BTRFS_BLOCK_GROUP_DATA &&
	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
	}

	return target;
}

/*
 * @flags: available profiles in extended format (see ctree.h)
 *
 * Return reduced profile in chunk format.  If profile changing is in progress
 * (either running or paused) picks the target profile (if it's already
 * available), otherwise falls back to plain reducing.
 */
static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
{
	u64 num_devices = fs_info->fs_devices->rw_devices;
	u64 target;
	u64 raid_type;
	u64 allowed = 0;

	/*
	 * See if restripe for this chunk_type is in progress, if so try to
	 * reduce to the target profile
	 */
	spin_lock(&fs_info->balance_lock);
67
	target = get_restripe_target(fs_info, flags);
68
	if (target) {
69 70
		spin_unlock(&fs_info->balance_lock);
		return extended_to_chunk(target);
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	}
	spin_unlock(&fs_info->balance_lock);

	/* First, mask out the RAID levels which aren't possible */
	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
			allowed |= btrfs_raid_array[raid_type].bg_flag;
	}
	allowed &= flags;

	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
		allowed = BTRFS_BLOCK_GROUP_RAID6;
	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
		allowed = BTRFS_BLOCK_GROUP_RAID5;
	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
		allowed = BTRFS_BLOCK_GROUP_RAID10;
	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
		allowed = BTRFS_BLOCK_GROUP_RAID1;
	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
		allowed = BTRFS_BLOCK_GROUP_RAID0;

	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;

	return extended_to_chunk(flags | allowed);
}

97
u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
{
	unsigned seq;
	u64 flags;

	do {
		flags = orig_flags;
		seq = read_seqbegin(&fs_info->profiles_lock);

		if (flags & BTRFS_BLOCK_GROUP_DATA)
			flags |= fs_info->avail_data_alloc_bits;
		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
			flags |= fs_info->avail_system_alloc_bits;
		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
			flags |= fs_info->avail_metadata_alloc_bits;
	} while (read_seqretry(&fs_info->profiles_lock, seq));

	return btrfs_reduce_alloc_profile(fs_info, flags);
}

117
void btrfs_get_block_group(struct btrfs_block_group *cache)
118
{
119
	refcount_inc(&cache->refs);
120 121
}

122
void btrfs_put_block_group(struct btrfs_block_group *cache)
123
{
124
	if (refcount_dec_and_test(&cache->refs)) {
125 126 127
		WARN_ON(cache->pinned > 0);
		WARN_ON(cache->reserved > 0);

128 129 130 131 132 133 134 135 136
		/*
		 * A block_group shouldn't be on the discard_list anymore.
		 * Remove the block_group from the discard_list to prevent us
		 * from causing a panic due to NULL pointer dereference.
		 */
		if (WARN_ON(!list_empty(&cache->discard_list)))
			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
						  cache);

137 138 139 140 141 142 143 144 145 146 147 148 149 150
		/*
		 * If not empty, someone is still holding mutex of
		 * full_stripe_lock, which can only be released by caller.
		 * And it will definitely cause use-after-free when caller
		 * tries to release full stripe lock.
		 *
		 * No better way to resolve, but only to warn.
		 */
		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
		kfree(cache->free_space_ctl);
		kfree(cache);
	}
}

151 152 153 154
/*
 * This adds the block group to the fs_info rb tree for the block group cache
 */
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155
				       struct btrfs_block_group *block_group)
156 157 158
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
159
	struct btrfs_block_group *cache;
160

161 162
	ASSERT(block_group->length != 0);

163 164 165 166 167
	spin_lock(&info->block_group_cache_lock);
	p = &info->block_group_cache_tree.rb_node;

	while (*p) {
		parent = *p;
168
		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
169
		if (block_group->start < cache->start) {
170
			p = &(*p)->rb_left;
171
		} else if (block_group->start > cache->start) {
172 173 174 175 176 177 178 179 180 181 182
			p = &(*p)->rb_right;
		} else {
			spin_unlock(&info->block_group_cache_lock);
			return -EEXIST;
		}
	}

	rb_link_node(&block_group->cache_node, parent, p);
	rb_insert_color(&block_group->cache_node,
			&info->block_group_cache_tree);

183 184
	if (info->first_logical_byte > block_group->start)
		info->first_logical_byte = block_group->start;
185 186 187 188 189 190

	spin_unlock(&info->block_group_cache_lock);

	return 0;
}

191 192 193 194
/*
 * This will return the block group at or after bytenr if contains is 0, else
 * it will return the block group that contains the bytenr
 */
195
static struct btrfs_block_group *block_group_cache_tree_search(
196 197
		struct btrfs_fs_info *info, u64 bytenr, int contains)
{
198
	struct btrfs_block_group *cache, *ret = NULL;
199 200 201 202 203 204 205
	struct rb_node *n;
	u64 end, start;

	spin_lock(&info->block_group_cache_lock);
	n = info->block_group_cache_tree.rb_node;

	while (n) {
206
		cache = rb_entry(n, struct btrfs_block_group, cache_node);
207 208
		end = cache->start + cache->length - 1;
		start = cache->start;
209 210

		if (bytenr < start) {
211
			if (!contains && (!ret || start < ret->start))
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
				ret = cache;
			n = n->rb_left;
		} else if (bytenr > start) {
			if (contains && bytenr <= end) {
				ret = cache;
				break;
			}
			n = n->rb_right;
		} else {
			ret = cache;
			break;
		}
	}
	if (ret) {
		btrfs_get_block_group(ret);
227 228
		if (bytenr == 0 && info->first_logical_byte > ret->start)
			info->first_logical_byte = ret->start;
229 230 231 232 233 234 235 236 237
	}
	spin_unlock(&info->block_group_cache_lock);

	return ret;
}

/*
 * Return the block group that starts at or after bytenr
 */
238
struct btrfs_block_group *btrfs_lookup_first_block_group(
239 240 241 242 243 244 245 246
		struct btrfs_fs_info *info, u64 bytenr)
{
	return block_group_cache_tree_search(info, bytenr, 0);
}

/*
 * Return the block group that contains the given bytenr
 */
247
struct btrfs_block_group *btrfs_lookup_block_group(
248 249 250 251 252
		struct btrfs_fs_info *info, u64 bytenr)
{
	return block_group_cache_tree_search(info, bytenr, 1);
}

253 254
struct btrfs_block_group *btrfs_next_block_group(
		struct btrfs_block_group *cache)
255 256 257 258 259 260 261 262
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct rb_node *node;

	spin_lock(&fs_info->block_group_cache_lock);

	/* If our block group was removed, we need a full search. */
	if (RB_EMPTY_NODE(&cache->cache_node)) {
263
		const u64 next_bytenr = cache->start + cache->length;
264 265 266 267 268 269 270 271

		spin_unlock(&fs_info->block_group_cache_lock);
		btrfs_put_block_group(cache);
		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
	}
	node = rb_next(&cache->cache_node);
	btrfs_put_block_group(cache);
	if (node) {
272
		cache = rb_entry(node, struct btrfs_block_group, cache_node);
273 274 275 276 277 278
		btrfs_get_block_group(cache);
	} else
		cache = NULL;
	spin_unlock(&fs_info->block_group_cache_lock);
	return cache;
}
279 280 281

bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
{
282
	struct btrfs_block_group *bg;
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	bool ret = true;

	bg = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg)
		return false;

	spin_lock(&bg->lock);
	if (bg->ro)
		ret = false;
	else
		atomic_inc(&bg->nocow_writers);
	spin_unlock(&bg->lock);

	/* No put on block group, done by btrfs_dec_nocow_writers */
	if (!ret)
		btrfs_put_block_group(bg);

	return ret;
}

void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
{
305
	struct btrfs_block_group *bg;
306 307 308 309 310 311 312 313 314 315 316 317 318

	bg = btrfs_lookup_block_group(fs_info, bytenr);
	ASSERT(bg);
	if (atomic_dec_and_test(&bg->nocow_writers))
		wake_up_var(&bg->nocow_writers);
	/*
	 * Once for our lookup and once for the lookup done by a previous call
	 * to btrfs_inc_nocow_writers()
	 */
	btrfs_put_block_group(bg);
	btrfs_put_block_group(bg);
}

319
void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320 321 322 323 324 325 326
{
	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
}

void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
					const u64 start)
{
327
	struct btrfs_block_group *bg;
328 329 330 331 332 333 334 335

	bg = btrfs_lookup_block_group(fs_info, start);
	ASSERT(bg);
	if (atomic_dec_and_test(&bg->reservations))
		wake_up_var(&bg->reservations);
	btrfs_put_block_group(bg);
}

336
void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
{
	struct btrfs_space_info *space_info = bg->space_info;

	ASSERT(bg->ro);

	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
		return;

	/*
	 * Our block group is read only but before we set it to read only,
	 * some task might have had allocated an extent from it already, but it
	 * has not yet created a respective ordered extent (and added it to a
	 * root's list of ordered extents).
	 * Therefore wait for any task currently allocating extents, since the
	 * block group's reservations counter is incremented while a read lock
	 * on the groups' semaphore is held and decremented after releasing
	 * the read access on that semaphore and creating the ordered extent.
	 */
	down_write(&space_info->groups_sem);
	up_write(&space_info->groups_sem);

	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
}
360 361

struct btrfs_caching_control *btrfs_get_caching_control(
362
		struct btrfs_block_group *cache)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
{
	struct btrfs_caching_control *ctl;

	spin_lock(&cache->lock);
	if (!cache->caching_ctl) {
		spin_unlock(&cache->lock);
		return NULL;
	}

	ctl = cache->caching_ctl;
	refcount_inc(&ctl->count);
	spin_unlock(&cache->lock);
	return ctl;
}

void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
{
	if (refcount_dec_and_test(&ctl->count))
		kfree(ctl);
}

/*
 * When we wait for progress in the block group caching, its because our
 * allocation attempt failed at least once.  So, we must sleep and let some
 * progress happen before we try again.
 *
 * This function will sleep at least once waiting for new free space to show
 * up, and then it will check the block group free space numbers for our min
 * num_bytes.  Another option is to have it go ahead and look in the rbtree for
 * a free extent of a given size, but this is a good start.
 *
 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 * any of the information in this block group.
 */
397
void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
398 399 400 401 402 403 404 405
					   u64 num_bytes)
{
	struct btrfs_caching_control *caching_ctl;

	caching_ctl = btrfs_get_caching_control(cache);
	if (!caching_ctl)
		return;

406
	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
407 408 409 410 411
		   (cache->free_space_ctl->free_space >= num_bytes));

	btrfs_put_caching_control(caching_ctl);
}

412
int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413 414 415 416 417 418 419 420
{
	struct btrfs_caching_control *caching_ctl;
	int ret = 0;

	caching_ctl = btrfs_get_caching_control(cache);
	if (!caching_ctl)
		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;

421
	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
422 423 424 425 426 427
	if (cache->cached == BTRFS_CACHE_ERROR)
		ret = -EIO;
	btrfs_put_caching_control(caching_ctl);
	return ret;
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static bool space_cache_v1_done(struct btrfs_block_group *cache)
{
	bool ret;

	spin_lock(&cache->lock);
	ret = cache->cached != BTRFS_CACHE_FAST;
	spin_unlock(&cache->lock);

	return ret;
}

void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
				struct btrfs_caching_control *caching_ctl)
{
	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
}

445
#ifdef CONFIG_BTRFS_DEBUG
446
static void fragment_free_space(struct btrfs_block_group *block_group)
447 448
{
	struct btrfs_fs_info *fs_info = block_group->fs_info;
449 450
	u64 start = block_group->start;
	u64 len = block_group->length;
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
		fs_info->nodesize : fs_info->sectorsize;
	u64 step = chunk << 1;

	while (len > chunk) {
		btrfs_remove_free_space(block_group, start, chunk);
		start += step;
		if (len < step)
			len = 0;
		else
			len -= step;
	}
}
#endif

/*
 * This is only called by btrfs_cache_block_group, since we could have freed
 * extents we need to check the pinned_extents for any extents that can't be
 * used yet since their free space will be released as soon as the transaction
 * commits.
 */
472
u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473 474 475 476 477 478
{
	struct btrfs_fs_info *info = block_group->fs_info;
	u64 extent_start, extent_end, size, total_added = 0;
	int ret;

	while (start < end) {
479
		ret = find_first_extent_bit(&info->excluded_extents, start,
480 481 482 483 484 485 486 487 488 489 490
					    &extent_start, &extent_end,
					    EXTENT_DIRTY | EXTENT_UPTODATE,
					    NULL);
		if (ret)
			break;

		if (extent_start <= start) {
			start = extent_end + 1;
		} else if (extent_start > start && extent_start < end) {
			size = extent_start - start;
			total_added += size;
491 492
			ret = btrfs_add_free_space_async_trimmed(block_group,
								 start, size);
493 494 495 496 497 498 499 500 501 502
			BUG_ON(ret); /* -ENOMEM or logic error */
			start = extent_end + 1;
		} else {
			break;
		}
	}

	if (start < end) {
		size = end - start;
		total_added += size;
503 504
		ret = btrfs_add_free_space_async_trimmed(block_group, start,
							 size);
505 506 507 508 509 510 511 512
		BUG_ON(ret); /* -ENOMEM or logic error */
	}

	return total_added;
}

static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
{
513
	struct btrfs_block_group *block_group = caching_ctl->block_group;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	struct btrfs_fs_info *fs_info = block_group->fs_info;
	struct btrfs_root *extent_root = fs_info->extent_root;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	u64 total_found = 0;
	u64 last = 0;
	u32 nritems;
	int ret;
	bool wakeup = true;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

529
	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

#ifdef CONFIG_BTRFS_DEBUG
	/*
	 * If we're fragmenting we don't want to make anybody think we can
	 * allocate from this block group until we've had a chance to fragment
	 * the free space.
	 */
	if (btrfs_should_fragment_free_space(block_group))
		wakeup = false;
#endif
	/*
	 * We don't want to deadlock with somebody trying to allocate a new
	 * extent for the extent root while also trying to search the extent
	 * root to add free space.  So we skip locking and search the commit
	 * root, since its read-only
	 */
	path->skip_locking = 1;
	path->search_commit_root = 1;
	path->reada = READA_FORWARD;

	key.objectid = last;
	key.offset = 0;
	key.type = BTRFS_EXTENT_ITEM_KEY;

next:
	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	leaf = path->nodes[0];
	nritems = btrfs_header_nritems(leaf);

	while (1) {
		if (btrfs_fs_closing(fs_info) > 1) {
			last = (u64)-1;
			break;
		}

		if (path->slots[0] < nritems) {
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		} else {
			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
			if (ret)
				break;

			if (need_resched() ||
			    rwsem_is_contended(&fs_info->commit_root_sem)) {
				if (wakeup)
					caching_ctl->progress = last;
				btrfs_release_path(path);
				up_read(&fs_info->commit_root_sem);
				mutex_unlock(&caching_ctl->mutex);
				cond_resched();
				mutex_lock(&caching_ctl->mutex);
				down_read(&fs_info->commit_root_sem);
				goto next;
			}

			ret = btrfs_next_leaf(extent_root, path);
			if (ret < 0)
				goto out;
			if (ret)
				break;
			leaf = path->nodes[0];
			nritems = btrfs_header_nritems(leaf);
			continue;
		}

		if (key.objectid < last) {
			key.objectid = last;
			key.offset = 0;
			key.type = BTRFS_EXTENT_ITEM_KEY;

			if (wakeup)
				caching_ctl->progress = last;
			btrfs_release_path(path);
			goto next;
		}

609
		if (key.objectid < block_group->start) {
610 611 612 613
			path->slots[0]++;
			continue;
		}

614
		if (key.objectid >= block_group->start + block_group->length)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
			break;

		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
		    key.type == BTRFS_METADATA_ITEM_KEY) {
			total_found += add_new_free_space(block_group, last,
							  key.objectid);
			if (key.type == BTRFS_METADATA_ITEM_KEY)
				last = key.objectid +
					fs_info->nodesize;
			else
				last = key.objectid + key.offset;

			if (total_found > CACHING_CTL_WAKE_UP) {
				total_found = 0;
				if (wakeup)
					wake_up(&caching_ctl->wait);
			}
		}
		path->slots[0]++;
	}
	ret = 0;

	total_found += add_new_free_space(block_group, last,
638
				block_group->start + block_group->length);
639 640 641 642 643 644 645 646 647
	caching_ctl->progress = (u64)-1;

out:
	btrfs_free_path(path);
	return ret;
}

static noinline void caching_thread(struct btrfs_work *work)
{
648
	struct btrfs_block_group *block_group;
649 650 651 652 653 654 655 656 657 658 659
	struct btrfs_fs_info *fs_info;
	struct btrfs_caching_control *caching_ctl;
	int ret;

	caching_ctl = container_of(work, struct btrfs_caching_control, work);
	block_group = caching_ctl->block_group;
	fs_info = block_group->fs_info;

	mutex_lock(&caching_ctl->mutex);
	down_read(&fs_info->commit_root_sem);

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
		ret = load_free_space_cache(block_group);
		if (ret == 1) {
			ret = 0;
			goto done;
		}

		/*
		 * We failed to load the space cache, set ourselves to
		 * CACHE_STARTED and carry on.
		 */
		spin_lock(&block_group->lock);
		block_group->cached = BTRFS_CACHE_STARTED;
		spin_unlock(&block_group->lock);
		wake_up(&caching_ctl->wait);
	}

677 678 679 680 681 682 683 684 685
	/*
	 * If we are in the transaction that populated the free space tree we
	 * can't actually cache from the free space tree as our commit root and
	 * real root are the same, so we could change the contents of the blocks
	 * while caching.  Instead do the slow caching in this case, and after
	 * the transaction has committed we will be safe.
	 */
	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
686 687 688
		ret = load_free_space_tree(caching_ctl);
	else
		ret = load_extent_tree_free(caching_ctl);
689
done:
690 691 692 693 694 695 696 697 698 699 700
	spin_lock(&block_group->lock);
	block_group->caching_ctl = NULL;
	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
	spin_unlock(&block_group->lock);

#ifdef CONFIG_BTRFS_DEBUG
	if (btrfs_should_fragment_free_space(block_group)) {
		u64 bytes_used;

		spin_lock(&block_group->space_info->lock);
		spin_lock(&block_group->lock);
701
		bytes_used = block_group->length - block_group->used;
702 703 704
		block_group->space_info->bytes_used += bytes_used >> 1;
		spin_unlock(&block_group->lock);
		spin_unlock(&block_group->space_info->lock);
705
		fragment_free_space(block_group);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	}
#endif

	caching_ctl->progress = (u64)-1;

	up_read(&fs_info->commit_root_sem);
	btrfs_free_excluded_extents(block_group);
	mutex_unlock(&caching_ctl->mutex);

	wake_up(&caching_ctl->wait);

	btrfs_put_caching_control(caching_ctl);
	btrfs_put_block_group(block_group);
}

721
int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
722 723 724
{
	DEFINE_WAIT(wait);
	struct btrfs_fs_info *fs_info = cache->fs_info;
725
	struct btrfs_caching_control *caching_ctl = NULL;
726 727
	int ret = 0;

728 729 730 731
	/* Allocator for zoned filesystems does not use the cache at all */
	if (btrfs_is_zoned(fs_info))
		return 0;

732 733 734 735 736 737 738 739
	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
	if (!caching_ctl)
		return -ENOMEM;

	INIT_LIST_HEAD(&caching_ctl->list);
	mutex_init(&caching_ctl->mutex);
	init_waitqueue_head(&caching_ctl->wait);
	caching_ctl->block_group = cache;
740
	caching_ctl->progress = cache->start;
741
	refcount_set(&caching_ctl->count, 2);
742
	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
743 744 745 746

	spin_lock(&cache->lock);
	if (cache->cached != BTRFS_CACHE_NO) {
		kfree(caching_ctl);
747 748 749 750 751 752

		caching_ctl = cache->caching_ctl;
		if (caching_ctl)
			refcount_inc(&caching_ctl->count);
		spin_unlock(&cache->lock);
		goto out;
753 754 755
	}
	WARN_ON(cache->caching_ctl);
	cache->caching_ctl = caching_ctl;
756 757 758 759 760
	if (btrfs_test_opt(fs_info, SPACE_CACHE))
		cache->cached = BTRFS_CACHE_FAST;
	else
		cache->cached = BTRFS_CACHE_STARTED;
	cache->has_caching_ctl = 1;
761 762
	spin_unlock(&cache->lock);

763
	spin_lock(&fs_info->block_group_cache_lock);
764 765
	refcount_inc(&caching_ctl->count);
	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
766
	spin_unlock(&fs_info->block_group_cache_lock);
767 768 769 770

	btrfs_get_block_group(cache);

	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
771 772 773 774 775
out:
	if (load_cache_only && caching_ctl)
		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
	if (caching_ctl)
		btrfs_put_caching_control(caching_ctl);
776 777 778

	return ret;
}
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
	u64 extra_flags = chunk_to_extended(flags) &
				BTRFS_EXTENDED_PROFILE_MASK;

	write_seqlock(&fs_info->profiles_lock);
	if (flags & BTRFS_BLOCK_GROUP_DATA)
		fs_info->avail_data_alloc_bits &= ~extra_flags;
	if (flags & BTRFS_BLOCK_GROUP_METADATA)
		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
		fs_info->avail_system_alloc_bits &= ~extra_flags;
	write_sequnlock(&fs_info->profiles_lock);
}

/*
 * Clear incompat bits for the following feature(s):
 *
 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
 *            in the whole filesystem
800 801
 *
 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
802 803 804
 */
static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
805 806 807 808 809 810
	bool found_raid56 = false;
	bool found_raid1c34 = false;

	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
811 812 813 814 815 816
		struct list_head *head = &fs_info->space_info;
		struct btrfs_space_info *sinfo;

		list_for_each_entry_rcu(sinfo, head, list) {
			down_read(&sinfo->groups_sem);
			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
817
				found_raid56 = true;
818
			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
819 820 821 822 823
				found_raid56 = true;
			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
				found_raid1c34 = true;
			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
				found_raid1c34 = true;
824 825
			up_read(&sinfo->groups_sem);
		}
826
		if (!found_raid56)
827
			btrfs_clear_fs_incompat(fs_info, RAID56);
828
		if (!found_raid1c34)
829
			btrfs_clear_fs_incompat(fs_info, RAID1C34);
830 831 832
	}
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static int remove_block_group_item(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_block_group *block_group)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_root *root;
	struct btrfs_key key;
	int ret;

	root = fs_info->extent_root;
	key.objectid = block_group->start;
	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
	key.offset = block_group->length;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret > 0)
		ret = -ENOENT;
	if (ret < 0)
		return ret;

	ret = btrfs_del_item(trans, root, path);
	return ret;
}

857 858 859 860 861
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
			     u64 group_start, struct extent_map *em)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_path *path;
862
	struct btrfs_block_group *block_group;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	struct btrfs_free_cluster *cluster;
	struct inode *inode;
	struct kobject *kobj = NULL;
	int ret;
	int index;
	int factor;
	struct btrfs_caching_control *caching_ctl = NULL;
	bool remove_em;
	bool remove_rsv = false;

	block_group = btrfs_lookup_block_group(fs_info, group_start);
	BUG_ON(!block_group);
	BUG_ON(!block_group->ro);

	trace_btrfs_remove_block_group(block_group);
	/*
	 * Free the reserved super bytes from this block group before
	 * remove it.
	 */
	btrfs_free_excluded_extents(block_group);
883 884
	btrfs_free_ref_tree_range(fs_info, block_group->start,
				  block_group->length);
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

	index = btrfs_bg_flags_to_raid_index(block_group->flags);
	factor = btrfs_bg_type_to_factor(block_group->flags);

	/* make sure this block group isn't part of an allocation cluster */
	cluster = &fs_info->data_alloc_cluster;
	spin_lock(&cluster->refill_lock);
	btrfs_return_cluster_to_free_space(block_group, cluster);
	spin_unlock(&cluster->refill_lock);

	/*
	 * make sure this block group isn't part of a metadata
	 * allocation cluster
	 */
	cluster = &fs_info->meta_alloc_cluster;
	spin_lock(&cluster->refill_lock);
	btrfs_return_cluster_to_free_space(block_group, cluster);
	spin_unlock(&cluster->refill_lock);

904 905
	btrfs_clear_treelog_bg(block_group);

906 907 908
	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
909
		goto out;
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	}

	/*
	 * get the inode first so any iput calls done for the io_list
	 * aren't the final iput (no unlinks allowed now)
	 */
	inode = lookup_free_space_inode(block_group, path);

	mutex_lock(&trans->transaction->cache_write_mutex);
	/*
	 * Make sure our free space cache IO is done before removing the
	 * free space inode
	 */
	spin_lock(&trans->transaction->dirty_bgs_lock);
	if (!list_empty(&block_group->io_list)) {
		list_del_init(&block_group->io_list);

		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);

		spin_unlock(&trans->transaction->dirty_bgs_lock);
		btrfs_wait_cache_io(trans, block_group, path);
		btrfs_put_block_group(block_group);
		spin_lock(&trans->transaction->dirty_bgs_lock);
	}

	if (!list_empty(&block_group->dirty_list)) {
		list_del_init(&block_group->dirty_list);
		remove_rsv = true;
		btrfs_put_block_group(block_group);
	}
	spin_unlock(&trans->transaction->dirty_bgs_lock);
	mutex_unlock(&trans->transaction->cache_write_mutex);

943 944
	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
	if (ret)
945
		goto out;
946 947 948 949 950 951

	spin_lock(&fs_info->block_group_cache_lock);
	rb_erase(&block_group->cache_node,
		 &fs_info->block_group_cache_tree);
	RB_CLEAR_NODE(&block_group->cache_node);

952 953 954
	/* Once for the block groups rbtree */
	btrfs_put_block_group(block_group);

955
	if (fs_info->first_logical_byte == block_group->start)
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
		fs_info->first_logical_byte = (u64)-1;
	spin_unlock(&fs_info->block_group_cache_lock);

	down_write(&block_group->space_info->groups_sem);
	/*
	 * we must use list_del_init so people can check to see if they
	 * are still on the list after taking the semaphore
	 */
	list_del_init(&block_group->list);
	if (list_empty(&block_group->space_info->block_groups[index])) {
		kobj = block_group->space_info->block_group_kobjs[index];
		block_group->space_info->block_group_kobjs[index] = NULL;
		clear_avail_alloc_bits(fs_info, block_group->flags);
	}
	up_write(&block_group->space_info->groups_sem);
	clear_incompat_bg_bits(fs_info, block_group->flags);
	if (kobj) {
		kobject_del(kobj);
		kobject_put(kobj);
	}

	if (block_group->has_caching_ctl)
		caching_ctl = btrfs_get_caching_control(block_group);
	if (block_group->cached == BTRFS_CACHE_STARTED)
		btrfs_wait_block_group_cache_done(block_group);
	if (block_group->has_caching_ctl) {
982
		spin_lock(&fs_info->block_group_cache_lock);
983 984 985 986 987 988 989 990 991 992 993 994 995
		if (!caching_ctl) {
			struct btrfs_caching_control *ctl;

			list_for_each_entry(ctl,
				    &fs_info->caching_block_groups, list)
				if (ctl->block_group == block_group) {
					caching_ctl = ctl;
					refcount_inc(&caching_ctl->count);
					break;
				}
		}
		if (caching_ctl)
			list_del_init(&caching_ctl->list);
996
		spin_unlock(&fs_info->block_group_cache_lock);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		if (caching_ctl) {
			/* Once for the caching bgs list and once for us. */
			btrfs_put_caching_control(caching_ctl);
			btrfs_put_caching_control(caching_ctl);
		}
	}

	spin_lock(&trans->transaction->dirty_bgs_lock);
	WARN_ON(!list_empty(&block_group->dirty_list));
	WARN_ON(!list_empty(&block_group->io_list));
	spin_unlock(&trans->transaction->dirty_bgs_lock);

	btrfs_remove_free_space_cache(block_group);

	spin_lock(&block_group->space_info->lock);
	list_del_init(&block_group->ro_list);

	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
		WARN_ON(block_group->space_info->total_bytes
1016
			< block_group->length);
1017
		WARN_ON(block_group->space_info->bytes_readonly
1018 1019 1020
			< block_group->length - block_group->zone_unusable);
		WARN_ON(block_group->space_info->bytes_zone_unusable
			< block_group->zone_unusable);
1021
		WARN_ON(block_group->space_info->disk_total
1022
			< block_group->length * factor);
1023
	}
1024
	block_group->space_info->total_bytes -= block_group->length;
1025 1026 1027 1028
	block_group->space_info->bytes_readonly -=
		(block_group->length - block_group->zone_unusable);
	block_group->space_info->bytes_zone_unusable -=
		block_group->zone_unusable;
1029
	block_group->space_info->disk_total -= block_group->length * factor;
1030 1031 1032

	spin_unlock(&block_group->space_info->lock);

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * Remove the free space for the block group from the free space tree
	 * and the block group's item from the extent tree before marking the
	 * block group as removed. This is to prevent races with tasks that
	 * freeze and unfreeze a block group, this task and another task
	 * allocating a new block group - the unfreeze task ends up removing
	 * the block group's extent map before the task calling this function
	 * deletes the block group item from the extent tree, allowing for
	 * another task to attempt to create another block group with the same
	 * item key (and failing with -EEXIST and a transaction abort).
	 */
	ret = remove_block_group_free_space(trans, block_group);
	if (ret)
		goto out;

	ret = remove_block_group_item(trans, path, block_group);
	if (ret < 0)
		goto out;

1052 1053 1054
	spin_lock(&block_group->lock);
	block_group->removed = 1;
	/*
1055 1056 1057 1058 1059 1060 1061 1062
	 * At this point trimming or scrub can't start on this block group,
	 * because we removed the block group from the rbtree
	 * fs_info->block_group_cache_tree so no one can't find it anymore and
	 * even if someone already got this block group before we removed it
	 * from the rbtree, they have already incremented block_group->frozen -
	 * if they didn't, for the trimming case they won't find any free space
	 * entries because we already removed them all when we called
	 * btrfs_remove_free_space_cache().
1063 1064 1065
	 *
	 * And we must not remove the extent map from the fs_info->mapping_tree
	 * to prevent the same logical address range and physical device space
1066 1067 1068 1069
	 * ranges from being reused for a new block group. This is needed to
	 * avoid races with trimming and scrub.
	 *
	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	 * completely transactionless, so while it is trimming a range the
	 * currently running transaction might finish and a new one start,
	 * allowing for new block groups to be created that can reuse the same
	 * physical device locations unless we take this special care.
	 *
	 * There may also be an implicit trim operation if the file system
	 * is mounted with -odiscard. The same protections must remain
	 * in place until the extents have been discarded completely when
	 * the transaction commit has completed.
	 */
1080
	remove_em = (atomic_read(&block_group->frozen) == 0);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	spin_unlock(&block_group->lock);

	if (remove_em) {
		struct extent_map_tree *em_tree;

		em_tree = &fs_info->mapping_tree;
		write_lock(&em_tree->lock);
		remove_extent_mapping(em_tree, em);
		write_unlock(&em_tree->lock);
		/* once for the tree */
		free_extent_map(em);
	}
1093

1094
out:
1095 1096
	/* Once for the lookup reference */
	btrfs_put_block_group(block_group);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	if (remove_rsv)
		btrfs_delayed_refs_rsv_release(fs_info, 1);
	btrfs_free_path(path);
	return ret;
}

struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
{
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
	struct extent_map *em;
	struct map_lookup *map;
	unsigned int num_items;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	read_unlock(&em_tree->lock);
	ASSERT(em && em->start == chunk_offset);

	/*
	 * We need to reserve 3 + N units from the metadata space info in order
	 * to remove a block group (done at btrfs_remove_chunk() and at
	 * btrfs_remove_block_group()), which are used for:
	 *
	 * 1 unit for adding the free space inode's orphan (located in the tree
	 * of tree roots).
	 * 1 unit for deleting the block group item (located in the extent
	 * tree).
	 * 1 unit for deleting the free space item (located in tree of tree
	 * roots).
	 * N units for deleting N device extent items corresponding to each
	 * stripe (located in the device tree).
	 *
	 * In order to remove a block group we also need to reserve units in the
	 * system space info in order to update the chunk tree (update one or
	 * more device items and remove one chunk item), but this is done at
	 * btrfs_remove_chunk() through a call to check_system_chunk().
	 */
	map = em->map_lookup;
	num_items = 3 + map->num_stripes;
	free_extent_map(em);

	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140
							   num_items);
1141 1142
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * Mark block group @cache read-only, so later write won't happen to block
 * group @cache.
 *
 * If @force is not set, this function will only mark the block group readonly
 * if we have enough free space (1M) in other metadata/system block groups.
 * If @force is not set, this function will mark the block group readonly
 * without checking free space.
 *
 * NOTE: This function doesn't care if other block groups can contain all the
 * data in this block group. That check should be done by relocation routine,
 * not this function.
 */
1156
static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157 1158 1159 1160 1161 1162 1163 1164
{
	struct btrfs_space_info *sinfo = cache->space_info;
	u64 num_bytes;
	int ret = -ENOSPC;

	spin_lock(&sinfo->lock);
	spin_lock(&cache->lock);

1165 1166 1167 1168 1169
	if (cache->swap_extents) {
		ret = -ETXTBSY;
		goto out;
	}

1170 1171 1172 1173 1174 1175
	if (cache->ro) {
		cache->ro++;
		ret = 0;
		goto out;
	}

1176
	num_bytes = cache->length - cache->reserved - cache->pinned -
1177
		    cache->bytes_super - cache->zone_unusable - cache->used;
1178 1179

	/*
1180 1181
	 * Data never overcommits, even in mixed mode, so do just the straight
	 * check of left over space in how much we have allocated.
1182
	 */
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	if (force) {
		ret = 0;
	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
		u64 sinfo_used = btrfs_space_info_used(sinfo, true);

		/*
		 * Here we make sure if we mark this bg RO, we still have enough
		 * free space as buffer.
		 */
		if (sinfo_used + num_bytes <= sinfo->total_bytes)
			ret = 0;
	} else {
		/*
		 * We overcommit metadata, so we need to do the
		 * btrfs_can_overcommit check here, and we need to pass in
		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
		 * leeway to allow us to mark this block group as read only.
		 */
		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
					 BTRFS_RESERVE_NO_FLUSH))
			ret = 0;
	}

	if (!ret) {
1207
		sinfo->bytes_readonly += num_bytes;
1208 1209 1210 1211 1212 1213
		if (btrfs_is_zoned(cache->fs_info)) {
			/* Migrate zone_unusable bytes to readonly */
			sinfo->bytes_readonly += cache->zone_unusable;
			sinfo->bytes_zone_unusable -= cache->zone_unusable;
			cache->zone_unusable = 0;
		}
1214 1215 1216 1217 1218 1219 1220 1221
		cache->ro++;
		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
	}
out:
	spin_unlock(&cache->lock);
	spin_unlock(&sinfo->lock);
	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
		btrfs_info(cache->fs_info,
1222
			"unable to make block group %llu ro", cache->start);
1223 1224 1225 1226 1227
		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
	}
	return ret;
}

1228 1229
static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
				 struct btrfs_block_group *bg)
1230 1231
{
	struct btrfs_fs_info *fs_info = bg->fs_info;
1232
	struct btrfs_transaction *prev_trans = NULL;
1233 1234 1235 1236
	const u64 start = bg->start;
	const u64 end = start + bg->length - 1;
	int ret;

1237 1238 1239 1240 1241 1242 1243 1244
	spin_lock(&fs_info->trans_lock);
	if (trans->transaction->list.prev != &fs_info->trans_list) {
		prev_trans = list_last_entry(&trans->transaction->list,
					     struct btrfs_transaction, list);
		refcount_inc(&prev_trans->use_count);
	}
	spin_unlock(&fs_info->trans_lock);

1245 1246 1247 1248 1249
	/*
	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
	 * btrfs_finish_extent_commit(). If we are at transaction N, another
	 * task might be running finish_extent_commit() for the previous
	 * transaction N - 1, and have seen a range belonging to the block
1250 1251 1252 1253
	 * group in pinned_extents before we were able to clear the whole block
	 * group range from pinned_extents. This means that task can lookup for
	 * the block group after we unpinned it from pinned_extents and removed
	 * it, leading to a BUG_ON() at unpin_extent_range().
1254 1255
	 */
	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256 1257 1258 1259
	if (prev_trans) {
		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
					EXTENT_DIRTY);
		if (ret)
1260
			goto out;
1261
	}
1262

1263
	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264
				EXTENT_DIRTY);
1265
out:
1266
	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267 1268
	if (prev_trans)
		btrfs_put_transaction(prev_trans);
1269

1270
	return ret == 0;
1271 1272
}

1273 1274 1275 1276 1277 1278
/*
 * Process the unused_bgs list and remove any that don't have any allocated
 * space inside of them.
 */
void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
{
1279
	struct btrfs_block_group *block_group;
1280 1281
	struct btrfs_space_info *space_info;
	struct btrfs_trans_handle *trans;
1282
	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283 1284 1285 1286 1287
	int ret = 0;

	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
		return;

1288 1289 1290 1291
	/*
	 * Long running balances can keep us blocked here for eternity, so
	 * simply skip deletion if we're unable to get the mutex.
	 */
1292
	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1293 1294
		return;

1295 1296 1297 1298 1299
	spin_lock(&fs_info->unused_bgs_lock);
	while (!list_empty(&fs_info->unused_bgs)) {
		int trimming;

		block_group = list_first_entry(&fs_info->unused_bgs,
1300
					       struct btrfs_block_group,
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
					       bg_list);
		list_del_init(&block_group->bg_list);

		space_info = block_group->space_info;

		if (ret || btrfs_mixed_space_info(space_info)) {
			btrfs_put_block_group(block_group);
			continue;
		}
		spin_unlock(&fs_info->unused_bgs_lock);

1312 1313
		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);

1314 1315
		/* Don't want to race with allocators so take the groups_sem */
		down_write(&space_info->groups_sem);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

		/*
		 * Async discard moves the final block group discard to be prior
		 * to the unused_bgs code path.  Therefore, if it's not fully
		 * trimmed, punt it back to the async discard lists.
		 */
		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
		    !btrfs_is_free_space_trimmed(block_group)) {
			trace_btrfs_skip_unused_block_group(block_group);
			up_write(&space_info->groups_sem);
			/* Requeue if we failed because of async discard */
			btrfs_discard_queue_work(&fs_info->discard_ctl,
						 block_group);
			goto next;
		}

1332 1333
		spin_lock(&block_group->lock);
		if (block_group->reserved || block_group->pinned ||
1334
		    block_group->used || block_group->ro ||
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
		    list_is_singular(&block_group->list)) {
			/*
			 * We want to bail if we made new allocations or have
			 * outstanding allocations in this block group.  We do
			 * the ro check in case balance is currently acting on
			 * this block group.
			 */
			trace_btrfs_skip_unused_block_group(block_group);
			spin_unlock(&block_group->lock);
			up_write(&space_info->groups_sem);
			goto next;
		}
		spin_unlock(&block_group->lock);

		/* We don't want to force the issue, only flip if it's ok. */
1350
		ret = inc_block_group_ro(block_group, 0);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		up_write(&space_info->groups_sem);
		if (ret < 0) {
			ret = 0;
			goto next;
		}

		/*
		 * Want to do this before we do anything else so we can recover
		 * properly if we fail to join the transaction.
		 */
		trans = btrfs_start_trans_remove_block_group(fs_info,
1362
						     block_group->start);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		if (IS_ERR(trans)) {
			btrfs_dec_block_group_ro(block_group);
			ret = PTR_ERR(trans);
			goto next;
		}

		/*
		 * We could have pending pinned extents for this block group,
		 * just delete them, we don't care about them anymore.
		 */
1373 1374
		if (!clean_pinned_extents(trans, block_group)) {
			btrfs_dec_block_group_ro(block_group);
1375
			goto end_trans;
1376
		}
1377

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		/*
		 * At this point, the block_group is read only and should fail
		 * new allocations.  However, btrfs_finish_extent_commit() can
		 * cause this block_group to be placed back on the discard
		 * lists because now the block_group isn't fully discarded.
		 * Bail here and try again later after discarding everything.
		 */
		spin_lock(&fs_info->discard_ctl.lock);
		if (!list_empty(&block_group->discard_list)) {
			spin_unlock(&fs_info->discard_ctl.lock);
			btrfs_dec_block_group_ro(block_group);
			btrfs_discard_queue_work(&fs_info->discard_ctl,
						 block_group);
			goto end_trans;
		}
		spin_unlock(&fs_info->discard_ctl.lock);

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		/* Reset pinned so btrfs_put_block_group doesn't complain */
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);

		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
						     -block_group->pinned);
		space_info->bytes_readonly += block_group->pinned;
		block_group->pinned = 0;

		spin_unlock(&block_group->lock);
		spin_unlock(&space_info->lock);

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		/*
		 * The normal path here is an unused block group is passed here,
		 * then trimming is handled in the transaction commit path.
		 * Async discard interposes before this to do the trimming
		 * before coming down the unused block group path as trimming
		 * will no longer be done later in the transaction commit path.
		 */
		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
			goto flip_async;

1417 1418 1419 1420 1421 1422
		/*
		 * DISCARD can flip during remount. On zoned filesystems, we
		 * need to reset sequential-required zones.
		 */
		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
				btrfs_is_zoned(fs_info);
1423 1424 1425

		/* Implicit trim during transaction commit. */
		if (trimming)
1426
			btrfs_freeze_block_group(block_group);
1427 1428 1429 1430 1431

		/*
		 * Btrfs_remove_chunk will abort the transaction if things go
		 * horribly wrong.
		 */
1432
		ret = btrfs_remove_chunk(trans, block_group->start);
1433 1434 1435

		if (ret) {
			if (trimming)
1436
				btrfs_unfreeze_block_group(block_group);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
			goto end_trans;
		}

		/*
		 * If we're not mounted with -odiscard, we can just forget
		 * about this block group. Otherwise we'll need to wait
		 * until transaction commit to do the actual discard.
		 */
		if (trimming) {
			spin_lock(&fs_info->unused_bgs_lock);
			/*
			 * A concurrent scrub might have added us to the list
			 * fs_info->unused_bgs, so use a list_move operation
			 * to add the block group to the deleted_bgs list.
			 */
			list_move(&block_group->bg_list,
				  &trans->transaction->deleted_bgs);
			spin_unlock(&fs_info->unused_bgs_lock);
			btrfs_get_block_group(block_group);
		}
end_trans:
		btrfs_end_transaction(trans);
next:
		btrfs_put_block_group(block_group);
		spin_lock(&fs_info->unused_bgs_lock);
	}
	spin_unlock(&fs_info->unused_bgs_lock);
1464
	mutex_unlock(&fs_info->reclaim_bgs_lock);
1465 1466 1467 1468
	return;

flip_async:
	btrfs_end_transaction(trans);
1469
	mutex_unlock(&fs_info->reclaim_bgs_lock);
1470 1471
	btrfs_put_block_group(block_group);
	btrfs_discard_punt_unused_bgs_list(fs_info);
1472 1473
}

1474
void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
{
	struct btrfs_fs_info *fs_info = bg->fs_info;

	spin_lock(&fs_info->unused_bgs_lock);
	if (list_empty(&bg->bg_list)) {
		btrfs_get_block_group(bg);
		trace_btrfs_add_unused_block_group(bg);
		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
	}
	spin_unlock(&fs_info->unused_bgs_lock);
}
1486

1487 1488 1489 1490 1491 1492
void btrfs_reclaim_bgs_work(struct work_struct *work)
{
	struct btrfs_fs_info *fs_info =
		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
	struct btrfs_block_group *bg;
	struct btrfs_space_info *space_info;
1493
	LIST_HEAD(again_list);
1494 1495 1496 1497 1498 1499 1500

	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
		return;

	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
		return;

1501 1502 1503 1504 1505 1506 1507 1508 1509
	/*
	 * Long running balances can keep us blocked here for eternity, so
	 * simply skip reclaim if we're unable to get the mutex.
	 */
	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
		btrfs_exclop_finish(fs_info);
		return;
	}

1510 1511
	spin_lock(&fs_info->unused_bgs_lock);
	while (!list_empty(&fs_info->reclaim_bgs)) {
1512
		u64 zone_unusable;
1513 1514
		int ret = 0;

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		bg = list_first_entry(&fs_info->reclaim_bgs,
				      struct btrfs_block_group,
				      bg_list);
		list_del_init(&bg->bg_list);

		space_info = bg->space_info;
		spin_unlock(&fs_info->unused_bgs_lock);

		/* Don't race with allocators so take the groups_sem */
		down_write(&space_info->groups_sem);

		spin_lock(&bg->lock);
		if (bg->reserved || bg->pinned || bg->ro) {
			/*
			 * We want to bail if we made new allocations or have
			 * outstanding allocations in this block group.  We do
			 * the ro check in case balance is currently acting on
			 * this block group.
			 */
			spin_unlock(&bg->lock);
			up_write(&space_info->groups_sem);
			goto next;
		}
		spin_unlock(&bg->lock);

		/* Get out fast, in case we're unmounting the filesystem */
		if (btrfs_fs_closing(fs_info)) {
			up_write(&space_info->groups_sem);
			goto next;
		}

1546 1547 1548 1549 1550 1551 1552
		/*
		 * Cache the zone_unusable value before turning the block group
		 * to read only. As soon as the blog group is read only it's
		 * zone_unusable value gets moved to the block group's read-only
		 * bytes and isn't available for calculations anymore.
		 */
		zone_unusable = bg->zone_unusable;
1553 1554 1555 1556 1557
		ret = inc_block_group_ro(bg, 0);
		up_write(&space_info->groups_sem);
		if (ret < 0)
			goto next;

1558 1559 1560 1561
		btrfs_info(fs_info,
			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
				bg->start, div_u64(bg->used * 100, bg->length),
				div64_u64(zone_unusable * 100, bg->length));
1562 1563
		trace_btrfs_reclaim_block_group(bg);
		ret = btrfs_relocate_chunk(fs_info, bg->start);
1564
		if (ret && ret != -EAGAIN)
1565 1566 1567 1568 1569
			btrfs_err(fs_info, "error relocating chunk %llu",
				  bg->start);

next:
		spin_lock(&fs_info->unused_bgs_lock);
1570 1571 1572 1573
		if (ret == -EAGAIN && list_empty(&bg->bg_list))
			list_add_tail(&bg->bg_list, &again_list);
		else
			btrfs_put_block_group(bg);
1574
	}
1575
	list_splice_tail(&again_list, &fs_info->reclaim_bgs);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	spin_unlock(&fs_info->unused_bgs_lock);
	mutex_unlock(&fs_info->reclaim_bgs_lock);
	btrfs_exclop_finish(fs_info);
}

void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
{
	spin_lock(&fs_info->unused_bgs_lock);
	if (!list_empty(&fs_info->reclaim_bgs))
		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
	spin_unlock(&fs_info->unused_bgs_lock);
}

void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
{
	struct btrfs_fs_info *fs_info = bg->fs_info;

	spin_lock(&fs_info->unused_bgs_lock);
	if (list_empty(&bg->bg_list)) {
		btrfs_get_block_group(bg);
		trace_btrfs_add_reclaim_block_group(bg);
		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
	}
	spin_unlock(&fs_info->unused_bgs_lock);
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
			   struct btrfs_path *path)
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct btrfs_block_group_item bg;
	struct extent_buffer *leaf;
	int slot;
	u64 flags;
	int ret = 0;

	slot = path->slots[0];
	leaf = path->nodes[0];

	em_tree = &fs_info->mapping_tree;
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
	read_unlock(&em_tree->lock);
	if (!em) {
		btrfs_err(fs_info,
			  "logical %llu len %llu found bg but no related chunk",
			  key->objectid, key->offset);
		return -ENOENT;
	}

	if (em->start != key->objectid || em->len != key->offset) {
		btrfs_err(fs_info,
			"block group %llu len %llu mismatch with chunk %llu len %llu",
			key->objectid, key->offset, em->start, em->len);
		ret = -EUCLEAN;
		goto out_free_em;
	}

	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
			   sizeof(bg));
	flags = btrfs_stack_block_group_flags(&bg) &
		BTRFS_BLOCK_GROUP_TYPE_MASK;

	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
		btrfs_err(fs_info,
"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
			  key->objectid, key->offset, flags,
			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
		ret = -EUCLEAN;
	}

out_free_em:
	free_extent_map(em);
	return ret;
}

1653 1654 1655 1656 1657
static int find_first_block_group(struct btrfs_fs_info *fs_info,
				  struct btrfs_path *path,
				  struct btrfs_key *key)
{
	struct btrfs_root *root = fs_info->extent_root;
1658
	int ret;
1659 1660 1661 1662 1663 1664
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	int slot;

	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
	if (ret < 0)
1665
		return ret;
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	while (1) {
		slot = path->slots[0];
		leaf = path->nodes[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto out;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		if (found_key.objectid >= key->objectid &&
		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1682 1683
			ret = read_bg_from_eb(fs_info, &found_key, path);
			break;
1684
		}
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
		path->slots[0]++;
	}
out:
	return ret;
}

static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
	u64 extra_flags = chunk_to_extended(flags) &
				BTRFS_EXTENDED_PROFILE_MASK;

	write_seqlock(&fs_info->profiles_lock);
	if (flags & BTRFS_BLOCK_GROUP_DATA)
		fs_info->avail_data_alloc_bits |= extra_flags;
	if (flags & BTRFS_BLOCK_GROUP_METADATA)
		fs_info->avail_metadata_alloc_bits |= extra_flags;
	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
		fs_info->avail_system_alloc_bits |= extra_flags;
	write_sequnlock(&fs_info->profiles_lock);
}

1707
/**
1708 1709 1710
 * Map a physical disk address to a list of logical addresses
 *
 * @fs_info:       the filesystem
1711
 * @chunk_start:   logical address of block group
1712
 * @bdev:	   physical device to resolve, can be NULL to indicate any device
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
 * @physical:	   physical address to map to logical addresses
 * @logical:	   return array of logical addresses which map to @physical
 * @naddrs:	   length of @logical
 * @stripe_len:    size of IO stripe for the given block group
 *
 * Maps a particular @physical disk address to a list of @logical addresses.
 * Used primarily to exclude those portions of a block group that contain super
 * block copies.
 */
int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1723 1724
		     struct block_device *bdev, u64 physical, u64 **logical,
		     int *naddrs, int *stripe_len)
1725 1726 1727 1728 1729
{
	struct extent_map *em;
	struct map_lookup *map;
	u64 *buf;
	u64 bytenr;
1730 1731 1732 1733
	u64 data_stripe_length;
	u64 io_stripe_size;
	int i, nr = 0;
	int ret = 0;
1734 1735 1736 1737 1738 1739

	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
	if (IS_ERR(em))
		return -EIO;

	map = em->map_lookup;
1740
	data_stripe_length = em->orig_block_len;
1741
	io_stripe_size = map->stripe_len;
1742
	chunk_start = em->start;
1743

1744 1745
	/* For RAID5/6 adjust to a full IO stripe length */
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1746
		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1747 1748

	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1749 1750 1751 1752
	if (!buf) {
		ret = -ENOMEM;
		goto out;
	}
1753 1754

	for (i = 0; i < map->num_stripes; i++) {
1755 1756
		bool already_inserted = false;
		u64 stripe_nr;
1757
		u64 offset;
1758 1759 1760 1761
		int j;

		if (!in_range(physical, map->stripes[i].physical,
			      data_stripe_length))
1762 1763
			continue;

1764 1765 1766
		if (bdev && map->stripes[i].dev->bdev != bdev)
			continue;

1767
		stripe_nr = physical - map->stripes[i].physical;
1768
		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripe_nr = stripe_nr * map->num_stripes + i;
			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
			stripe_nr = stripe_nr * map->num_stripes + i;
		}
		/*
		 * The remaining case would be for RAID56, multiply by
		 * nr_data_stripes().  Alternatively, just use rmap_len below
		 * instead of map->stripe_len
		 */

1782
		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1783 1784

		/* Ensure we don't add duplicate addresses */
1785
		for (j = 0; j < nr; j++) {
1786 1787
			if (buf[j] == bytenr) {
				already_inserted = true;
1788
				break;
1789
			}
1790
		}
1791 1792

		if (!already_inserted)
1793 1794 1795 1796 1797
			buf[nr++] = bytenr;
	}

	*logical = buf;
	*naddrs = nr;
1798 1799
	*stripe_len = io_stripe_size;
out:
1800
	free_extent_map(em);
1801
	return ret;
1802 1803
}

1804
static int exclude_super_stripes(struct btrfs_block_group *cache)
1805 1806
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
1807
	const bool zoned = btrfs_is_zoned(fs_info);
1808 1809 1810 1811 1812
	u64 bytenr;
	u64 *logical;
	int stripe_len;
	int i, nr, ret;

1813 1814
	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1815
		cache->bytes_super += stripe_len;
1816
		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1817 1818 1819 1820 1821 1822 1823
						stripe_len);
		if (ret)
			return ret;
	}

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
1824
		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1825 1826 1827 1828
				       bytenr, &logical, &nr, &stripe_len);
		if (ret)
			return ret;

1829 1830 1831 1832 1833 1834 1835 1836
		/* Shouldn't have super stripes in sequential zones */
		if (zoned && nr) {
			btrfs_err(fs_info,
			"zoned: block group %llu must not contain super block",
				  cache->start);
			return -EUCLEAN;
		}

1837
		while (nr--) {
1838 1839
			u64 len = min_t(u64, stripe_len,
				cache->start + cache->length - logical[nr]);
1840 1841

			cache->bytes_super += len;
1842 1843
			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
							len);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
			if (ret) {
				kfree(logical);
				return ret;
			}
		}

		kfree(logical);
	}
	return 0;
}

1855
static void link_block_group(struct btrfs_block_group *cache)
1856 1857 1858 1859 1860 1861 1862 1863 1864
{
	struct btrfs_space_info *space_info = cache->space_info;
	int index = btrfs_bg_flags_to_raid_index(cache->flags);

	down_write(&space_info->groups_sem);
	list_add_tail(&cache->list, &space_info->block_groups[index]);
	up_write(&space_info->groups_sem);
}

1865
static struct btrfs_block_group *btrfs_create_block_group_cache(
1866
		struct btrfs_fs_info *fs_info, u64 start)
1867
{
1868
	struct btrfs_block_group *cache;
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

	cache = kzalloc(sizeof(*cache), GFP_NOFS);
	if (!cache)
		return NULL;

	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
					GFP_NOFS);
	if (!cache->free_space_ctl) {
		kfree(cache);
		return NULL;
	}

1881
	cache->start = start;
1882 1883 1884 1885

	cache->fs_info = fs_info;
	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);

1886 1887
	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;

1888
	refcount_set(&cache->refs, 1);
1889 1890 1891 1892 1893 1894
	spin_lock_init(&cache->lock);
	init_rwsem(&cache->data_rwsem);
	INIT_LIST_HEAD(&cache->list);
	INIT_LIST_HEAD(&cache->cluster_list);
	INIT_LIST_HEAD(&cache->bg_list);
	INIT_LIST_HEAD(&cache->ro_list);
1895
	INIT_LIST_HEAD(&cache->discard_list);
1896 1897
	INIT_LIST_HEAD(&cache->dirty_list);
	INIT_LIST_HEAD(&cache->io_list);
1898
	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1899
	atomic_set(&cache->frozen, 0);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	mutex_init(&cache->free_space_lock);
	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);

	return cache;
}

/*
 * Iterate all chunks and verify that each of them has the corresponding block
 * group
 */
static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
{
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
	struct extent_map *em;
1914
	struct btrfs_block_group *bg;
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	u64 start = 0;
	int ret = 0;

	while (1) {
		read_lock(&map_tree->lock);
		/*
		 * lookup_extent_mapping will return the first extent map
		 * intersecting the range, so setting @len to 1 is enough to
		 * get the first chunk.
		 */
		em = lookup_extent_mapping(map_tree, start, 1);
		read_unlock(&map_tree->lock);
		if (!em)
			break;

		bg = btrfs_lookup_block_group(fs_info, em->start);
		if (!bg) {
			btrfs_err(fs_info,
	"chunk start=%llu len=%llu doesn't have corresponding block group",
				     em->start, em->len);
			ret = -EUCLEAN;
			free_extent_map(em);
			break;
		}
1939
		if (bg->start != em->start || bg->length != em->len ||
1940 1941 1942 1943 1944 1945
		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
			btrfs_err(fs_info,
"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
				em->start, em->len,
				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1946
				bg->start, bg->length,
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
			ret = -EUCLEAN;
			free_extent_map(em);
			btrfs_put_block_group(bg);
			break;
		}
		start = em->start + em->len;
		free_extent_map(em);
		btrfs_put_block_group(bg);
	}
	return ret;
}

1960
static int read_one_block_group(struct btrfs_fs_info *info,
1961
				struct btrfs_block_group_item *bgi,
1962
				const struct btrfs_key *key,
1963 1964
				int need_clear)
{
1965
	struct btrfs_block_group *cache;
1966 1967 1968 1969
	struct btrfs_space_info *space_info;
	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
	int ret;

1970
	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1971

1972
	cache = btrfs_create_block_group_cache(info, key->objectid);
1973 1974 1975
	if (!cache)
		return -ENOMEM;

1976 1977 1978
	cache->length = key->offset;
	cache->used = btrfs_stack_block_group_used(bgi);
	cache->flags = btrfs_stack_block_group_flags(bgi);
1979

1980 1981
	set_free_space_tree_thresholds(cache);

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	if (need_clear) {
		/*
		 * When we mount with old space cache, we need to
		 * set BTRFS_DC_CLEAR and set dirty flag.
		 *
		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
		 *    truncate the old free space cache inode and
		 *    setup a new one.
		 * b) Setting 'dirty flag' makes sure that we flush
		 *    the new space cache info onto disk.
		 */
		if (btrfs_test_opt(info, SPACE_CACHE))
			cache->disk_cache_state = BTRFS_DC_CLEAR;
	}
	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
			btrfs_err(info,
"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
				  cache->start);
			ret = -EINVAL;
			goto error;
	}

2005
	ret = btrfs_load_block_group_zone_info(cache, false);
2006 2007 2008 2009 2010 2011
	if (ret) {
		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
			  cache->start);
		goto error;
	}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	/*
	 * We need to exclude the super stripes now so that the space info has
	 * super bytes accounted for, otherwise we'll think we have more space
	 * than we actually do.
	 */
	ret = exclude_super_stripes(cache);
	if (ret) {
		/* We may have excluded something, so call this just in case. */
		btrfs_free_excluded_extents(cache);
		goto error;
	}

	/*
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	 * For zoned filesystem, space after the allocation offset is the only
	 * free space for a block group. So, we don't need any caching work.
	 * btrfs_calc_zone_unusable() will set the amount of free space and
	 * zone_unusable space.
	 *
	 * For regular filesystem, check for two cases, either we are full, and
	 * therefore don't need to bother with the caching work since we won't
	 * find any space, or we are empty, and we can just add all the space
	 * in and be done with it.  This saves us _a_lot_ of time, particularly
	 * in the full case.
2035
	 */
2036 2037 2038
	if (btrfs_is_zoned(info)) {
		btrfs_calc_zone_unusable(cache);
	} else if (cache->length == cache->used) {
2039 2040 2041 2042 2043 2044
		cache->last_byte_to_unpin = (u64)-1;
		cache->cached = BTRFS_CACHE_FINISHED;
		btrfs_free_excluded_extents(cache);
	} else if (cache->used == 0) {
		cache->last_byte_to_unpin = (u64)-1;
		cache->cached = BTRFS_CACHE_FINISHED;
2045 2046
		add_new_free_space(cache, cache->start,
				   cache->start + cache->length);
2047 2048 2049 2050 2051 2052 2053 2054 2055
		btrfs_free_excluded_extents(cache);
	}

	ret = btrfs_add_block_group_cache(info, cache);
	if (ret) {
		btrfs_remove_free_space_cache(cache);
		goto error;
	}
	trace_btrfs_add_block_group(info, cache, 0);
2056
	btrfs_update_space_info(info, cache->flags, cache->length,
2057 2058
				cache->used, cache->bytes_super,
				cache->zone_unusable, &space_info);
2059 2060 2061 2062 2063 2064

	cache->space_info = space_info;

	link_block_group(cache);

	set_avail_alloc_bits(info, cache->flags);
2065 2066 2067 2068 2069 2070 2071 2072 2073
	if (btrfs_chunk_writeable(info, cache->start)) {
		if (cache->used == 0) {
			ASSERT(list_empty(&cache->bg_list));
			if (btrfs_test_opt(info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&info->discard_ctl, cache);
			else
				btrfs_mark_bg_unused(cache);
		}
	} else {
2074 2075
		inc_block_group_ro(cache, 1);
	}
2076

2077 2078 2079 2080 2081 2082
	return 0;
error:
	btrfs_put_block_group(cache);
	return ret;
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
{
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
	struct btrfs_space_info *space_info;
	struct rb_node *node;
	int ret = 0;

	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
		struct extent_map *em;
		struct map_lookup *map;
		struct btrfs_block_group *bg;

		em = rb_entry(node, struct extent_map, rb_node);
		map = em->map_lookup;
		bg = btrfs_create_block_group_cache(fs_info, em->start);
		if (!bg) {
			ret = -ENOMEM;
			break;
		}

		/* Fill dummy cache as FULL */
		bg->length = em->len;
		bg->flags = map->type;
		bg->last_byte_to_unpin = (u64)-1;
		bg->cached = BTRFS_CACHE_FINISHED;
		bg->used = em->len;
		bg->flags = map->type;
		ret = btrfs_add_block_group_cache(fs_info, bg);
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
		/*
		 * We may have some valid block group cache added already, in
		 * that case we skip to the next one.
		 */
		if (ret == -EEXIST) {
			ret = 0;
			btrfs_put_block_group(bg);
			continue;
		}

2121 2122 2123 2124 2125
		if (ret) {
			btrfs_remove_free_space_cache(bg);
			btrfs_put_block_group(bg);
			break;
		}
2126

2127
		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2128
					0, 0, &space_info);
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
		bg->space_info = space_info;
		link_block_group(bg);

		set_avail_alloc_bits(fs_info, bg->flags);
	}
	if (!ret)
		btrfs_init_global_block_rsv(fs_info);
	return ret;
}

2139 2140 2141 2142
int btrfs_read_block_groups(struct btrfs_fs_info *info)
{
	struct btrfs_path *path;
	int ret;
2143
	struct btrfs_block_group *cache;
2144 2145 2146 2147 2148
	struct btrfs_space_info *space_info;
	struct btrfs_key key;
	int need_clear = 0;
	u64 cache_gen;

2149 2150 2151
	if (!info->extent_root)
		return fill_dummy_bgs(info);

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	key.objectid = 0;
	key.offset = 0;
	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	cache_gen = btrfs_super_cache_generation(info->super_copy);
	if (btrfs_test_opt(info, SPACE_CACHE) &&
	    btrfs_super_generation(info->super_copy) != cache_gen)
		need_clear = 1;
	if (btrfs_test_opt(info, CLEAR_CACHE))
		need_clear = 1;

	while (1) {
2167 2168 2169 2170
		struct btrfs_block_group_item bgi;
		struct extent_buffer *leaf;
		int slot;

2171 2172 2173 2174 2175 2176
		ret = find_first_block_group(info, path, &key);
		if (ret > 0)
			break;
		if (ret != 0)
			goto error;

2177 2178 2179 2180 2181 2182 2183 2184 2185
		leaf = path->nodes[0];
		slot = path->slots[0];

		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
				   sizeof(bgi));

		btrfs_item_key_to_cpu(leaf, &key, slot);
		btrfs_release_path(path);
		ret = read_one_block_group(info, &bgi, &key, need_clear);
2186
		if (ret < 0)
2187
			goto error;
2188 2189
		key.objectid += key.offset;
		key.offset = 0;
2190
	}
2191
	btrfs_release_path(path);
2192

2193
	list_for_each_entry(space_info, &info->space_info, list) {
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
		int i;

		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
			if (list_empty(&space_info->block_groups[i]))
				continue;
			cache = list_first_entry(&space_info->block_groups[i],
						 struct btrfs_block_group,
						 list);
			btrfs_sysfs_add_block_group_type(cache);
		}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
		      (BTRFS_BLOCK_GROUP_RAID10 |
		       BTRFS_BLOCK_GROUP_RAID1_MASK |
		       BTRFS_BLOCK_GROUP_RAID56_MASK |
		       BTRFS_BLOCK_GROUP_DUP)))
			continue;
		/*
		 * Avoid allocating from un-mirrored block group if there are
		 * mirrored block groups.
		 */
		list_for_each_entry(cache,
				&space_info->block_groups[BTRFS_RAID_RAID0],
				list)
2218
			inc_block_group_ro(cache, 1);
2219 2220 2221
		list_for_each_entry(cache,
				&space_info->block_groups[BTRFS_RAID_SINGLE],
				list)
2222
			inc_block_group_ro(cache, 1);
2223 2224 2225 2226 2227 2228
	}

	btrfs_init_global_block_rsv(info);
	ret = check_chunk_block_group_mappings(info);
error:
	btrfs_free_path(path);
2229 2230 2231 2232 2233 2234 2235 2236
	/*
	 * We've hit some error while reading the extent tree, and have
	 * rescue=ibadroots mount option.
	 * Try to fill the tree using dummy block groups so that the user can
	 * continue to mount and grab their data.
	 */
	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
		ret = fill_dummy_bgs(info);
2237 2238 2239
	return ret;
}

2240 2241 2242 2243 2244 2245 2246
/*
 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
 * allocation.
 *
 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
 * phases.
 */
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
static int insert_block_group_item(struct btrfs_trans_handle *trans,
				   struct btrfs_block_group *block_group)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_block_group_item bgi;
	struct btrfs_root *root;
	struct btrfs_key key;

	spin_lock(&block_group->lock);
	btrfs_set_stack_block_group_used(&bgi, block_group->used);
	btrfs_set_stack_block_group_chunk_objectid(&bgi,
				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
	key.objectid = block_group->start;
	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
	key.offset = block_group->length;
	spin_unlock(&block_group->lock);

	root = fs_info->extent_root;
	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
static int insert_dev_extent(struct btrfs_trans_handle *trans,
			    struct btrfs_device *device, u64 chunk_offset,
			    u64 start, u64 num_bytes)
{
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_path *path;
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret;

	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = start;
	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
	if (ret)
		goto out;

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * This function belongs to phase 2.
 *
 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
 * phases.
 */
static int insert_dev_extents(struct btrfs_trans_handle *trans,
				   u64 chunk_offset, u64 chunk_size)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_device *device;
	struct extent_map *em;
	struct map_lookup *map;
	u64 dev_offset;
	u64 stripe_size;
	int i;
	int ret = 0;

	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	stripe_size = em->orig_block_len;

	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with the map's stripes, because the device object's id can change
	 * at any time during that final phase of the device replace operation
	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
	 * resulting in persisting a device extent item with such ID.
	 */
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;

		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
				       stripe_size);
		if (ret)
			break;
	}
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);

	free_extent_map(em);
	return ret;
}

2358 2359 2360 2361 2362 2363 2364
/*
 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
 * chunk allocation.
 *
 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
 * phases.
 */
2365 2366 2367
void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
2368
	struct btrfs_block_group *block_group;
2369 2370 2371
	int ret = 0;

	while (!list_empty(&trans->new_bgs)) {
2372 2373
		int index;

2374
		block_group = list_first_entry(&trans->new_bgs,
2375
					       struct btrfs_block_group,
2376 2377 2378 2379
					       bg_list);
		if (ret)
			goto next;

2380 2381
		index = btrfs_bg_flags_to_raid_index(block_group->flags);

2382
		ret = insert_block_group_item(trans, block_group);
2383 2384
		if (ret)
			btrfs_abort_transaction(trans, ret);
2385 2386 2387 2388 2389 2390 2391
		if (!block_group->chunk_item_inserted) {
			mutex_lock(&fs_info->chunk_mutex);
			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
			mutex_unlock(&fs_info->chunk_mutex);
			if (ret)
				btrfs_abort_transaction(trans, ret);
		}
2392 2393
		ret = insert_dev_extents(trans, block_group->start,
					 block_group->length);
2394 2395 2396
		if (ret)
			btrfs_abort_transaction(trans, ret);
		add_block_group_free_space(trans, block_group);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

		/*
		 * If we restriped during balance, we may have added a new raid
		 * type, so now add the sysfs entries when it is safe to do so.
		 * We don't have to worry about locking here as it's handled in
		 * btrfs_sysfs_add_block_group_type.
		 */
		if (block_group->space_info->block_group_kobjs[index] == NULL)
			btrfs_sysfs_add_block_group_type(block_group);

2407 2408 2409 2410 2411 2412 2413 2414
		/* Already aborted the transaction if it failed. */
next:
		btrfs_delayed_refs_rsv_release(fs_info, 1);
		list_del_init(&block_group->bg_list);
	}
	btrfs_trans_release_chunk_metadata(trans);
}

2415 2416 2417
struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
						 u64 bytes_used, u64 type,
						 u64 chunk_offset, u64 size)
2418 2419
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
2420
	struct btrfs_block_group *cache;
2421 2422 2423 2424
	int ret;

	btrfs_set_log_full_commit(trans);

2425
	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2426
	if (!cache)
2427
		return ERR_PTR(-ENOMEM);
2428

2429
	cache->length = size;
2430
	set_free_space_tree_thresholds(cache);
2431
	cache->used = bytes_used;
2432 2433 2434
	cache->flags = type;
	cache->last_byte_to_unpin = (u64)-1;
	cache->cached = BTRFS_CACHE_FINISHED;
2435 2436
	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
		cache->needs_free_space = 1;
2437

2438
	ret = btrfs_load_block_group_zone_info(cache, true);
2439 2440
	if (ret) {
		btrfs_put_block_group(cache);
2441
		return ERR_PTR(ret);
2442 2443
	}

2444 2445 2446 2447 2448
	ret = exclude_super_stripes(cache);
	if (ret) {
		/* We may have excluded something, so call this just in case */
		btrfs_free_excluded_extents(cache);
		btrfs_put_block_group(cache);
2449
		return ERR_PTR(ret);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	}

	add_new_free_space(cache, chunk_offset, chunk_offset + size);

	btrfs_free_excluded_extents(cache);

#ifdef CONFIG_BTRFS_DEBUG
	if (btrfs_should_fragment_free_space(cache)) {
		u64 new_bytes_used = size - bytes_used;

		bytes_used += new_bytes_used >> 1;
2461
		fragment_free_space(cache);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	}
#endif
	/*
	 * Ensure the corresponding space_info object is created and
	 * assigned to our block group. We want our bg to be added to the rbtree
	 * with its ->space_info set.
	 */
	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
	ASSERT(cache->space_info);

	ret = btrfs_add_block_group_cache(fs_info, cache);
	if (ret) {
		btrfs_remove_free_space_cache(cache);
		btrfs_put_block_group(cache);
2476
		return ERR_PTR(ret);
2477 2478 2479 2480 2481 2482 2483 2484
	}

	/*
	 * Now that our block group has its ->space_info set and is inserted in
	 * the rbtree, update the space info's counters.
	 */
	trace_btrfs_add_block_group(fs_info, cache, 1);
	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2485
				cache->bytes_super, 0, &cache->space_info);
2486 2487 2488 2489 2490 2491 2492 2493 2494
	btrfs_update_global_block_rsv(fs_info);

	link_block_group(cache);

	list_add_tail(&cache->bg_list, &trans->new_bgs);
	trans->delayed_ref_updates++;
	btrfs_update_delayed_refs_rsv(trans);

	set_avail_alloc_bits(fs_info, type);
2495
	return cache;
2496
}
2497

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
/*
 * Mark one block group RO, can be called several times for the same block
 * group.
 *
 * @cache:		the destination block group
 * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
 * 			ensure we still have some free space after marking this
 * 			block group RO.
 */
int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
			     bool do_chunk_alloc)
2509 2510 2511 2512 2513
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;
	u64 alloc_flags;
	int ret;
2514
	bool dirty_bg_running;
2515

2516 2517 2518 2519
	do {
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
2520

2521
		dirty_bg_running = false;
2522

2523 2524 2525 2526 2527 2528 2529 2530
		/*
		 * We're not allowed to set block groups readonly after the dirty
		 * block group cache has started writing.  If it already started,
		 * back off and let this transaction commit.
		 */
		mutex_lock(&fs_info->ro_block_group_mutex);
		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
			u64 transid = trans->transid;
2531

2532 2533 2534 2535 2536 2537 2538 2539 2540
			mutex_unlock(&fs_info->ro_block_group_mutex);
			btrfs_end_transaction(trans);

			ret = btrfs_wait_for_commit(fs_info, transid);
			if (ret)
				return ret;
			dirty_bg_running = true;
		}
	} while (dirty_bg_running);
2541

2542
	if (do_chunk_alloc) {
2543
		/*
2544 2545
		 * If we are changing raid levels, try to allocate a
		 * corresponding block group with the new raid level.
2546
		 */
2547
		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		if (alloc_flags != cache->flags) {
			ret = btrfs_chunk_alloc(trans, alloc_flags,
						CHUNK_ALLOC_FORCE);
			/*
			 * ENOSPC is allowed here, we may have enough space
			 * already allocated at the new raid level to carry on
			 */
			if (ret == -ENOSPC)
				ret = 0;
			if (ret < 0)
				goto out;
		}
2560 2561
	}

2562
	ret = inc_block_group_ro(cache, 0);
2563
	if (!do_chunk_alloc || ret == -ETXTBSY)
2564
		goto unlock_out;
2565 2566 2567 2568 2569 2570
	if (!ret)
		goto out;
	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
	if (ret < 0)
		goto out;
2571
	ret = inc_block_group_ro(cache, 0);
2572 2573
	if (ret == -ETXTBSY)
		goto unlock_out;
2574 2575
out:
	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2576
		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2577 2578 2579 2580
		mutex_lock(&fs_info->chunk_mutex);
		check_system_chunk(trans, alloc_flags);
		mutex_unlock(&fs_info->chunk_mutex);
	}
2581
unlock_out:
2582 2583 2584 2585 2586 2587
	mutex_unlock(&fs_info->ro_block_group_mutex);

	btrfs_end_transaction(trans);
	return ret;
}

2588
void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2589 2590 2591 2592 2593 2594 2595 2596 2597
{
	struct btrfs_space_info *sinfo = cache->space_info;
	u64 num_bytes;

	BUG_ON(!cache->ro);

	spin_lock(&sinfo->lock);
	spin_lock(&cache->lock);
	if (!--cache->ro) {
2598 2599 2600 2601 2602 2603
		if (btrfs_is_zoned(cache->fs_info)) {
			/* Migrate zone_unusable bytes back */
			cache->zone_unusable = cache->alloc_offset - cache->used;
			sinfo->bytes_zone_unusable += cache->zone_unusable;
			sinfo->bytes_readonly -= cache->zone_unusable;
		}
2604 2605 2606 2607
		num_bytes = cache->length - cache->reserved -
			    cache->pinned - cache->bytes_super -
			    cache->zone_unusable - cache->used;
		sinfo->bytes_readonly -= num_bytes;
2608 2609 2610 2611 2612
		list_del_init(&cache->ro_list);
	}
	spin_unlock(&cache->lock);
	spin_unlock(&sinfo->lock);
}
2613

2614 2615 2616
static int update_block_group_item(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_block_group *cache)
2617 2618 2619
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	int ret;
2620
	struct btrfs_root *root = fs_info->extent_root;
2621 2622
	unsigned long bi;
	struct extent_buffer *leaf;
2623
	struct btrfs_block_group_item bgi;
2624 2625 2626 2627 2628
	struct btrfs_key key;

	key.objectid = cache->start;
	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
	key.offset = cache->length;
2629

2630
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2631 2632 2633 2634 2635 2636 2637 2638
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		goto fail;
	}

	leaf = path->nodes[0];
	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2639 2640
	btrfs_set_stack_block_group_used(&bgi, cache->used);
	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2641
			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2642
	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2643
	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2644 2645 2646 2647 2648 2649 2650
	btrfs_mark_buffer_dirty(leaf);
fail:
	btrfs_release_path(path);
	return ret;

}

2651
static int cache_save_setup(struct btrfs_block_group *block_group,
2652 2653 2654 2655 2656 2657 2658 2659 2660
			    struct btrfs_trans_handle *trans,
			    struct btrfs_path *path)
{
	struct btrfs_fs_info *fs_info = block_group->fs_info;
	struct btrfs_root *root = fs_info->tree_root;
	struct inode *inode = NULL;
	struct extent_changeset *data_reserved = NULL;
	u64 alloc_hint = 0;
	int dcs = BTRFS_DC_ERROR;
2661
	u64 cache_size = 0;
2662 2663 2664
	int retries = 0;
	int ret = 0;

2665 2666 2667
	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
		return 0;

2668 2669 2670 2671
	/*
	 * If this block group is smaller than 100 megs don't bother caching the
	 * block group.
	 */
2672
	if (block_group->length < (100 * SZ_1M)) {
2673 2674 2675 2676 2677 2678
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		spin_unlock(&block_group->lock);
		return 0;
	}

2679
	if (TRANS_ABORTED(trans))
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		return 0;
again:
	inode = lookup_free_space_inode(block_group, path);
	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
		ret = PTR_ERR(inode);
		btrfs_release_path(path);
		goto out;
	}

	if (IS_ERR(inode)) {
		BUG_ON(retries);
		retries++;

		if (block_group->ro)
			goto out_free;

		ret = create_free_space_inode(trans, block_group, path);
		if (ret)
			goto out_free;
		goto again;
	}

	/*
	 * We want to set the generation to 0, that way if anything goes wrong
	 * from here on out we know not to trust this cache when we load up next
	 * time.
	 */
	BTRFS_I(inode)->generation = 0;
2708
	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	if (ret) {
		/*
		 * So theoretically we could recover from this, simply set the
		 * super cache generation to 0 so we know to invalidate the
		 * cache, but then we'd have to keep track of the block groups
		 * that fail this way so we know we _have_ to reset this cache
		 * before the next commit or risk reading stale cache.  So to
		 * limit our exposure to horrible edge cases lets just abort the
		 * transaction, this only happens in really bad situations
		 * anyway.
		 */
		btrfs_abort_transaction(trans, ret);
		goto out_put;
	}
	WARN_ON(ret);

	/* We've already setup this transaction, go ahead and exit */
	if (block_group->cache_generation == trans->transid &&
	    i_size_read(inode)) {
		dcs = BTRFS_DC_SETUP;
		goto out_put;
	}

	if (i_size_read(inode) > 0) {
		ret = btrfs_check_trunc_cache_free_space(fs_info,
					&fs_info->global_block_rsv);
		if (ret)
			goto out_put;

		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
		if (ret)
			goto out_put;
	}

	spin_lock(&block_group->lock);
	if (block_group->cached != BTRFS_CACHE_FINISHED ||
	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
		/*
		 * don't bother trying to write stuff out _if_
		 * a) we're not cached,
		 * b) we're with nospace_cache mount option,
		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
		 */
		dcs = BTRFS_DC_WRITTEN;
		spin_unlock(&block_group->lock);
		goto out_put;
	}
	spin_unlock(&block_group->lock);

	/*
	 * We hit an ENOSPC when setting up the cache in this transaction, just
	 * skip doing the setup, we've already cleared the cache so we're safe.
	 */
	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
		ret = -ENOSPC;
		goto out_put;
	}

	/*
	 * Try to preallocate enough space based on how big the block group is.
	 * Keep in mind this has to include any pinned space which could end up
	 * taking up quite a bit since it's not folded into the other space
	 * cache.
	 */
2773 2774 2775
	cache_size = div_u64(block_group->length, SZ_256M);
	if (!cache_size)
		cache_size = 1;
2776

2777 2778
	cache_size *= 16;
	cache_size *= fs_info->sectorsize;
2779

2780
	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2781
					  cache_size);
2782 2783 2784
	if (ret)
		goto out_put;

2785 2786
	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
					      cache_size, cache_size,
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
					      &alloc_hint);
	/*
	 * Our cache requires contiguous chunks so that we don't modify a bunch
	 * of metadata or split extents when writing the cache out, which means
	 * we can enospc if we are heavily fragmented in addition to just normal
	 * out of space conditions.  So if we hit this just skip setting up any
	 * other block groups for this transaction, maybe we'll unpin enough
	 * space the next time around.
	 */
	if (!ret)
		dcs = BTRFS_DC_SETUP;
	else if (ret == -ENOSPC)
		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);

out_put:
	iput(inode);
out_free:
	btrfs_release_path(path);
out:
	spin_lock(&block_group->lock);
	if (!ret && dcs == BTRFS_DC_SETUP)
		block_group->cache_generation = trans->transid;
	block_group->disk_cache_state = dcs;
	spin_unlock(&block_group->lock);

	extent_changeset_free(data_reserved);
	return ret;
}

int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
2819
	struct btrfs_block_group *cache, *tmp;
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	struct btrfs_transaction *cur_trans = trans->transaction;
	struct btrfs_path *path;

	if (list_empty(&cur_trans->dirty_bgs) ||
	    !btrfs_test_opt(fs_info, SPACE_CACHE))
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/* Could add new block groups, use _safe just in case */
	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
				 dirty_list) {
		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
			cache_save_setup(cache, trans, path);
	}

	btrfs_free_path(path);
	return 0;
}

/*
 * Transaction commit does final block group cache writeback during a critical
 * section where nothing is allowed to change the FS.  This is required in
 * order for the cache to actually match the block group, but can introduce a
 * lot of latency into the commit.
 *
 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
 * There's a chance we'll have to redo some of it if the block group changes
 * again during the commit, but it greatly reduces the commit latency by
 * getting rid of the easy block groups while we're still allowing others to
 * join the commit.
 */
int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
2857
	struct btrfs_block_group *cache;
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	struct btrfs_transaction *cur_trans = trans->transaction;
	int ret = 0;
	int should_put;
	struct btrfs_path *path = NULL;
	LIST_HEAD(dirty);
	struct list_head *io = &cur_trans->io_bgs;
	int num_started = 0;
	int loops = 0;

	spin_lock(&cur_trans->dirty_bgs_lock);
	if (list_empty(&cur_trans->dirty_bgs)) {
		spin_unlock(&cur_trans->dirty_bgs_lock);
		return 0;
	}
	list_splice_init(&cur_trans->dirty_bgs, &dirty);
	spin_unlock(&cur_trans->dirty_bgs_lock);

again:
	/* Make sure all the block groups on our dirty list actually exist */
	btrfs_create_pending_block_groups(trans);

	if (!path) {
		path = btrfs_alloc_path();
2881 2882 2883 2884
		if (!path) {
			ret = -ENOMEM;
			goto out;
		}
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	}

	/*
	 * cache_write_mutex is here only to save us from balance or automatic
	 * removal of empty block groups deleting this block group while we are
	 * writing out the cache
	 */
	mutex_lock(&trans->transaction->cache_write_mutex);
	while (!list_empty(&dirty)) {
		bool drop_reserve = true;

2896
		cache = list_first_entry(&dirty, struct btrfs_block_group,
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
					 dirty_list);
		/*
		 * This can happen if something re-dirties a block group that
		 * is already under IO.  Just wait for it to finish and then do
		 * it all again
		 */
		if (!list_empty(&cache->io_list)) {
			list_del_init(&cache->io_list);
			btrfs_wait_cache_io(trans, cache, path);
			btrfs_put_block_group(cache);
		}


		/*
		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
		 * it should update the cache_state.  Don't delete until after
		 * we wait.
		 *
		 * Since we're not running in the commit critical section
		 * we need the dirty_bgs_lock to protect from update_block_group
		 */
		spin_lock(&cur_trans->dirty_bgs_lock);
		list_del_init(&cache->dirty_list);
		spin_unlock(&cur_trans->dirty_bgs_lock);

		should_put = 1;

		cache_save_setup(cache, trans, path);

		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
			cache->io_ctl.inode = NULL;
			ret = btrfs_write_out_cache(trans, cache, path);
			if (ret == 0 && cache->io_ctl.inode) {
				num_started++;
				should_put = 0;

				/*
				 * The cache_write_mutex is protecting the
				 * io_list, also refer to the definition of
				 * btrfs_transaction::io_bgs for more details
				 */
				list_add_tail(&cache->io_list, io);
			} else {
				/*
				 * If we failed to write the cache, the
				 * generation will be bad and life goes on
				 */
				ret = 0;
			}
		}
		if (!ret) {
2948
			ret = update_block_group_item(trans, path, cache);
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
			/*
			 * Our block group might still be attached to the list
			 * of new block groups in the transaction handle of some
			 * other task (struct btrfs_trans_handle->new_bgs). This
			 * means its block group item isn't yet in the extent
			 * tree. If this happens ignore the error, as we will
			 * try again later in the critical section of the
			 * transaction commit.
			 */
			if (ret == -ENOENT) {
				ret = 0;
				spin_lock(&cur_trans->dirty_bgs_lock);
				if (list_empty(&cache->dirty_list)) {
					list_add_tail(&cache->dirty_list,
						      &cur_trans->dirty_bgs);
					btrfs_get_block_group(cache);
					drop_reserve = false;
				}
				spin_unlock(&cur_trans->dirty_bgs_lock);
			} else if (ret) {
				btrfs_abort_transaction(trans, ret);
			}
		}

		/* If it's not on the io list, we need to put the block group */
		if (should_put)
			btrfs_put_block_group(cache);
		if (drop_reserve)
			btrfs_delayed_refs_rsv_release(fs_info, 1);
		/*
		 * Avoid blocking other tasks for too long. It might even save
		 * us from writing caches for block groups that are going to be
		 * removed.
		 */
		mutex_unlock(&trans->transaction->cache_write_mutex);
2984 2985
		if (ret)
			goto out;
2986 2987 2988 2989 2990 2991 2992 2993
		mutex_lock(&trans->transaction->cache_write_mutex);
	}
	mutex_unlock(&trans->transaction->cache_write_mutex);

	/*
	 * Go through delayed refs for all the stuff we've just kicked off
	 * and then loop back (just once)
	 */
2994 2995
	if (!ret)
		ret = btrfs_run_delayed_refs(trans, 0);
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
	if (!ret && loops == 0) {
		loops++;
		spin_lock(&cur_trans->dirty_bgs_lock);
		list_splice_init(&cur_trans->dirty_bgs, &dirty);
		/*
		 * dirty_bgs_lock protects us from concurrent block group
		 * deletes too (not just cache_write_mutex).
		 */
		if (!list_empty(&dirty)) {
			spin_unlock(&cur_trans->dirty_bgs_lock);
			goto again;
		}
		spin_unlock(&cur_trans->dirty_bgs_lock);
3009 3010 3011 3012 3013 3014
	}
out:
	if (ret < 0) {
		spin_lock(&cur_trans->dirty_bgs_lock);
		list_splice_init(&dirty, &cur_trans->dirty_bgs);
		spin_unlock(&cur_trans->dirty_bgs_lock);
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
	}

	btrfs_free_path(path);
	return ret;
}

int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
3025
	struct btrfs_block_group *cache;
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	struct btrfs_transaction *cur_trans = trans->transaction;
	int ret = 0;
	int should_put;
	struct btrfs_path *path;
	struct list_head *io = &cur_trans->io_bgs;
	int num_started = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/*
	 * Even though we are in the critical section of the transaction commit,
	 * we can still have concurrent tasks adding elements to this
	 * transaction's list of dirty block groups. These tasks correspond to
	 * endio free space workers started when writeback finishes for a
	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
	 * allocate new block groups as a result of COWing nodes of the root
	 * tree when updating the free space inode. The writeback for the space
	 * caches is triggered by an earlier call to
	 * btrfs_start_dirty_block_groups() and iterations of the following
	 * loop.
	 * Also we want to do the cache_save_setup first and then run the
	 * delayed refs to make sure we have the best chance at doing this all
	 * in one shot.
	 */
	spin_lock(&cur_trans->dirty_bgs_lock);
	while (!list_empty(&cur_trans->dirty_bgs)) {
		cache = list_first_entry(&cur_trans->dirty_bgs,
3055
					 struct btrfs_block_group,
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
					 dirty_list);

		/*
		 * This can happen if cache_save_setup re-dirties a block group
		 * that is already under IO.  Just wait for it to finish and
		 * then do it all again
		 */
		if (!list_empty(&cache->io_list)) {
			spin_unlock(&cur_trans->dirty_bgs_lock);
			list_del_init(&cache->io_list);
			btrfs_wait_cache_io(trans, cache, path);
			btrfs_put_block_group(cache);
			spin_lock(&cur_trans->dirty_bgs_lock);
		}

		/*
		 * Don't remove from the dirty list until after we've waited on
		 * any pending IO
		 */
		list_del_init(&cache->dirty_list);
		spin_unlock(&cur_trans->dirty_bgs_lock);
		should_put = 1;

		cache_save_setup(cache, trans, path);

		if (!ret)
			ret = btrfs_run_delayed_refs(trans,
						     (unsigned long) -1);

		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
			cache->io_ctl.inode = NULL;
			ret = btrfs_write_out_cache(trans, cache, path);
			if (ret == 0 && cache->io_ctl.inode) {
				num_started++;
				should_put = 0;
				list_add_tail(&cache->io_list, io);
			} else {
				/*
				 * If we failed to write the cache, the
				 * generation will be bad and life goes on
				 */
				ret = 0;
			}
		}
		if (!ret) {
3101
			ret = update_block_group_item(trans, path, cache);
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
			/*
			 * One of the free space endio workers might have
			 * created a new block group while updating a free space
			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
			 * and hasn't released its transaction handle yet, in
			 * which case the new block group is still attached to
			 * its transaction handle and its creation has not
			 * finished yet (no block group item in the extent tree
			 * yet, etc). If this is the case, wait for all free
			 * space endio workers to finish and retry. This is a
3112
			 * very rare case so no need for a more efficient and
3113 3114 3115 3116 3117
			 * complex approach.
			 */
			if (ret == -ENOENT) {
				wait_event(cur_trans->writer_wait,
				   atomic_read(&cur_trans->num_writers) == 1);
3118
				ret = update_block_group_item(trans, path, cache);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
			}
			if (ret)
				btrfs_abort_transaction(trans, ret);
		}

		/* If its not on the io list, we need to put the block group */
		if (should_put)
			btrfs_put_block_group(cache);
		btrfs_delayed_refs_rsv_release(fs_info, 1);
		spin_lock(&cur_trans->dirty_bgs_lock);
	}
	spin_unlock(&cur_trans->dirty_bgs_lock);

	/*
	 * Refer to the definition of io_bgs member for details why it's safe
	 * to use it without any locking
	 */
	while (!list_empty(io)) {
3137
		cache = list_first_entry(io, struct btrfs_block_group,
3138 3139 3140 3141 3142 3143 3144 3145 3146
					 io_list);
		list_del_init(&cache->io_list);
		btrfs_wait_cache_io(trans, cache, path);
		btrfs_put_block_group(cache);
	}

	btrfs_free_path(path);
	return ret;
}
3147 3148 3149 3150 3151

int btrfs_update_block_group(struct btrfs_trans_handle *trans,
			     u64 bytenr, u64 num_bytes, int alloc)
{
	struct btrfs_fs_info *info = trans->fs_info;
3152
	struct btrfs_block_group *cache = NULL;
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
	u64 total = num_bytes;
	u64 old_val;
	u64 byte_in_group;
	int factor;
	int ret = 0;

	/* Block accounting for super block */
	spin_lock(&info->delalloc_root_lock);
	old_val = btrfs_super_bytes_used(info->super_copy);
	if (alloc)
		old_val += num_bytes;
	else
		old_val -= num_bytes;
	btrfs_set_super_bytes_used(info->super_copy, old_val);
	spin_unlock(&info->delalloc_root_lock);

	while (total) {
		cache = btrfs_lookup_block_group(info, bytenr);
		if (!cache) {
			ret = -ENOENT;
			break;
		}
		factor = btrfs_bg_type_to_factor(cache->flags);

		/*
		 * If this block group has free space cache written out, we
		 * need to make sure to load it if we are removing space.  This
		 * is because we need the unpinning stage to actually add the
		 * space back to the block group, otherwise we will leak space.
		 */
3183
		if (!alloc && !btrfs_block_group_done(cache))
3184 3185
			btrfs_cache_block_group(cache, 1);

3186 3187
		byte_in_group = bytenr - cache->start;
		WARN_ON(byte_in_group > cache->length);
3188 3189 3190 3191 3192 3193 3194 3195

		spin_lock(&cache->space_info->lock);
		spin_lock(&cache->lock);

		if (btrfs_test_opt(info, SPACE_CACHE) &&
		    cache->disk_cache_state < BTRFS_DC_CLEAR)
			cache->disk_cache_state = BTRFS_DC_CLEAR;

3196
		old_val = cache->used;
3197
		num_bytes = min(total, cache->length - byte_in_group);
3198 3199
		if (alloc) {
			old_val += num_bytes;
3200
			cache->used = old_val;
3201 3202 3203 3204 3205 3206 3207 3208
			cache->reserved -= num_bytes;
			cache->space_info->bytes_reserved -= num_bytes;
			cache->space_info->bytes_used += num_bytes;
			cache->space_info->disk_used += num_bytes * factor;
			spin_unlock(&cache->lock);
			spin_unlock(&cache->space_info->lock);
		} else {
			old_val -= num_bytes;
3209
			cache->used = old_val;
3210 3211 3212 3213 3214 3215 3216 3217
			cache->pinned += num_bytes;
			btrfs_space_info_update_bytes_pinned(info,
					cache->space_info, num_bytes);
			cache->space_info->bytes_used -= num_bytes;
			cache->space_info->disk_used -= num_bytes * factor;
			spin_unlock(&cache->lock);
			spin_unlock(&cache->space_info->lock);

3218
			set_extent_dirty(&trans->transaction->pinned_extents,
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
					 bytenr, bytenr + num_bytes - 1,
					 GFP_NOFS | __GFP_NOFAIL);
		}

		spin_lock(&trans->transaction->dirty_bgs_lock);
		if (list_empty(&cache->dirty_list)) {
			list_add_tail(&cache->dirty_list,
				      &trans->transaction->dirty_bgs);
			trans->delayed_ref_updates++;
			btrfs_get_block_group(cache);
		}
		spin_unlock(&trans->transaction->dirty_bgs_lock);

		/*
		 * No longer have used bytes in this block group, queue it for
		 * deletion. We do this after adding the block group to the
		 * dirty list to avoid races between cleaner kthread and space
		 * cache writeout.
		 */
3238 3239 3240 3241
		if (!alloc && old_val == 0) {
			if (!btrfs_test_opt(info, DISCARD_ASYNC))
				btrfs_mark_bg_unused(cache);
		}
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

		btrfs_put_block_group(cache);
		total -= num_bytes;
		bytenr += num_bytes;
	}

	/* Modified block groups are accounted for in the delayed_refs_rsv. */
	btrfs_update_delayed_refs_rsv(trans);
	return ret;
}

/**
 * btrfs_add_reserved_bytes - update the block_group and space info counters
 * @cache:	The cache we are manipulating
 * @ram_bytes:  The number of bytes of file content, and will be same to
 *              @num_bytes except for the compress path.
 * @num_bytes:	The number of bytes in question
 * @delalloc:   The blocks are allocated for the delalloc write
 *
 * This is called by the allocator when it reserves space. If this is a
 * reservation and the block group has become read only we cannot make the
 * reservation and return -EAGAIN, otherwise this function always succeeds.
 */
3265
int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
			     u64 ram_bytes, u64 num_bytes, int delalloc)
{
	struct btrfs_space_info *space_info = cache->space_info;
	int ret = 0;

	spin_lock(&space_info->lock);
	spin_lock(&cache->lock);
	if (cache->ro) {
		ret = -EAGAIN;
	} else {
		cache->reserved += num_bytes;
		space_info->bytes_reserved += num_bytes;
3278 3279
		trace_btrfs_space_reservation(cache->fs_info, "space_info",
					      space_info->flags, num_bytes, 1);
3280 3281 3282 3283
		btrfs_space_info_update_bytes_may_use(cache->fs_info,
						      space_info, -ram_bytes);
		if (delalloc)
			cache->delalloc_bytes += num_bytes;
3284 3285 3286 3287 3288 3289 3290

		/*
		 * Compression can use less space than we reserved, so wake
		 * tickets if that happens
		 */
		if (num_bytes < ram_bytes)
			btrfs_try_granting_tickets(cache->fs_info, space_info);
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	}
	spin_unlock(&cache->lock);
	spin_unlock(&space_info->lock);
	return ret;
}

/**
 * btrfs_free_reserved_bytes - update the block_group and space info counters
 * @cache:      The cache we are manipulating
 * @num_bytes:  The number of bytes in question
 * @delalloc:   The blocks are allocated for the delalloc write
 *
 * This is called by somebody who is freeing space that was never actually used
 * on disk.  For example if you reserve some space for a new leaf in transaction
 * A and before transaction A commits you free that leaf, you call this with
 * reserve set to 0 in order to clear the reservation.
 */
3308
void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
			       u64 num_bytes, int delalloc)
{
	struct btrfs_space_info *space_info = cache->space_info;

	spin_lock(&space_info->lock);
	spin_lock(&cache->lock);
	if (cache->ro)
		space_info->bytes_readonly += num_bytes;
	cache->reserved -= num_bytes;
	space_info->bytes_reserved -= num_bytes;
	space_info->max_extent_size = 0;

	if (delalloc)
		cache->delalloc_bytes -= num_bytes;
	spin_unlock(&cache->lock);
3324 3325

	btrfs_try_granting_tickets(cache->fs_info, space_info);
3326 3327
	spin_unlock(&space_info->lock);
}
3328 3329 3330 3331 3332 3333

static void force_metadata_allocation(struct btrfs_fs_info *info)
{
	struct list_head *head = &info->space_info;
	struct btrfs_space_info *found;

3334
	list_for_each_entry(found, head, list) {
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
			found->force_alloc = CHUNK_ALLOC_FORCE;
	}
}

static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
			      struct btrfs_space_info *sinfo, int force)
{
	u64 bytes_used = btrfs_space_info_used(sinfo, false);
	u64 thresh;

	if (force == CHUNK_ALLOC_FORCE)
		return 1;

	/*
	 * in limited mode, we want to have some free space up to
	 * about 1% of the FS size.
	 */
	if (force == CHUNK_ALLOC_LIMITED) {
		thresh = btrfs_super_total_bytes(fs_info->super_copy);
		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));

		if (sinfo->total_bytes - bytes_used < thresh)
			return 1;
	}

	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
		return 0;
	return 1;
}

int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
{
	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);

	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
}

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
{
	struct btrfs_block_group *bg;
	int ret;

	/*
	 * Check if we have enough space in the system space info because we
	 * will need to update device items in the chunk btree and insert a new
	 * chunk item in the chunk btree as well. This will allocate a new
	 * system block group if needed.
	 */
	check_system_chunk(trans, flags);

3386
	bg = btrfs_create_chunk(trans, flags);
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	if (IS_ERR(bg)) {
		ret = PTR_ERR(bg);
		goto out;
	}

	/*
	 * If this is a system chunk allocation then stop right here and do not
	 * add the chunk item to the chunk btree. This is to prevent a deadlock
	 * because this system chunk allocation can be triggered while COWing
	 * some extent buffer of the chunk btree and while holding a lock on a
	 * parent extent buffer, in which case attempting to insert the chunk
	 * item (or update the device item) would result in a deadlock on that
	 * parent extent buffer. In this case defer the chunk btree updates to
	 * the second phase of chunk allocation and keep our reservation until
	 * the second phase completes.
	 *
	 * This is a rare case and can only be triggered by the very few cases
	 * we have where we need to touch the chunk btree outside chunk allocation
	 * and chunk removal. These cases are basically adding a device, removing
	 * a device or resizing a device.
	 */
	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
		return 0;

	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
	/*
	 * Normally we are not expected to fail with -ENOSPC here, since we have
	 * previously reserved space in the system space_info and allocated one
	 * new system chunk if necessary. However there are two exceptions:
	 *
	 * 1) We may have enough free space in the system space_info but all the
	 *    existing system block groups have a profile which can not be used
	 *    for extent allocation.
	 *
	 *    This happens when mounting in degraded mode. For example we have a
	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
	 *    using the other device in degraded mode. If we then allocate a chunk,
	 *    we may have enough free space in the existing system space_info, but
	 *    none of the block groups can be used for extent allocation since they
	 *    have a RAID1 profile, and because we are in degraded mode with a
	 *    single device, we are forced to allocate a new system chunk with a
	 *    SINGLE profile. Making check_system_chunk() iterate over all system
	 *    block groups and check if they have a usable profile and enough space
	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
	 *    try again after forcing allocation of a new system chunk. Like this
	 *    we avoid paying the cost of that search in normal circumstances, when
	 *    we were not mounted in degraded mode;
	 *
	 * 2) We had enough free space info the system space_info, and one suitable
	 *    block group to allocate from when we called check_system_chunk()
	 *    above. However right after we called it, the only system block group
	 *    with enough free space got turned into RO mode by a running scrub,
	 *    and in this case we have to allocate a new one and retry. We only
	 *    need do this allocate and retry once, since we have a transaction
	 *    handle and scrub uses the commit root to search for block groups.
	 */
	if (ret == -ENOSPC) {
		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
		struct btrfs_block_group *sys_bg;

3447
		sys_bg = btrfs_create_chunk(trans, sys_flags);
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
		if (IS_ERR(sys_bg)) {
			ret = PTR_ERR(sys_bg);
			btrfs_abort_transaction(trans, ret);
			goto out;
		}

		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
		if (ret) {
			btrfs_abort_transaction(trans, ret);
			goto out;
		}

		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
		if (ret) {
			btrfs_abort_transaction(trans, ret);
			goto out;
		}
	} else if (ret) {
		btrfs_abort_transaction(trans, ret);
		goto out;
	}
out:
	btrfs_trans_release_chunk_metadata(trans);

	return ret;
}

3475
/*
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
 * Chunk allocation is done in 2 phases:
 *
 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
 *    the chunk, the chunk mapping, create its block group and add the items
 *    that belong in the chunk btree to it - more specifically, we need to
 *    update device items in the chunk btree and add a new chunk item to it.
 *
 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
 *    group item to the extent btree and the device extent items to the devices
 *    btree.
 *
 * This is done to prevent deadlocks. For example when COWing a node from the
 * extent btree we are holding a write lock on the node's parent and if we
 * trigger chunk allocation and attempted to insert the new block group item
 * in the extent btree right way, we could deadlock because the path for the
 * insertion can include that parent node. At first glance it seems impossible
 * to trigger chunk allocation after starting a transaction since tasks should
 * reserve enough transaction units (metadata space), however while that is true
 * most of the time, chunk allocation may still be triggered for several reasons:
 *
 * 1) When reserving metadata, we check if there is enough free space in the
 *    metadata space_info and therefore don't trigger allocation of a new chunk.
 *    However later when the task actually tries to COW an extent buffer from
 *    the extent btree or from the device btree for example, it is forced to
 *    allocate a new block group (chunk) because the only one that had enough
 *    free space was just turned to RO mode by a running scrub for example (or
 *    device replace, block group reclaim thread, etc), so we can not use it
 *    for allocating an extent and end up being forced to allocate a new one;
 *
 * 2) Because we only check that the metadata space_info has enough free bytes,
 *    we end up not allocating a new metadata chunk in that case. However if
 *    the filesystem was mounted in degraded mode, none of the existing block
 *    groups might be suitable for extent allocation due to their incompatible
 *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
 *    use a RAID1 profile, in degraded mode using a single device). In this case
 *    when the task attempts to COW some extent buffer of the extent btree for
 *    example, it will trigger allocation of a new metadata block group with a
 *    suitable profile (SINGLE profile in the example of the degraded mount of
 *    the RAID1 filesystem);
 *
 * 3) The task has reserved enough transaction units / metadata space, but when
 *    it attempts to COW an extent buffer from the extent or device btree for
 *    example, it does not find any free extent in any metadata block group,
 *    therefore forced to try to allocate a new metadata block group.
 *    This is because some other task allocated all available extents in the
 *    meanwhile - this typically happens with tasks that don't reserve space
 *    properly, either intentionally or as a bug. One example where this is
 *    done intentionally is fsync, as it does not reserve any transaction units
 *    and ends up allocating a variable number of metadata extents for log
 *    tree extent buffers.
 *
 * We also need this 2 phases setup when adding a device to a filesystem with
 * a seed device - we must create new metadata and system chunks without adding
 * any of the block group items to the chunk, extent and device btrees. If we
 * did not do it this way, we would get ENOSPC when attempting to update those
 * btrees, since all the chunks from the seed device are read-only.
 *
 * Phase 1 does the updates and insertions to the chunk btree because if we had
 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
 * parallel, we risk having too many system chunks allocated by many tasks if
 * many tasks reach phase 1 without the previous ones completing phase 2. In the
 * extreme case this leads to exhaustion of the system chunk array in the
 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
 * and with RAID filesystems (so we have more device items in the chunk btree).
 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
 * the system chunk array due to concurrent allocations") provides more details.
 *
 * For allocation of system chunks, we defer the updates and insertions into the
 * chunk btree to phase 2. This is to prevent deadlocks on extent buffers because
 * if the chunk allocation is triggered while COWing an extent buffer of the
 * chunk btree, we are holding a lock on the parent of that extent buffer and
 * doing the chunk btree updates and insertions can require locking that parent.
 * This is for the very few and rare cases where we update the chunk btree that
 * are not chunk allocation or chunk removal: adding a device, removing a device
 * or resizing a device.
 *
 * The reservation of system space, done through check_system_chunk(), as well
 * as all the updates and insertions into the chunk btree must be done while
 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
 * an extent buffer from the chunks btree we never trigger allocation of a new
 * system chunk, which would result in a deadlock (trying to lock twice an
 * extent buffer of the chunk btree, first time before triggering the chunk
 * allocation and the second time during chunk allocation while attempting to
 * update the chunks btree). The system chunk array is also updated while holding
 * that mutex. The same logic applies to removing chunks - we must reserve system
 * space, update the chunk btree and the system chunk array in the superblock
 * while holding fs_info->chunk_mutex.
 *
 * This function, btrfs_chunk_alloc(), belongs to phase 1.
 *
 * If @force is CHUNK_ALLOC_FORCE:
3567 3568
 *    - return 1 if it successfully allocates a chunk,
 *    - return errors including -ENOSPC otherwise.
3569
 * If @force is NOT CHUNK_ALLOC_FORCE:
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
 *    - return 0 if it doesn't need to allocate a new chunk,
 *    - return 1 if it successfully allocates a chunk,
 *    - return errors including -ENOSPC otherwise.
 */
int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
		      enum btrfs_chunk_alloc_enum force)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_space_info *space_info;
	bool wait_for_alloc = false;
	bool should_alloc = false;
	int ret = 0;

	/* Don't re-enter if we're already allocating a chunk */
	if (trans->allocating_chunk)
		return -ENOSPC;
3586 3587 3588 3589 3590 3591 3592
	/*
	 * If we are removing a chunk, don't re-enter or we would deadlock.
	 * System space reservation and system chunk allocation is done by the
	 * chunk remove operation (btrfs_remove_chunk()).
	 */
	if (trans->removing_chunk)
		return -ENOSPC;
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655

	space_info = btrfs_find_space_info(fs_info, flags);
	ASSERT(space_info);

	do {
		spin_lock(&space_info->lock);
		if (force < space_info->force_alloc)
			force = space_info->force_alloc;
		should_alloc = should_alloc_chunk(fs_info, space_info, force);
		if (space_info->full) {
			/* No more free physical space */
			if (should_alloc)
				ret = -ENOSPC;
			else
				ret = 0;
			spin_unlock(&space_info->lock);
			return ret;
		} else if (!should_alloc) {
			spin_unlock(&space_info->lock);
			return 0;
		} else if (space_info->chunk_alloc) {
			/*
			 * Someone is already allocating, so we need to block
			 * until this someone is finished and then loop to
			 * recheck if we should continue with our allocation
			 * attempt.
			 */
			wait_for_alloc = true;
			spin_unlock(&space_info->lock);
			mutex_lock(&fs_info->chunk_mutex);
			mutex_unlock(&fs_info->chunk_mutex);
		} else {
			/* Proceed with allocation */
			space_info->chunk_alloc = 1;
			wait_for_alloc = false;
			spin_unlock(&space_info->lock);
		}

		cond_resched();
	} while (wait_for_alloc);

	mutex_lock(&fs_info->chunk_mutex);
	trans->allocating_chunk = true;

	/*
	 * If we have mixed data/metadata chunks we want to make sure we keep
	 * allocating mixed chunks instead of individual chunks.
	 */
	if (btrfs_mixed_space_info(space_info))
		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);

	/*
	 * if we're doing a data chunk, go ahead and make sure that
	 * we keep a reasonable number of metadata chunks allocated in the
	 * FS as well.
	 */
	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
		fs_info->data_chunk_allocations++;
		if (!(fs_info->data_chunk_allocations %
		      fs_info->metadata_ratio))
			force_metadata_allocation(fs_info);
	}

3656
	ret = do_chunk_alloc(trans, flags);
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
	trans->allocating_chunk = false;

	spin_lock(&space_info->lock);
	if (ret < 0) {
		if (ret == -ENOSPC)
			space_info->full = 1;
		else
			goto out;
	} else {
		ret = 1;
		space_info->max_extent_size = 0;
	}

	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
out:
	space_info->chunk_alloc = 0;
	spin_unlock(&space_info->lock);
	mutex_unlock(&fs_info->chunk_mutex);

	return ret;
}

static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
{
	u64 num_dev;

	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
	if (!num_dev)
		num_dev = fs_info->fs_devices->rw_devices;

	return num_dev;
}

/*
3691
 * Reserve space in the system space for allocating or removing a chunk
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
 */
void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_space_info *info;
	u64 left;
	u64 thresh;
	int ret = 0;
	u64 num_devs;

	/*
	 * Needed because we can end up allocating a system chunk and for an
	 * atomic and race free space reservation in the chunk block reserve.
	 */
	lockdep_assert_held(&fs_info->chunk_mutex);

	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
	spin_lock(&info->lock);
	left = info->total_bytes - btrfs_space_info_used(info, true);
	spin_unlock(&info->lock);

	num_devs = get_profile_num_devs(fs_info, type);

	/* num_devs device items to update and 1 chunk item to add or remove */
3716 3717
	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
		btrfs_calc_insert_metadata_size(fs_info, 1);
3718 3719 3720 3721 3722 3723 3724 3725 3726

	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
			   left, thresh, type);
		btrfs_dump_space_info(fs_info, info, 0, 0);
	}

	if (left < thresh) {
		u64 flags = btrfs_system_alloc_profile(fs_info);
3727
		struct btrfs_block_group *bg;
3728 3729 3730 3731 3732 3733

		/*
		 * Ignore failure to create system chunk. We might end up not
		 * needing it, as we might not need to COW all nodes/leafs from
		 * the paths we visit in the chunk tree (they were already COWed
		 * or created in the current transaction for example).
3734 3735 3736 3737 3738
		 *
		 * Also, if our caller is allocating a system chunk, do not
		 * attempt to insert the chunk item in the chunk btree, as we
		 * could deadlock on an extent buffer since our caller may be
		 * COWing an extent buffer from the chunk btree.
3739
		 */
3740
		bg = btrfs_create_chunk(trans, flags);
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
		if (IS_ERR(bg)) {
			ret = PTR_ERR(bg);
		} else if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
			/*
			 * If we fail to add the chunk item here, we end up
			 * trying again at phase 2 of chunk allocation, at
			 * btrfs_create_pending_block_groups(). So ignore
			 * any error here.
			 */
			btrfs_chunk_alloc_add_chunk_item(trans, bg);
		}
3752 3753 3754 3755 3756 3757
	}

	if (!ret) {
		ret = btrfs_block_rsv_add(fs_info->chunk_root,
					  &fs_info->chunk_block_rsv,
					  thresh, BTRFS_RESERVE_NO_FLUSH);
3758
		if (!ret)
3759 3760 3761 3762
			trans->chunk_bytes_reserved += thresh;
	}
}

3763 3764
void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
{
3765
	struct btrfs_block_group *block_group;
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
	u64 last = 0;

	while (1) {
		struct inode *inode;

		block_group = btrfs_lookup_first_block_group(info, last);
		while (block_group) {
			btrfs_wait_block_group_cache_done(block_group);
			spin_lock(&block_group->lock);
			if (block_group->iref)
				break;
			spin_unlock(&block_group->lock);
			block_group = btrfs_next_block_group(block_group);
		}
		if (!block_group) {
			if (last == 0)
				break;
			last = 0;
			continue;
		}

		inode = block_group->inode;
		block_group->iref = 0;
		block_group->inode = NULL;
		spin_unlock(&block_group->lock);
		ASSERT(block_group->io_ctl.inode == NULL);
		iput(inode);
3793
		last = block_group->start + block_group->length;
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
		btrfs_put_block_group(block_group);
	}
}

/*
 * Must be called only after stopping all workers, since we could have block
 * group caching kthreads running, and therefore they could race with us if we
 * freed the block groups before stopping them.
 */
int btrfs_free_block_groups(struct btrfs_fs_info *info)
{
3805
	struct btrfs_block_group *block_group;
3806 3807 3808 3809
	struct btrfs_space_info *space_info;
	struct btrfs_caching_control *caching_ctl;
	struct rb_node *n;

3810
	spin_lock(&info->block_group_cache_lock);
3811 3812 3813 3814 3815 3816
	while (!list_empty(&info->caching_block_groups)) {
		caching_ctl = list_entry(info->caching_block_groups.next,
					 struct btrfs_caching_control, list);
		list_del(&caching_ctl->list);
		btrfs_put_caching_control(caching_ctl);
	}
3817
	spin_unlock(&info->block_group_cache_lock);
3818 3819 3820 3821

	spin_lock(&info->unused_bgs_lock);
	while (!list_empty(&info->unused_bgs)) {
		block_group = list_first_entry(&info->unused_bgs,
3822
					       struct btrfs_block_group,
3823 3824 3825 3826 3827 3828
					       bg_list);
		list_del_init(&block_group->bg_list);
		btrfs_put_block_group(block_group);
	}
	spin_unlock(&info->unused_bgs_lock);

3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	spin_lock(&info->unused_bgs_lock);
	while (!list_empty(&info->reclaim_bgs)) {
		block_group = list_first_entry(&info->reclaim_bgs,
					       struct btrfs_block_group,
					       bg_list);
		list_del_init(&block_group->bg_list);
		btrfs_put_block_group(block_group);
	}
	spin_unlock(&info->unused_bgs_lock);

3839 3840
	spin_lock(&info->block_group_cache_lock);
	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3841
		block_group = rb_entry(n, struct btrfs_block_group,
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
				       cache_node);
		rb_erase(&block_group->cache_node,
			 &info->block_group_cache_tree);
		RB_CLEAR_NODE(&block_group->cache_node);
		spin_unlock(&info->block_group_cache_lock);

		down_write(&block_group->space_info->groups_sem);
		list_del(&block_group->list);
		up_write(&block_group->space_info->groups_sem);

		/*
		 * We haven't cached this block group, which means we could
		 * possibly have excluded extents on this block group.
		 */
		if (block_group->cached == BTRFS_CACHE_NO ||
		    block_group->cached == BTRFS_CACHE_ERROR)
			btrfs_free_excluded_extents(block_group);

		btrfs_remove_free_space_cache(block_group);
		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
		ASSERT(list_empty(&block_group->dirty_list));
		ASSERT(list_empty(&block_group->io_list));
		ASSERT(list_empty(&block_group->bg_list));
3865
		ASSERT(refcount_read(&block_group->refs) == 1);
3866
		ASSERT(block_group->swap_extents == 0);
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
		btrfs_put_block_group(block_group);

		spin_lock(&info->block_group_cache_lock);
	}
	spin_unlock(&info->block_group_cache_lock);

	btrfs_release_global_block_rsv(info);

	while (!list_empty(&info->space_info)) {
		space_info = list_entry(info->space_info.next,
					struct btrfs_space_info,
					list);

		/*
		 * Do not hide this behind enospc_debug, this is actually
		 * important and indicates a real bug if this happens.
		 */
		if (WARN_ON(space_info->bytes_pinned > 0 ||
			    space_info->bytes_reserved > 0 ||
			    space_info->bytes_may_use > 0))
			btrfs_dump_space_info(info, space_info, 0, 0);
3888
		WARN_ON(space_info->reclaim_size > 0);
3889 3890 3891 3892 3893
		list_del(&space_info->list);
		btrfs_sysfs_remove_space_info(space_info);
	}
	return 0;
}
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932

void btrfs_freeze_block_group(struct btrfs_block_group *cache)
{
	atomic_inc(&cache->frozen);
}

void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
{
	struct btrfs_fs_info *fs_info = block_group->fs_info;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	bool cleanup;

	spin_lock(&block_group->lock);
	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
		   block_group->removed);
	spin_unlock(&block_group->lock);

	if (cleanup) {
		em_tree = &fs_info->mapping_tree;
		write_lock(&em_tree->lock);
		em = lookup_extent_mapping(em_tree, block_group->start,
					   1);
		BUG_ON(!em); /* logic error, can't happen */
		remove_extent_mapping(em_tree, em);
		write_unlock(&em_tree->lock);

		/* once for us and once for the tree */
		free_extent_map(em);
		free_extent_map(em);

		/*
		 * We may have left one free space entry and other possible
		 * tasks trimming this block group have left 1 entry each one.
		 * Free them if any.
		 */
		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
	}
}
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955

bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
{
	bool ret = true;

	spin_lock(&bg->lock);
	if (bg->ro)
		ret = false;
	else
		bg->swap_extents++;
	spin_unlock(&bg->lock);

	return ret;
}

void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
{
	spin_lock(&bg->lock);
	ASSERT(!bg->ro);
	ASSERT(bg->swap_extents >= amount);
	bg->swap_extents -= amount;
	spin_unlock(&bg->lock);
}