volumes.c 204.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */
5

6
#include <linux/sched.h>
7
#include <linux/sched/mm.h>
8
#include <linux/bio.h>
9
#include <linux/slab.h>
10
#include <linux/blkdev.h>
11
#include <linux/ratelimit.h>
I
Ilya Dryomov 已提交
12
#include <linux/kthread.h>
D
David Woodhouse 已提交
13
#include <linux/raid/pq.h>
S
Stefan Behrens 已提交
14
#include <linux/semaphore.h>
15
#include <linux/uuid.h>
A
Anand Jain 已提交
16
#include <linux/list_sort.h>
17
#include "misc.h"
18 19 20 21 22 23
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
D
David Woodhouse 已提交
24
#include "raid56.h"
25
#include "async-thread.h"
26
#include "check-integrity.h"
27
#include "rcu-string.h"
28
#include "dev-replace.h"
29
#include "sysfs.h"
30
#include "tree-checker.h"
31
#include "space-info.h"
32
#include "block-group.h"
33
#include "discard.h"
34

Z
Zhao Lei 已提交
35 36 37 38 39 40
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = {
		.sub_stripes	= 2,
		.dev_stripes	= 1,
		.devs_max	= 0,	/* 0 == as many as possible */
		.devs_min	= 4,
41
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
42 43
		.devs_increment	= 2,
		.ncopies	= 2,
44
		.nparity        = 0,
45
		.raid_name	= "raid10",
46
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47
		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
Z
Zhao Lei 已提交
48 49 50 51 52 53
	},
	[BTRFS_RAID_RAID1] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 2,
		.devs_min	= 2,
54
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
55 56
		.devs_increment	= 2,
		.ncopies	= 2,
57
		.nparity        = 0,
58
		.raid_name	= "raid1",
59
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60
		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
Z
Zhao Lei 已提交
61
	},
62 63 64
	[BTRFS_RAID_RAID1C3] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
65
		.devs_max	= 3,
66 67 68 69
		.devs_min	= 3,
		.tolerated_failures = 2,
		.devs_increment	= 3,
		.ncopies	= 3,
70
		.nparity        = 0,
71 72 73 74
		.raid_name	= "raid1c3",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
	},
75 76 77
	[BTRFS_RAID_RAID1C4] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
78
		.devs_max	= 4,
79 80 81 82
		.devs_min	= 4,
		.tolerated_failures = 3,
		.devs_increment	= 4,
		.ncopies	= 4,
83
		.nparity        = 0,
84 85 86 87
		.raid_name	= "raid1c4",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
	},
Z
Zhao Lei 已提交
88 89 90 91 92
	[BTRFS_RAID_DUP] = {
		.sub_stripes	= 1,
		.dev_stripes	= 2,
		.devs_max	= 1,
		.devs_min	= 1,
93
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
94 95
		.devs_increment	= 1,
		.ncopies	= 2,
96
		.nparity        = 0,
97
		.raid_name	= "dup",
98
		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99
		.mindev_error	= 0,
Z
Zhao Lei 已提交
100 101 102 103 104 105
	},
	[BTRFS_RAID_RAID0] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
106
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
107 108
		.devs_increment	= 1,
		.ncopies	= 1,
109
		.nparity        = 0,
110
		.raid_name	= "raid0",
111
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112
		.mindev_error	= 0,
Z
Zhao Lei 已提交
113 114 115 116 117 118
	},
	[BTRFS_RAID_SINGLE] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 1,
		.devs_min	= 1,
119
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
120 121
		.devs_increment	= 1,
		.ncopies	= 1,
122
		.nparity        = 0,
123
		.raid_name	= "single",
124
		.bg_flag	= 0,
125
		.mindev_error	= 0,
Z
Zhao Lei 已提交
126 127 128 129 130 131
	},
	[BTRFS_RAID_RAID5] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
132
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
133
		.devs_increment	= 1,
134
		.ncopies	= 1,
135
		.nparity        = 1,
136
		.raid_name	= "raid5",
137
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138
		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
Z
Zhao Lei 已提交
139 140 141 142 143 144
	},
	[BTRFS_RAID_RAID6] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 3,
145
		.tolerated_failures = 2,
Z
Zhao Lei 已提交
146
		.devs_increment	= 1,
147
		.ncopies	= 1,
148
		.nparity        = 2,
149
		.raid_name	= "raid6",
150
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151
		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
Z
Zhao Lei 已提交
152 153 154
	},
};

155
const char *btrfs_bg_type_to_raid_name(u64 flags)
156
{
157 158 159
	const int index = btrfs_bg_flags_to_raid_index(flags);

	if (index >= BTRFS_NR_RAID_TYPES)
160 161
		return NULL;

162
	return btrfs_raid_array[index].raid_name;
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 * bytes including terminating null byte.
 */
void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
{
	int i;
	int ret;
	char *bp = buf;
	u64 flags = bg_flags;
	u32 size_bp = size_buf;

	if (!flags) {
		strcpy(bp, "NONE");
		return;
	}

#define DESCRIBE_FLAG(flag, desc)						\
	do {								\
		if (flags & (flag)) {					\
			ret = snprintf(bp, size_bp, "%s|", (desc));	\
			if (ret < 0 || ret >= size_bp)			\
				goto out_overflow;			\
			size_bp -= ret;					\
			bp += ret;					\
			flags &= ~(flag);				\
		}							\
	} while (0)

	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");

	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
			      btrfs_raid_array[i].raid_name);
#undef DESCRIBE_FLAG

	if (flags) {
		ret = snprintf(bp, size_bp, "0x%llx|", flags);
		size_bp -= ret;
	}

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */

	/*
	 * The text is trimmed, it's up to the caller to provide sufficiently
	 * large buffer
	 */
out_overflow:;
}

219
static int init_first_rw_device(struct btrfs_trans_handle *trans);
220
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 224 225 226 227
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
			     u64 logical, u64 *length,
			     struct btrfs_bio **bbio_ret,
			     int mirror_num, int need_raid_map);
Y
Yan Zheng 已提交
228

D
David Sterba 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Device locking
 * ==============
 *
 * There are several mutexes that protect manipulation of devices and low-level
 * structures like chunks but not block groups, extents or files
 *
 * uuid_mutex (global lock)
 * ------------------------
 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 * device) or requested by the device= mount option
 *
 * the mutex can be very coarse and can cover long-running operations
 *
 * protects: updates to fs_devices counters like missing devices, rw devices,
245
 * seeding, structure cloning, opening/closing devices at mount/umount time
D
David Sterba 已提交
246 247 248
 *
 * global::fs_devs - add, remove, updates to the global list
 *
249 250 251
 * does not protect: manipulation of the fs_devices::devices list in general
 * but in mount context it could be used to exclude list modifications by eg.
 * scan ioctl
D
David Sterba 已提交
252 253 254 255 256 257 258 259 260 261 262 263
 *
 * btrfs_device::name - renames (write side), read is RCU
 *
 * fs_devices::device_list_mutex (per-fs, with RCU)
 * ------------------------------------------------
 * protects updates to fs_devices::devices, ie. adding and deleting
 *
 * simple list traversal with read-only actions can be done with RCU protection
 *
 * may be used to exclude some operations from running concurrently without any
 * modifications to the list (see write_all_supers)
 *
264 265 266
 * Is not required at mount and close times, because our device list is
 * protected by the uuid_mutex at that point.
 *
D
David Sterba 已提交
267 268 269 270 271 272 273 274
 * balance_mutex
 * -------------
 * protects balance structures (status, state) and context accessed from
 * several places (internally, ioctl)
 *
 * chunk_mutex
 * -----------
 * protects chunks, adding or removing during allocation, trim or when a new
275 276 277
 * device is added/removed. Additionally it also protects post_commit_list of
 * individual devices, since they can be added to the transaction's
 * post_commit_list only with chunk_mutex held.
D
David Sterba 已提交
278 279 280 281 282 283 284 285 286 287 288
 *
 * cleaner_mutex
 * -------------
 * a big lock that is held by the cleaner thread and prevents running subvolume
 * cleaning together with relocation or delayed iputs
 *
 *
 * Lock nesting
 * ============
 *
 * uuid_mutex
289 290 291
 *   device_list_mutex
 *     chunk_mutex
 *   balance_mutex
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
 *
 *
 * Exclusive operations, BTRFS_FS_EXCL_OP
 * ======================================
 *
 * Maintains the exclusivity of the following operations that apply to the
 * whole filesystem and cannot run in parallel.
 *
 * - Balance (*)
 * - Device add
 * - Device remove
 * - Device replace (*)
 * - Resize
 *
 * The device operations (as above) can be in one of the following states:
 *
 * - Running state
 * - Paused state
 * - Completed state
 *
 * Only device operations marked with (*) can go into the Paused state for the
 * following reasons:
 *
 * - ioctl (only Balance can be Paused through ioctl)
 * - filesystem remounted as read-only
 * - filesystem unmounted and mounted as read-only
 * - system power-cycle and filesystem mounted as read-only
 * - filesystem or device errors leading to forced read-only
 *
 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
 * A device operation in Paused or Running state can be canceled or resumed
 * either by ioctl (Balance only) or when remounted as read-write.
 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
 * completed.
D
David Sterba 已提交
327 328
 */

329
DEFINE_MUTEX(uuid_mutex);
330
static LIST_HEAD(fs_uuids);
D
David Sterba 已提交
331
struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 333 334
{
	return &fs_uuids;
}
335

D
David Sterba 已提交
336 337
/*
 * alloc_fs_devices - allocate struct btrfs_fs_devices
338 339
 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
D
David Sterba 已提交
340 341 342 343 344
 *
 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 * The returned struct is not linked onto any lists and can be destroyed with
 * kfree() right away.
 */
345 346
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
						 const u8 *metadata_fsid)
347 348 349
{
	struct btrfs_fs_devices *fs_devs;

350
	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 352 353 354 355 356 357
	if (!fs_devs)
		return ERR_PTR(-ENOMEM);

	mutex_init(&fs_devs->device_list_mutex);

	INIT_LIST_HEAD(&fs_devs->devices);
	INIT_LIST_HEAD(&fs_devs->alloc_list);
358
	INIT_LIST_HEAD(&fs_devs->fs_list);
359 360 361
	if (fsid)
		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);

362 363 364 365 366
	if (metadata_fsid)
		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
	else if (fsid)
		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);

367 368 369
	return fs_devs;
}

370
void btrfs_free_device(struct btrfs_device *device)
371
{
372
	WARN_ON(!list_empty(&device->post_commit_list));
373
	rcu_string_free(device->name);
374
	extent_io_tree_release(&device->alloc_state);
375 376 377 378
	bio_put(device->flush_bio);
	kfree(device);
}

Y
Yan Zheng 已提交
379 380 381 382 383 384 385 386
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;
	WARN_ON(fs_devices->opened);
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
387
		btrfs_free_device(device);
Y
Yan Zheng 已提交
388 389 390 391
	}
	kfree(fs_devices);
}

392
void __exit btrfs_cleanup_fs_uuids(void)
393 394 395
{
	struct btrfs_fs_devices *fs_devices;

Y
Yan Zheng 已提交
396 397
	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next,
398 399
					struct btrfs_fs_devices, fs_list);
		list_del(&fs_devices->fs_list);
Y
Yan Zheng 已提交
400
		free_fs_devices(fs_devices);
401 402 403
	}
}

404 405 406
/*
 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 * Returned struct is not linked onto any lists and must be destroyed using
407
 * btrfs_free_device.
408
 */
409 410 411 412
static struct btrfs_device *__alloc_device(void)
{
	struct btrfs_device *dev;

413
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
414 415 416
	if (!dev)
		return ERR_PTR(-ENOMEM);

417 418 419 420 421 422 423 424 425 426
	/*
	 * Preallocate a bio that's always going to be used for flushing device
	 * barriers and matches the device lifespan
	 */
	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
	if (!dev->flush_bio) {
		kfree(dev);
		return ERR_PTR(-ENOMEM);
	}

427 428
	INIT_LIST_HEAD(&dev->dev_list);
	INIT_LIST_HEAD(&dev->dev_alloc_list);
429
	INIT_LIST_HEAD(&dev->post_commit_list);
430 431

	atomic_set(&dev->reada_in_flight, 0);
432
	atomic_set(&dev->dev_stats_ccnt, 0);
433
	btrfs_device_data_ordered_init(dev);
434
	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
435
	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436
	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
437 438 439 440

	return dev;
}

441 442
static noinline struct btrfs_fs_devices *find_fsid(
		const u8 *fsid, const u8 *metadata_fsid)
443 444 445
{
	struct btrfs_fs_devices *fs_devices;

446 447
	ASSERT(fsid);

448
	/* Handle non-split brain cases */
449
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
450 451 452 453 454 455 456 457 458
		if (metadata_fsid) {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
				      BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		} else {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		}
459 460 461 462
	}
	return NULL;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
				struct btrfs_super_block *disk_super)
{

	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by first scanning
	 * a device which didn't have its fsid/metadata_uuid changed
	 * at all and the CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}
	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by a device that
	 * has an outdated pair of fsid/metadata_uuid and
	 * CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(fs_devices->metadata_uuid,
			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}

	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
}


504 505 506
static int
btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
		      int flush, struct block_device **bdev,
507
		      struct btrfs_super_block **disk_super)
508 509 510 511 512 513 514 515 516 517 518 519
{
	int ret;

	*bdev = blkdev_get_by_path(device_path, flags, holder);

	if (IS_ERR(*bdev)) {
		ret = PTR_ERR(*bdev);
		goto error;
	}

	if (flush)
		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
520
	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
521 522 523 524 525
	if (ret) {
		blkdev_put(*bdev, flags);
		goto error;
	}
	invalidate_bdev(*bdev);
526 527 528
	*disk_super = btrfs_read_dev_super(*bdev);
	if (IS_ERR(*disk_super)) {
		ret = PTR_ERR(*disk_super);
529 530 531 532 533 534 535 536 537 538 539
		blkdev_put(*bdev, flags);
		goto error;
	}

	return 0;

error:
	*bdev = NULL;
	return ret;
}

540 541 542 543 544 545 546 547 548 549 550
static bool device_path_matched(const char *path, struct btrfs_device *device)
{
	int found;

	rcu_read_lock();
	found = strcmp(rcu_str_deref(device->name), path);
	rcu_read_unlock();

	return found == 0;
}

551 552 553 554 555 556 557
/*
 *  Search and remove all stale (devices which are not mounted) devices.
 *  When both inputs are NULL, it will search and release all stale devices.
 *  path:	Optional. When provided will it release all unmounted devices
 *		matching this path only.
 *  skip_dev:	Optional. Will skip this device when searching for the stale
 *		devices.
558 559 560
 *  Return:	0 for success or if @path is NULL.
 * 		-EBUSY if @path is a mounted device.
 * 		-ENOENT if @path does not match any device in the list.
561
 */
562
static int btrfs_free_stale_devices(const char *path,
563
				     struct btrfs_device *skip_device)
A
Anand Jain 已提交
564
{
565 566
	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
	struct btrfs_device *device, *tmp_device;
567 568 569 570
	int ret = 0;

	if (path)
		ret = -ENOENT;
A
Anand Jain 已提交
571

572
	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
A
Anand Jain 已提交
573

574
		mutex_lock(&fs_devices->device_list_mutex);
575 576 577
		list_for_each_entry_safe(device, tmp_device,
					 &fs_devices->devices, dev_list) {
			if (skip_device && skip_device == device)
578
				continue;
579
			if (path && !device->name)
A
Anand Jain 已提交
580
				continue;
581
			if (path && !device_path_matched(path, device))
582
				continue;
583 584 585 586 587 588
			if (fs_devices->opened) {
				/* for an already deleted device return 0 */
				if (path && ret != 0)
					ret = -EBUSY;
				break;
			}
A
Anand Jain 已提交
589 590

			/* delete the stale device */
591 592 593 594
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);

595
			ret = 0;
596
			if (fs_devices->num_devices == 0)
597
				break;
598 599
		}
		mutex_unlock(&fs_devices->device_list_mutex);
600

601 602 603 604
		if (fs_devices->num_devices == 0) {
			btrfs_sysfs_remove_fsid(fs_devices);
			list_del(&fs_devices->fs_list);
			free_fs_devices(fs_devices);
A
Anand Jain 已提交
605 606
		}
	}
607 608

	return ret;
A
Anand Jain 已提交
609 610
}

611 612 613 614 615
/*
 * This is only used on mount, and we are protected from competing things
 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 * fs_devices->device_list_mutex here.
 */
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
			struct btrfs_device *device, fmode_t flags,
			void *holder)
{
	struct request_queue *q;
	struct block_device *bdev;
	struct btrfs_super_block *disk_super;
	u64 devid;
	int ret;

	if (device->bdev)
		return -EINVAL;
	if (!device->name)
		return -EINVAL;

	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632
				    &bdev, &disk_super);
633 634 635 636 637
	if (ret)
		return ret;

	devid = btrfs_stack_device_id(&disk_super->dev_item);
	if (devid != device->devid)
638
		goto error_free_page;
639 640

	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641
		goto error_free_page;
642 643 644 645

	device->generation = btrfs_super_generation(disk_super);

	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 647 648 649
		if (btrfs_super_incompat_flags(disk_super) &
		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
			pr_err(
		"BTRFS: Invalid seeding and uuid-changed device detected\n");
650
			goto error_free_page;
651 652
		}

653
		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654
		fs_devices->seeding = true;
655
	} else {
656 657 658 659
		if (bdev_read_only(bdev))
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
		else
			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 661 662 663
	}

	q = bdev_get_queue(bdev);
	if (!blk_queue_nonrot(q))
664
		fs_devices->rotating = true;
665 666

	device->bdev = bdev;
667
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 669 670
	device->mode = flags;

	fs_devices->open_devices++;
671 672
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
673
		fs_devices->rw_devices++;
674
		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675
	}
676
	btrfs_release_disk_super(disk_super);
677 678 679

	return 0;

680 681
error_free_page:
	btrfs_release_disk_super(disk_super);
682 683 684 685 686
	blkdev_put(bdev, flags);

	return -EINVAL;
}

687 688
/*
 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689 690 691
 * being created with a disk that has already completed its fsid change. Such
 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 * Handle both cases here.
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
 */
static struct btrfs_fs_devices *find_fsid_inprogress(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
			return fs_devices;
		}
	}

707
	return find_fsid(disk_super->fsid, NULL);
708 709
}

710 711 712 713 714 715 716 717 718

static struct btrfs_fs_devices *find_fsid_changed(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handles the case where scanned device is part of an fs that had
	 * multiple successful changes of FSID but curently device didn't
719 720 721 722 723
	 * observe it. Meaning our fsid will be different than theirs. We need
	 * to handle two subcases :
	 *  1 - The fs still continues to have different METADATA/FSID uuids.
	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
	 *  are equal).
724 725
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726
		/* Changed UUIDs */
727 728 729 730 731
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->fsid,
732 733 734 735 736 737 738 739
			   BTRFS_FSID_SIZE) != 0)
			return fs_devices;

		/* Unchanged UUIDs */
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0)
740 741 742 743 744
			return fs_devices;
	}

	return NULL;
}
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

static struct btrfs_fs_devices *find_fsid_reverted_metadata(
				struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle the case where the scanned device is part of an fs whose last
	 * metadata UUID change reverted it to the original FSID. At the same
	 * time * fs_devices was first created by another constitutent device
	 * which didn't fully observe the operation. This results in an
	 * btrfs_fs_devices created with metadata/fsid different AND
	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
	 * fs_devices equal to the FSID of the disk.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    fs_devices->fsid_change)
			return fs_devices;
	}

	return NULL;
}
771 772 773 774
/*
 * Add new device to list of registered devices
 *
 * Returns:
775 776
 * device pointer which was just added or updated when successful
 * error pointer when failed
777
 */
778
static noinline struct btrfs_device *device_list_add(const char *path,
779 780
			   struct btrfs_super_block *disk_super,
			   bool *new_device_added)
781 782
{
	struct btrfs_device *device;
783
	struct btrfs_fs_devices *fs_devices = NULL;
784
	struct rcu_string *name;
785
	u64 found_transid = btrfs_super_generation(disk_super);
786
	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 788
	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 790
	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791

792
	if (fsid_change_in_progress) {
793
		if (!has_metadata_uuid)
794
			fs_devices = find_fsid_inprogress(disk_super);
795
		else
796
			fs_devices = find_fsid_changed(disk_super);
797
	} else if (has_metadata_uuid) {
798
		fs_devices = find_fsid_with_metadata_uuid(disk_super);
799
	} else {
800 801 802
		fs_devices = find_fsid_reverted_metadata(disk_super);
		if (!fs_devices)
			fs_devices = find_fsid(disk_super->fsid, NULL);
803 804
	}

805 806

	if (!fs_devices) {
807 808 809 810 811 812
		if (has_metadata_uuid)
			fs_devices = alloc_fs_devices(disk_super->fsid,
						      disk_super->metadata_uuid);
		else
			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);

813
		if (IS_ERR(fs_devices))
814
			return ERR_CAST(fs_devices);
815

816 817
		fs_devices->fsid_change = fsid_change_in_progress;

818
		mutex_lock(&fs_devices->device_list_mutex);
819
		list_add(&fs_devices->fs_list, &fs_uuids);
820

821 822
		device = NULL;
	} else {
823
		mutex_lock(&fs_devices->device_list_mutex);
824 825
		device = btrfs_find_device(fs_devices, devid,
				disk_super->dev_item.uuid, NULL, false);
826 827 828 829 830 831

		/*
		 * If this disk has been pulled into an fs devices created by
		 * a device which had the CHANGING_FSID_V2 flag then replace the
		 * metadata_uuid/fsid values of the fs_devices.
		 */
832
		if (fs_devices->fsid_change &&
833 834 835
		    found_transid > fs_devices->latest_generation) {
			memcpy(fs_devices->fsid, disk_super->fsid,
					BTRFS_FSID_SIZE);
836 837 838 839 840 841 842 843

			if (has_metadata_uuid)
				memcpy(fs_devices->metadata_uuid,
				       disk_super->metadata_uuid,
				       BTRFS_FSID_SIZE);
			else
				memcpy(fs_devices->metadata_uuid,
				       disk_super->fsid, BTRFS_FSID_SIZE);
844 845 846

			fs_devices->fsid_change = false;
		}
847
	}
848

849
	if (!device) {
850 851
		if (fs_devices->opened) {
			mutex_unlock(&fs_devices->device_list_mutex);
852
			return ERR_PTR(-EBUSY);
853
		}
Y
Yan Zheng 已提交
854

855 856 857
		device = btrfs_alloc_device(NULL, &devid,
					    disk_super->dev_item.uuid);
		if (IS_ERR(device)) {
858
			mutex_unlock(&fs_devices->device_list_mutex);
859
			/* we can safely leave the fs_devices entry around */
860
			return device;
861
		}
862 863 864

		name = rcu_string_strdup(path, GFP_NOFS);
		if (!name) {
865
			btrfs_free_device(device);
866
			mutex_unlock(&fs_devices->device_list_mutex);
867
			return ERR_PTR(-ENOMEM);
868
		}
869
		rcu_assign_pointer(device->name, name);
870

871
		list_add_rcu(&device->dev_list, &fs_devices->devices);
872
		fs_devices->num_devices++;
873

Y
Yan Zheng 已提交
874
		device->fs_devices = fs_devices;
875
		*new_device_added = true;
876 877

		if (disk_super->label[0])
878 879 880 881
			pr_info(
	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->label, devid, found_transid, path,
				current->comm, task_pid_nr(current));
882
		else
883 884 885 886
			pr_info(
	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->fsid, devid, found_transid, path,
				current->comm, task_pid_nr(current));
887

888
	} else if (!device->name || strcmp(device->name->str, path)) {
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
		/*
		 * When FS is already mounted.
		 * 1. If you are here and if the device->name is NULL that
		 *    means this device was missing at time of FS mount.
		 * 2. If you are here and if the device->name is different
		 *    from 'path' that means either
		 *      a. The same device disappeared and reappeared with
		 *         different name. or
		 *      b. The missing-disk-which-was-replaced, has
		 *         reappeared now.
		 *
		 * We must allow 1 and 2a above. But 2b would be a spurious
		 * and unintentional.
		 *
		 * Further in case of 1 and 2a above, the disk at 'path'
		 * would have missed some transaction when it was away and
		 * in case of 2a the stale bdev has to be updated as well.
		 * 2b must not be allowed at all time.
		 */

		/*
910 911 912 913
		 * For now, we do allow update to btrfs_fs_device through the
		 * btrfs dev scan cli after FS has been mounted.  We're still
		 * tracking a problem where systems fail mount by subvolume id
		 * when we reject replacement on a mounted FS.
914
		 */
915
		if (!fs_devices->opened && found_transid < device->generation) {
916 917 918 919 920 921 922
			/*
			 * That is if the FS is _not_ mounted and if you
			 * are here, that means there is more than one
			 * disk with same uuid and devid.We keep the one
			 * with larger generation number or the last-in if
			 * generation are equal.
			 */
923
			mutex_unlock(&fs_devices->device_list_mutex);
924
			return ERR_PTR(-EEXIST);
925
		}
926

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
		/*
		 * We are going to replace the device path for a given devid,
		 * make sure it's the same device if the device is mounted
		 */
		if (device->bdev) {
			struct block_device *path_bdev;

			path_bdev = lookup_bdev(path);
			if (IS_ERR(path_bdev)) {
				mutex_unlock(&fs_devices->device_list_mutex);
				return ERR_CAST(path_bdev);
			}

			if (device->bdev != path_bdev) {
				bdput(path_bdev);
				mutex_unlock(&fs_devices->device_list_mutex);
				btrfs_warn_in_rcu(device->fs_info,
			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
					disk_super->fsid, devid,
					rcu_str_deref(device->name), path);
				return ERR_PTR(-EEXIST);
			}
			bdput(path_bdev);
			btrfs_info_in_rcu(device->fs_info,
				"device fsid %pU devid %llu moved old:%s new:%s",
				disk_super->fsid, devid,
				rcu_str_deref(device->name), path);
		}

956
		name = rcu_string_strdup(path, GFP_NOFS);
957 958
		if (!name) {
			mutex_unlock(&fs_devices->device_list_mutex);
959
			return ERR_PTR(-ENOMEM);
960
		}
961 962
		rcu_string_free(device->name);
		rcu_assign_pointer(device->name, name);
963
		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
964
			fs_devices->missing_devices--;
965
			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
966
		}
967 968
	}

969 970 971 972 973 974
	/*
	 * Unmount does not free the btrfs_device struct but would zero
	 * generation along with most of the other members. So just update
	 * it back. We need it to pick the disk with largest generation
	 * (as above).
	 */
975
	if (!fs_devices->opened) {
976
		device->generation = found_transid;
977 978 979
		fs_devices->latest_generation = max_t(u64, found_transid,
						fs_devices->latest_generation);
	}
980

981 982
	fs_devices->total_devices = btrfs_super_num_devices(disk_super);

983
	mutex_unlock(&fs_devices->device_list_mutex);
984
	return device;
985 986
}

Y
Yan Zheng 已提交
987 988 989 990 991
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
{
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_device *device;
	struct btrfs_device *orig_dev;
992
	int ret = 0;
Y
Yan Zheng 已提交
993

994
	fs_devices = alloc_fs_devices(orig->fsid, NULL);
995 996
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
997

998
	mutex_lock(&orig->device_list_mutex);
J
Josef Bacik 已提交
999
	fs_devices->total_devices = orig->total_devices;
Y
Yan Zheng 已提交
1000 1001

	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002 1003
		struct rcu_string *name;

1004 1005
		device = btrfs_alloc_device(NULL, &orig_dev->devid,
					    orig_dev->uuid);
1006 1007
		if (IS_ERR(device)) {
			ret = PTR_ERR(device);
Y
Yan Zheng 已提交
1008
			goto error;
1009
		}
Y
Yan Zheng 已提交
1010

1011 1012 1013 1014
		/*
		 * This is ok to do without rcu read locked because we hold the
		 * uuid mutex so nothing we touch in here is going to disappear.
		 */
1015
		if (orig_dev->name) {
1016 1017
			name = rcu_string_strdup(orig_dev->name->str,
					GFP_KERNEL);
1018
			if (!name) {
1019
				btrfs_free_device(device);
1020
				ret = -ENOMEM;
1021 1022 1023
				goto error;
			}
			rcu_assign_pointer(device->name, name);
J
Julia Lawall 已提交
1024
		}
Y
Yan Zheng 已提交
1025 1026 1027 1028 1029

		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
		fs_devices->num_devices++;
	}
1030
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1031 1032
	return fs_devices;
error:
1033
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1034
	free_fs_devices(fs_devices);
1035
	return ERR_PTR(ret);
Y
Yan Zheng 已提交
1036 1037
}

1038 1039 1040 1041 1042
/*
 * After we have read the system tree and know devids belonging to
 * this filesystem, remove the device which does not belong there.
 */
void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1043
{
Q
Qinghuang Feng 已提交
1044
	struct btrfs_device *device, *next;
1045
	struct btrfs_device *latest_dev = NULL;
1046

1047 1048
	mutex_lock(&uuid_mutex);
again:
1049
	/* This is the initialized path, it is safe to release the devices. */
Q
Qinghuang Feng 已提交
1050
	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1051 1052
		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
							&device->dev_state)) {
1053 1054
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
			     &device->dev_state) &&
1055 1056
			    !test_bit(BTRFS_DEV_STATE_MISSING,
				      &device->dev_state) &&
1057 1058
			     (!latest_dev ||
			      device->generation > latest_dev->generation)) {
1059
				latest_dev = device;
1060
			}
Y
Yan Zheng 已提交
1061
			continue;
1062
		}
Y
Yan Zheng 已提交
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
			/*
			 * In the first step, keep the device which has
			 * the correct fsid and the devid that is used
			 * for the dev_replace procedure.
			 * In the second step, the dev_replace state is
			 * read from the device tree and it is known
			 * whether the procedure is really active or
			 * not, which means whether this device is
			 * used or whether it should be removed.
			 */
1075 1076
			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
						  &device->dev_state)) {
1077 1078 1079
				continue;
			}
		}
Y
Yan Zheng 已提交
1080
		if (device->bdev) {
1081
			blkdev_put(device->bdev, device->mode);
Y
Yan Zheng 已提交
1082 1083 1084
			device->bdev = NULL;
			fs_devices->open_devices--;
		}
1085
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
1086
			list_del_init(&device->dev_alloc_list);
1087
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1088 1089
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
				      &device->dev_state))
1090
				fs_devices->rw_devices--;
Y
Yan Zheng 已提交
1091
		}
Y
Yan Zheng 已提交
1092 1093
		list_del_init(&device->dev_list);
		fs_devices->num_devices--;
1094
		btrfs_free_device(device);
1095
	}
Y
Yan Zheng 已提交
1096 1097 1098 1099 1100 1101

	if (fs_devices->seed) {
		fs_devices = fs_devices->seed;
		goto again;
	}

1102
	fs_devices->latest_bdev = latest_dev->bdev;
1103

1104 1105
	mutex_unlock(&uuid_mutex);
}
1106

1107 1108
static void btrfs_close_bdev(struct btrfs_device *device)
{
D
David Sterba 已提交
1109 1110 1111
	if (!device->bdev)
		return;

1112
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1113 1114 1115 1116
		sync_blockdev(device->bdev);
		invalidate_bdev(device->bdev);
	}

D
David Sterba 已提交
1117
	blkdev_put(device->bdev, device->mode);
1118 1119
}

1120
static void btrfs_close_one_device(struct btrfs_device *device)
1121 1122 1123
{
	struct btrfs_fs_devices *fs_devices = device->fs_devices;

1124
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1125 1126 1127 1128 1129
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
		list_del_init(&device->dev_alloc_list);
		fs_devices->rw_devices--;
	}

1130
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1131 1132
		fs_devices->missing_devices--;

1133
	btrfs_close_bdev(device);
1134
	if (device->bdev) {
1135
		fs_devices->open_devices--;
1136
		device->bdev = NULL;
1137
	}
1138
	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1139

1140 1141 1142
	device->fs_info = NULL;
	atomic_set(&device->dev_stats_ccnt, 0);
	extent_io_tree_release(&device->alloc_state);
1143

1144 1145 1146 1147 1148 1149
	/* Verify the device is back in a pristine state  */
	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
	ASSERT(list_empty(&device->dev_alloc_list));
	ASSERT(list_empty(&device->post_commit_list));
	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1150 1151
}

1152
static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1153
{
1154
	struct btrfs_device *device, *tmp;
Y
Yan Zheng 已提交
1155

Y
Yan Zheng 已提交
1156 1157
	if (--fs_devices->opened > 0)
		return 0;
1158

1159
	mutex_lock(&fs_devices->device_list_mutex);
1160
	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1161
		btrfs_close_one_device(device);
1162
	}
1163 1164
	mutex_unlock(&fs_devices->device_list_mutex);

Y
Yan Zheng 已提交
1165 1166
	WARN_ON(fs_devices->open_devices);
	WARN_ON(fs_devices->rw_devices);
Y
Yan Zheng 已提交
1167
	fs_devices->opened = 0;
1168
	fs_devices->seeding = false;
Y
Yan Zheng 已提交
1169

1170 1171 1172
	return 0;
}

Y
Yan Zheng 已提交
1173 1174
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
Y
Yan Zheng 已提交
1175
	struct btrfs_fs_devices *seed_devices = NULL;
Y
Yan Zheng 已提交
1176 1177 1178
	int ret;

	mutex_lock(&uuid_mutex);
1179
	ret = close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
1180 1181 1182 1183
	if (!fs_devices->opened) {
		seed_devices = fs_devices->seed;
		fs_devices->seed = NULL;
	}
Y
Yan Zheng 已提交
1184
	mutex_unlock(&uuid_mutex);
Y
Yan Zheng 已提交
1185 1186 1187 1188

	while (seed_devices) {
		fs_devices = seed_devices;
		seed_devices = fs_devices->seed;
1189
		close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
1190 1191
		free_fs_devices(fs_devices);
	}
Y
Yan Zheng 已提交
1192 1193 1194
	return ret;
}

1195
static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
Y
Yan Zheng 已提交
1196
				fmode_t flags, void *holder)
1197 1198
{
	struct btrfs_device *device;
1199
	struct btrfs_device *latest_dev = NULL;
1200

1201 1202
	flags |= FMODE_EXCL;

1203
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1204
		/* Just open everything we can; ignore failures here */
1205
		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1206
			continue;
1207

1208 1209 1210
		if (!latest_dev ||
		    device->generation > latest_dev->generation)
			latest_dev = device;
1211
	}
1212 1213 1214
	if (fs_devices->open_devices == 0)
		return -EINVAL;

Y
Yan Zheng 已提交
1215
	fs_devices->opened = 1;
1216
	fs_devices->latest_bdev = latest_dev->bdev;
Y
Yan Zheng 已提交
1217
	fs_devices->total_rw_bytes = 0;
1218
	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1219 1220

	return 0;
Y
Yan Zheng 已提交
1221 1222
}

A
Anand Jain 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct btrfs_device *dev1, *dev2;

	dev1 = list_entry(a, struct btrfs_device, dev_list);
	dev2 = list_entry(b, struct btrfs_device, dev_list);

	if (dev1->devid < dev2->devid)
		return -1;
	else if (dev1->devid > dev2->devid)
		return 1;
	return 0;
}

Y
Yan Zheng 已提交
1237
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1238
		       fmode_t flags, void *holder)
Y
Yan Zheng 已提交
1239 1240 1241
{
	int ret;

1242
	lockdep_assert_held(&uuid_mutex);
1243 1244 1245 1246 1247 1248 1249
	/*
	 * The device_list_mutex cannot be taken here in case opening the
	 * underlying device takes further locks like bd_mutex.
	 *
	 * We also don't need the lock here as this is called during mount and
	 * exclusion is provided by uuid_mutex
	 */
1250

Y
Yan Zheng 已提交
1251
	if (fs_devices->opened) {
Y
Yan Zheng 已提交
1252 1253
		fs_devices->opened++;
		ret = 0;
Y
Yan Zheng 已提交
1254
	} else {
A
Anand Jain 已提交
1255
		list_sort(NULL, &fs_devices->devices, devid_cmp);
1256
		ret = open_fs_devices(fs_devices, flags, holder);
Y
Yan Zheng 已提交
1257
	}
1258

1259 1260 1261
	return ret;
}

1262
void btrfs_release_disk_super(struct btrfs_super_block *super)
1263
{
1264 1265
	struct page *page = virt_to_page(super);

1266 1267 1268
	put_page(page);
}

1269 1270
static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
						       u64 bytenr)
1271
{
1272 1273
	struct btrfs_super_block *disk_super;
	struct page *page;
1274 1275 1276 1277 1278
	void *p;
	pgoff_t index;

	/* make sure our super fits in the device */
	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1279
		return ERR_PTR(-EINVAL);
1280 1281

	/* make sure our super fits in the page */
1282 1283
	if (sizeof(*disk_super) > PAGE_SIZE)
		return ERR_PTR(-EINVAL);
1284 1285 1286

	/* make sure our super doesn't straddle pages on disk */
	index = bytenr >> PAGE_SHIFT;
1287 1288
	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
		return ERR_PTR(-EINVAL);
1289 1290

	/* pull in the page with our super */
1291
	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1292

1293 1294
	if (IS_ERR(page))
		return ERR_CAST(page);
1295

1296
	p = page_address(page);
1297 1298

	/* align our pointer to the offset of the super block */
1299
	disk_super = p + offset_in_page(bytenr);
1300

1301 1302
	if (btrfs_super_bytenr(disk_super) != bytenr ||
	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1303
		btrfs_release_disk_super(p);
1304
		return ERR_PTR(-EINVAL);
1305 1306
	}

1307 1308
	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1309

1310
	return disk_super;
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
int btrfs_forget_devices(const char *path)
{
	int ret;

	mutex_lock(&uuid_mutex);
	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
	mutex_unlock(&uuid_mutex);

	return ret;
}

1324 1325 1326 1327 1328
/*
 * Look for a btrfs signature on a device. This may be called out of the mount path
 * and we are not allowed to call set_blocksize during the scan. The superblock
 * is read via pagecache
 */
1329 1330
struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
					   void *holder)
1331 1332
{
	struct btrfs_super_block *disk_super;
1333
	bool new_device_added = false;
1334
	struct btrfs_device *device = NULL;
1335
	struct block_device *bdev;
1336
	u64 bytenr;
1337

1338 1339
	lockdep_assert_held(&uuid_mutex);

1340 1341 1342 1343 1344 1345 1346
	/*
	 * we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	bytenr = btrfs_sb_offset(0);
1347
	flags |= FMODE_EXCL;
1348 1349

	bdev = blkdev_get_by_path(path, flags, holder);
1350
	if (IS_ERR(bdev))
1351
		return ERR_CAST(bdev);
1352

1353 1354 1355
	disk_super = btrfs_read_disk_super(bdev, bytenr);
	if (IS_ERR(disk_super)) {
		device = ERR_CAST(disk_super);
1356
		goto error_bdev_put;
1357
	}
1358

1359
	device = device_list_add(path, disk_super, &new_device_added);
1360
	if (!IS_ERR(device)) {
1361 1362 1363
		if (new_device_added)
			btrfs_free_stale_devices(path, device);
	}
1364

1365
	btrfs_release_disk_super(disk_super);
1366 1367

error_bdev_put:
1368
	blkdev_put(bdev, flags);
1369

1370
	return device;
1371
}
1372

1373 1374 1375 1376 1377 1378
/*
 * Try to find a chunk that intersects [start, start + len] range and when one
 * such is found, record the end of it in *start
 */
static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
				    u64 len)
1379
{
1380
	u64 physical_start, physical_end;
1381

1382
	lockdep_assert_held(&device->fs_info->chunk_mutex);
1383

1384 1385 1386
	if (!find_first_extent_bit(&device->alloc_state, *start,
				   &physical_start, &physical_end,
				   CHUNK_ALLOCATED, NULL)) {
1387

1388 1389 1390 1391 1392
		if (in_range(physical_start, *start, len) ||
		    in_range(*start, physical_start,
			     physical_end - physical_start)) {
			*start = physical_end + 1;
			return true;
1393 1394
		}
	}
1395
	return false;
1396 1397
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
{
	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/*
		 * We don't want to overwrite the superblock on the drive nor
		 * any area used by the boot loader (grub for example), so we
		 * make sure to start at an offset of at least 1MB.
		 */
		return max_t(u64, start, SZ_1M);
	default:
		BUG();
	}
}

/**
 * dev_extent_hole_check - check if specified hole is suitable for allocation
 * @device:	the device which we have the hole
 * @hole_start: starting position of the hole
 * @hole_size:	the size of the hole
 * @num_bytes:	the size of the free space that we need
 *
 * This function may modify @hole_start and @hole_end to reflect the suitable
 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
 */
static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
				  u64 *hole_size, u64 num_bytes)
{
	bool changed = false;
	u64 hole_end = *hole_start + *hole_size;

	/*
	 * Check before we set max_hole_start, otherwise we could end up
	 * sending back this offset anyway.
	 */
	if (contains_pending_extent(device, hole_start, *hole_size)) {
		if (hole_end >= *hole_start)
			*hole_size = hole_end - *hole_start;
		else
			*hole_size = 0;
		changed = true;
	}

	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/* No extra check */
		break;
	default:
		BUG();
	}

	return changed;
}
1451

1452
/*
1453 1454 1455 1456 1457 1458 1459
 * find_free_dev_extent_start - find free space in the specified device
 * @device:	  the device which we search the free space in
 * @num_bytes:	  the size of the free space that we need
 * @search_start: the position from which to begin the search
 * @start:	  store the start of the free space.
 * @len:	  the size of the free space. that we find, or the size
 *		  of the max free space if we don't find suitable free space
1460
 *
1461 1462 1463
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
1464 1465 1466 1467 1468 1469 1470 1471
 *
 * @start is used to store the start of the free space if we find. But if we
 * don't find suitable free space, it will be used to store the start position
 * of the max free space.
 *
 * @len is used to store the size of the free space that we find.
 * But if we don't find suitable free space, it is used to store the size of
 * the max free space.
1472 1473 1474 1475 1476 1477
 *
 * NOTE: This function will search *commit* root of device tree, and does extra
 * check to ensure dev extents are not double allocated.
 * This makes the function safe to allocate dev extents but may not report
 * correct usable device space, as device extent freed in current transaction
 * is not reported as avaiable.
1478
 */
1479 1480 1481
static int find_free_dev_extent_start(struct btrfs_device *device,
				u64 num_bytes, u64 search_start, u64 *start,
				u64 *len)
1482
{
1483 1484
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1485
	struct btrfs_key key;
1486
	struct btrfs_dev_extent *dev_extent;
Y
Yan Zheng 已提交
1487
	struct btrfs_path *path;
1488 1489 1490 1491
	u64 hole_size;
	u64 max_hole_start;
	u64 max_hole_size;
	u64 extent_end;
1492 1493
	u64 search_end = device->total_bytes;
	int ret;
1494
	int slot;
1495
	struct extent_buffer *l;
1496

1497
	search_start = dev_extent_search_start(device, search_start);
1498

1499 1500 1501
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1502

1503 1504 1505
	max_hole_start = search_start;
	max_hole_size = 0;

1506
again:
1507 1508
	if (search_start >= search_end ||
		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1509
		ret = -ENOSPC;
1510
		goto out;
1511 1512
	}

1513
	path->reada = READA_FORWARD;
1514 1515
	path->search_commit_root = 1;
	path->skip_locking = 1;
1516

1517 1518 1519
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
1520

1521
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1522
	if (ret < 0)
1523
		goto out;
1524 1525 1526
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid, key.type);
		if (ret < 0)
1527
			goto out;
1528
	}
1529

1530 1531 1532 1533 1534 1535 1536 1537
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
1538 1539 1540
				goto out;

			break;
1541 1542 1543 1544 1545 1546 1547
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
1548
			break;
1549

1550
		if (key.type != BTRFS_DEV_EXTENT_KEY)
1551
			goto next;
1552

1553 1554
		if (key.offset > search_start) {
			hole_size = key.offset - search_start;
1555 1556
			dev_extent_hole_check(device, &search_start, &hole_size,
					      num_bytes);
1557

1558 1559 1560 1561
			if (hole_size > max_hole_size) {
				max_hole_start = search_start;
				max_hole_size = hole_size;
			}
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
			/*
			 * If this free space is greater than which we need,
			 * it must be the max free space that we have found
			 * until now, so max_hole_start must point to the start
			 * of this free space and the length of this free space
			 * is stored in max_hole_size. Thus, we return
			 * max_hole_start and max_hole_size and go back to the
			 * caller.
			 */
			if (hole_size >= num_bytes) {
				ret = 0;
				goto out;
1575 1576 1577 1578
			}
		}

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1579 1580 1581 1582
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (extent_end > search_start)
			search_start = extent_end;
1583 1584 1585 1586 1587
next:
		path->slots[0]++;
		cond_resched();
	}

1588 1589 1590 1591 1592
	/*
	 * At this point, search_start should be the end of
	 * allocated dev extents, and when shrinking the device,
	 * search_end may be smaller than search_start.
	 */
1593
	if (search_end > search_start) {
1594
		hole_size = search_end - search_start;
1595 1596
		if (dev_extent_hole_check(device, &search_start, &hole_size,
					  num_bytes)) {
1597 1598 1599
			btrfs_release_path(path);
			goto again;
		}
1600

1601 1602 1603 1604
		if (hole_size > max_hole_size) {
			max_hole_start = search_start;
			max_hole_size = hole_size;
		}
1605 1606
	}

1607
	/* See above. */
1608
	if (max_hole_size < num_bytes)
1609 1610 1611 1612 1613
		ret = -ENOSPC;
	else
		ret = 0;

out:
Y
Yan Zheng 已提交
1614
	btrfs_free_path(path);
1615
	*start = max_hole_start;
1616
	if (len)
1617
		*len = max_hole_size;
1618 1619 1620
	return ret;
}

1621
int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1622 1623 1624
			 u64 *start, u64 *len)
{
	/* FIXME use last free of some kind */
1625
	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1626 1627
}

1628
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1629
			  struct btrfs_device *device,
M
Miao Xie 已提交
1630
			  u64 start, u64 *dev_extent_len)
1631
{
1632 1633
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1634 1635 1636
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
1637 1638 1639
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
1640 1641 1642 1643 1644 1645 1646 1647

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;
M
Miao Xie 已提交
1648
again:
1649
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1650 1651 1652
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
1653 1654
		if (ret)
			goto out;
1655 1656 1657 1658 1659 1660
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
M
Miao Xie 已提交
1661 1662 1663
		key = found_key;
		btrfs_release_path(path);
		goto again;
1664 1665 1666 1667
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
1668
	} else {
1669
		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1670
		goto out;
1671
	}
1672

M
Miao Xie 已提交
1673 1674
	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);

1675
	ret = btrfs_del_item(trans, root, path);
1676
	if (ret) {
1677 1678
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to remove dev extent item");
Z
Zhao Lei 已提交
1679
	} else {
1680
		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1681
	}
1682
out:
1683 1684 1685 1686
	btrfs_free_path(path);
	return ret;
}

1687 1688 1689
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
				  struct btrfs_device *device,
				  u64 chunk_offset, u64 start, u64 num_bytes)
1690 1691 1692
{
	int ret;
	struct btrfs_path *path;
1693 1694
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1695 1696 1697 1698
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

1699
	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1700
	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1701 1702 1703 1704 1705
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
Y
Yan Zheng 已提交
1706
	key.offset = start;
1707 1708 1709
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
1710 1711
	if (ret)
		goto out;
1712 1713 1714 1715

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
1716 1717
	btrfs_set_dev_extent_chunk_tree(leaf, extent,
					BTRFS_CHUNK_TREE_OBJECTID);
1718 1719
	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1720 1721
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

1722 1723
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
1724
out:
1725 1726 1727 1728
	btrfs_free_path(path);
	return ret;
}

1729
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1730
{
1731 1732 1733 1734
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct rb_node *n;
	u64 ret = 0;
1735

1736
	em_tree = &fs_info->mapping_tree;
1737
	read_lock(&em_tree->lock);
L
Liu Bo 已提交
1738
	n = rb_last(&em_tree->map.rb_root);
1739 1740 1741
	if (n) {
		em = rb_entry(n, struct extent_map, rb_node);
		ret = em->start + em->len;
1742
	}
1743 1744
	read_unlock(&em_tree->lock);

1745 1746 1747
	return ret;
}

1748 1749
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
				    u64 *devid_ret)
1750 1751 1752 1753
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
Y
Yan Zheng 已提交
1754 1755 1756 1757 1758
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1759 1760 1761 1762 1763

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

1764
	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1765 1766 1767
	if (ret < 0)
		goto error;

1768 1769 1770 1771 1772 1773
	if (ret == 0) {
		/* Corruption */
		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
		ret = -EUCLEAN;
		goto error;
	}
1774

1775 1776
	ret = btrfs_previous_item(fs_info->chunk_root, path,
				  BTRFS_DEV_ITEMS_OBJECTID,
1777 1778
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
1779
		*devid_ret = 1;
1780 1781 1782
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
1783
		*devid_ret = found_key.offset + 1;
1784 1785 1786
	}
	ret = 0;
error:
Y
Yan Zheng 已提交
1787
	btrfs_free_path(path);
1788 1789 1790 1791 1792 1793 1794
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
1795
static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1796
			    struct btrfs_device *device)
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
Y
Yan Zheng 已提交
1811
	key.offset = device->devid;
1812

1813 1814
	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
				      &key, sizeof(*dev_item));
1815 1816 1817 1818 1819 1820 1821
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
Y
Yan Zheng 已提交
1822
	btrfs_set_device_generation(leaf, dev_item, 0);
1823 1824 1825 1826
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1827 1828 1829 1830
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
1831 1832 1833
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1834
	btrfs_set_device_start_offset(leaf, dev_item, 0);
1835

1836
	ptr = btrfs_device_uuid(dev_item);
1837
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1838
	ptr = btrfs_device_fsid(dev_item);
1839 1840
	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
			    ptr, BTRFS_FSID_SIZE);
1841 1842
	btrfs_mark_buffer_dirty(leaf);

Y
Yan Zheng 已提交
1843
	ret = 0;
1844 1845 1846 1847
out:
	btrfs_free_path(path);
	return ret;
}
1848

1849 1850 1851 1852
/*
 * Function to update ctime/mtime for a given device path.
 * Mainly used for ctime/mtime based probe like libblkid.
 */
1853
static void update_dev_time(const char *path_name)
1854 1855 1856 1857
{
	struct file *filp;

	filp = filp_open(path_name, O_RDWR, 0);
1858
	if (IS_ERR(filp))
1859 1860 1861 1862 1863
		return;
	file_update_time(filp);
	filp_close(filp, NULL);
}

1864
static int btrfs_rm_dev_item(struct btrfs_device *device)
1865
{
1866
	struct btrfs_root *root = device->fs_info->chunk_root;
1867 1868 1869 1870 1871 1872 1873 1874 1875
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1876
	trans = btrfs_start_transaction(root, 0);
1877 1878 1879 1880
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}
1881 1882 1883 1884 1885
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1886 1887 1888 1889 1890
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
1891 1892 1893 1894
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
1895 1896 1897 1898 1899
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	}

1900 1901
out:
	btrfs_free_path(path);
1902 1903
	if (!ret)
		ret = btrfs_commit_transaction(trans);
1904 1905 1906
	return ret;
}

1907 1908 1909 1910 1911 1912 1913
/*
 * Verify that @num_devices satisfies the RAID profile constraints in the whole
 * filesystem. It's up to the caller to adjust that number regarding eg. device
 * replace.
 */
static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
		u64 num_devices)
1914 1915
{
	u64 all_avail;
1916
	unsigned seq;
1917
	int i;
1918

1919
	do {
1920
		seq = read_seqbegin(&fs_info->profiles_lock);
1921

1922 1923 1924 1925
		all_avail = fs_info->avail_data_alloc_bits |
			    fs_info->avail_system_alloc_bits |
			    fs_info->avail_metadata_alloc_bits;
	} while (read_seqretry(&fs_info->profiles_lock, seq));
1926

1927
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1928
		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1929
			continue;
1930

1931
		if (num_devices < btrfs_raid_array[i].devs_min) {
1932
			int ret = btrfs_raid_array[i].mindev_error;
1933

1934 1935 1936
			if (ret)
				return ret;
		}
D
David Woodhouse 已提交
1937 1938
	}

1939
	return 0;
1940 1941
}

1942 1943
static struct btrfs_device * btrfs_find_next_active_device(
		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1944
{
Y
Yan Zheng 已提交
1945
	struct btrfs_device *next_device;
1946 1947 1948

	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
		if (next_device != device &&
1949 1950
		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
		    && next_device->bdev)
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
			return next_device;
	}

	return NULL;
}

/*
 * Helper function to check if the given device is part of s_bdev / latest_bdev
 * and replace it with the provided or the next active device, in the context
 * where this function called, there should be always be another device (or
 * this_dev) which is active.
 */
1963
void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1964
				     struct btrfs_device *this_dev)
1965
{
1966
	struct btrfs_fs_info *fs_info = device->fs_info;
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	struct btrfs_device *next_device;

	if (this_dev)
		next_device = this_dev;
	else
		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
								device);
	ASSERT(next_device);

	if (fs_info->sb->s_bdev &&
			(fs_info->sb->s_bdev == device->bdev))
		fs_info->sb->s_bdev = next_device->bdev;

	if (fs_info->fs_devices->latest_bdev == device->bdev)
		fs_info->fs_devices->latest_bdev = next_device->bdev;
}

1984 1985 1986 1987 1988 1989 1990 1991
/*
 * Return btrfs_fs_devices::num_devices excluding the device that's being
 * currently replaced.
 */
static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
{
	u64 num_devices = fs_info->fs_devices->num_devices;

1992
	down_read(&fs_info->dev_replace.rwsem);
1993 1994 1995 1996
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
		ASSERT(num_devices > 1);
		num_devices--;
	}
1997
	up_read(&fs_info->dev_replace.rwsem);
1998 1999 2000 2001

	return num_devices;
}

2002 2003 2004
void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
			       struct block_device *bdev,
			       const char *device_path)
2005 2006 2007 2008 2009 2010 2011 2012
{
	struct btrfs_super_block *disk_super;
	int copy_num;

	if (!bdev)
		return;

	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2013 2014
		struct page *page;
		int ret;
2015

2016 2017 2018
		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
		if (IS_ERR(disk_super))
			continue;
2019 2020

		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

		page = virt_to_page(disk_super);
		set_page_dirty(page);
		lock_page(page);
		/* write_on_page() unlocks the page */
		ret = write_one_page(page);
		if (ret)
			btrfs_warn(fs_info,
				"error clearing superblock number %d (%d)",
				copy_num, ret);
		btrfs_release_disk_super(disk_super);

2033 2034 2035 2036 2037 2038 2039 2040 2041
	}

	/* Notify udev that device has changed */
	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);

	/* Update ctime/mtime for device path for libblkid */
	update_dev_time(device_path);
}

2042 2043
int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
		u64 devid)
2044 2045
{
	struct btrfs_device *device;
2046
	struct btrfs_fs_devices *cur_devices;
2047
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2048
	u64 num_devices;
2049 2050 2051 2052
	int ret = 0;

	mutex_lock(&uuid_mutex);

2053
	num_devices = btrfs_num_devices(fs_info);
2054

2055
	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2056
	if (ret)
2057 2058
		goto out;

2059 2060 2061 2062 2063 2064 2065 2066
	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);

	if (IS_ERR(device)) {
		if (PTR_ERR(device) == -ENOENT &&
		    strcmp(device_path, "missing") == 0)
			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
		else
			ret = PTR_ERR(device);
D
David Woodhouse 已提交
2067
		goto out;
2068
	}
2069

2070 2071 2072 2073 2074 2075 2076 2077
	if (btrfs_pinned_by_swapfile(fs_info, device)) {
		btrfs_warn_in_rcu(fs_info,
		  "cannot remove device %s (devid %llu) due to active swapfile",
				  rcu_str_deref(device->name), device->devid);
		ret = -ETXTBSY;
		goto out;
	}

2078
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2079
		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2080
		goto out;
2081 2082
	}

2083 2084
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    fs_info->fs_devices->rw_devices == 1) {
2085
		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2086
		goto out;
Y
Yan Zheng 已提交
2087 2088
	}

2089
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2090
		mutex_lock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2091
		list_del_init(&device->dev_alloc_list);
2092
		device->fs_devices->rw_devices--;
2093
		mutex_unlock(&fs_info->chunk_mutex);
2094
	}
2095

2096
	mutex_unlock(&uuid_mutex);
2097
	ret = btrfs_shrink_device(device, 0);
2098
	mutex_lock(&uuid_mutex);
2099
	if (ret)
2100
		goto error_undo;
2101

2102 2103 2104 2105 2106
	/*
	 * TODO: the superblock still includes this device in its num_devices
	 * counter although write_all_supers() is not locked out. This
	 * could give a filesystem state which requires a degraded mount.
	 */
2107
	ret = btrfs_rm_dev_item(device);
2108
	if (ret)
2109
		goto error_undo;
2110

2111
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2112
	btrfs_scrub_cancel_dev(device);
2113 2114 2115 2116

	/*
	 * the device list mutex makes sure that we don't change
	 * the device list while someone else is writing out all
2117 2118 2119 2120 2121
	 * the device supers. Whoever is writing all supers, should
	 * lock the device list mutex before getting the number of
	 * devices in the super block (super_copy). Conversely,
	 * whoever updates the number of devices in the super block
	 * (super_copy) should hold the device list mutex.
2122
	 */
2123

2124 2125 2126 2127 2128
	/*
	 * In normal cases the cur_devices == fs_devices. But in case
	 * of deleting a seed device, the cur_devices should point to
	 * its own fs_devices listed under the fs_devices->seed.
	 */
2129
	cur_devices = device->fs_devices;
2130
	mutex_lock(&fs_devices->device_list_mutex);
2131
	list_del_rcu(&device->dev_list);
2132

2133 2134
	cur_devices->num_devices--;
	cur_devices->total_devices--;
2135 2136 2137
	/* Update total_devices of the parent fs_devices if it's seed */
	if (cur_devices != fs_devices)
		fs_devices->total_devices--;
Y
Yan Zheng 已提交
2138

2139
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2140
		cur_devices->missing_devices--;
2141

2142
	btrfs_assign_next_active_device(device, NULL);
Y
Yan Zheng 已提交
2143

2144
	if (device->bdev) {
2145
		cur_devices->open_devices--;
2146
		/* remove sysfs entry */
2147
		btrfs_sysfs_remove_devices_dir(fs_devices, device);
2148
	}
2149

2150 2151
	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2152
	mutex_unlock(&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
2153

2154 2155 2156 2157 2158
	/*
	 * at this point, the device is zero sized and detached from
	 * the devices list.  All that's left is to zero out the old
	 * supers and free the device.
	 */
2159
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2160 2161
		btrfs_scratch_superblocks(fs_info, device->bdev,
					  device->name->str);
2162 2163

	btrfs_close_bdev(device);
2164 2165
	synchronize_rcu();
	btrfs_free_device(device);
2166

2167
	if (cur_devices->open_devices == 0) {
Y
Yan Zheng 已提交
2168
		while (fs_devices) {
2169 2170
			if (fs_devices->seed == cur_devices) {
				fs_devices->seed = cur_devices->seed;
Y
Yan Zheng 已提交
2171
				break;
2172
			}
Y
Yan Zheng 已提交
2173
			fs_devices = fs_devices->seed;
Y
Yan Zheng 已提交
2174
		}
2175
		cur_devices->seed = NULL;
2176
		close_fs_devices(cur_devices);
2177
		free_fs_devices(cur_devices);
Y
Yan Zheng 已提交
2178 2179
	}

2180 2181 2182
out:
	mutex_unlock(&uuid_mutex);
	return ret;
2183

2184
error_undo:
2185
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2186
		mutex_lock(&fs_info->chunk_mutex);
2187
		list_add(&device->dev_alloc_list,
2188
			 &fs_devices->alloc_list);
2189
		device->fs_devices->rw_devices++;
2190
		mutex_unlock(&fs_info->chunk_mutex);
2191
	}
2192
	goto out;
2193 2194
}

2195
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2196
{
2197 2198
	struct btrfs_fs_devices *fs_devices;

2199
	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2200

2201 2202 2203 2204 2205 2206 2207
	/*
	 * in case of fs with no seed, srcdev->fs_devices will point
	 * to fs_devices of fs_info. However when the dev being replaced is
	 * a seed dev it will point to the seed's local fs_devices. In short
	 * srcdev will have its correct fs_devices in both the cases.
	 */
	fs_devices = srcdev->fs_devices;
2208

2209
	list_del_rcu(&srcdev->dev_list);
2210
	list_del(&srcdev->dev_alloc_list);
2211
	fs_devices->num_devices--;
2212
	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2213
		fs_devices->missing_devices--;
2214

2215
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2216
		fs_devices->rw_devices--;
2217

2218
	if (srcdev->bdev)
2219
		fs_devices->open_devices--;
2220 2221
}

2222
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2223
{
2224
	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2225
	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2226

2227 2228
	mutex_lock(&uuid_mutex);

2229
	btrfs_close_bdev(srcdev);
2230 2231
	synchronize_rcu();
	btrfs_free_device(srcdev);
2232 2233 2234 2235 2236

	/* if this is no devs we rather delete the fs_devices */
	if (!fs_devices->num_devices) {
		struct btrfs_fs_devices *tmp_fs_devices;

2237 2238 2239 2240 2241 2242 2243 2244
		/*
		 * On a mounted FS, num_devices can't be zero unless it's a
		 * seed. In case of a seed device being replaced, the replace
		 * target added to the sprout FS, so there will be no more
		 * device left under the seed FS.
		 */
		ASSERT(fs_devices->seeding);

2245 2246 2247 2248 2249 2250 2251 2252 2253
		tmp_fs_devices = fs_info->fs_devices;
		while (tmp_fs_devices) {
			if (tmp_fs_devices->seed == fs_devices) {
				tmp_fs_devices->seed = fs_devices->seed;
				break;
			}
			tmp_fs_devices = tmp_fs_devices->seed;
		}
		fs_devices->seed = NULL;
2254
		close_fs_devices(fs_devices);
2255
		free_fs_devices(fs_devices);
2256
	}
2257
	mutex_unlock(&uuid_mutex);
2258 2259
}

2260
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2261
{
2262
	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2263 2264

	mutex_lock(&fs_devices->device_list_mutex);
2265

2266
	btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev);
2267

2268
	if (tgtdev->bdev)
2269
		fs_devices->open_devices--;
2270

2271
	fs_devices->num_devices--;
2272

2273
	btrfs_assign_next_active_device(tgtdev, NULL);
2274 2275 2276

	list_del_rcu(&tgtdev->dev_list);

2277
	mutex_unlock(&fs_devices->device_list_mutex);
2278 2279 2280 2281 2282 2283 2284 2285

	/*
	 * The update_dev_time() with in btrfs_scratch_superblocks()
	 * may lead to a call to btrfs_show_devname() which will try
	 * to hold device_list_mutex. And here this device
	 * is already out of device list, so we don't have to hold
	 * the device_list_mutex lock.
	 */
2286 2287
	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
				  tgtdev->name->str);
2288 2289

	btrfs_close_bdev(tgtdev);
2290 2291
	synchronize_rcu();
	btrfs_free_device(tgtdev);
2292 2293
}

2294 2295
static struct btrfs_device *btrfs_find_device_by_path(
		struct btrfs_fs_info *fs_info, const char *device_path)
2296 2297 2298 2299 2300 2301
{
	int ret = 0;
	struct btrfs_super_block *disk_super;
	u64 devid;
	u8 *dev_uuid;
	struct block_device *bdev;
2302
	struct btrfs_device *device;
2303 2304

	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2305
				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2306
	if (ret)
2307
		return ERR_PTR(ret);
2308

2309 2310
	devid = btrfs_stack_device_id(&disk_super->dev_item);
	dev_uuid = disk_super->dev_item.uuid;
2311
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2312
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2313
					   disk_super->metadata_uuid, true);
2314
	else
2315
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2316
					   disk_super->fsid, true);
2317

2318
	btrfs_release_disk_super(disk_super);
2319 2320
	if (!device)
		device = ERR_PTR(-ENOENT);
2321
	blkdev_put(bdev, FMODE_READ);
2322
	return device;
2323 2324
}

2325 2326 2327
/*
 * Lookup a device given by device id, or the path if the id is 0.
 */
2328
struct btrfs_device *btrfs_find_device_by_devspec(
2329 2330
		struct btrfs_fs_info *fs_info, u64 devid,
		const char *device_path)
2331
{
2332
	struct btrfs_device *device;
2333

2334
	if (devid) {
2335
		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2336
					   NULL, true);
2337 2338
		if (!device)
			return ERR_PTR(-ENOENT);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
		return device;
	}

	if (!device_path || !device_path[0])
		return ERR_PTR(-EINVAL);

	if (strcmp(device_path, "missing") == 0) {
		/* Find first missing device */
		list_for_each_entry(device, &fs_info->fs_devices->devices,
				    dev_list) {
			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				     &device->dev_state) && !device->bdev)
				return device;
2352
		}
2353
		return ERR_PTR(-ENOENT);
2354
	}
2355 2356

	return btrfs_find_device_by_path(fs_info, device_path);
2357 2358
}

Y
Yan Zheng 已提交
2359 2360 2361
/*
 * does all the dirty work required for changing file system's UUID.
 */
2362
static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
2363
{
2364
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2365
	struct btrfs_fs_devices *old_devices;
Y
Yan Zheng 已提交
2366
	struct btrfs_fs_devices *seed_devices;
2367
	struct btrfs_super_block *disk_super = fs_info->super_copy;
Y
Yan Zheng 已提交
2368 2369 2370
	struct btrfs_device *device;
	u64 super_flags;

2371
	lockdep_assert_held(&uuid_mutex);
Y
Yan Zheng 已提交
2372
	if (!fs_devices->seeding)
Y
Yan Zheng 已提交
2373 2374
		return -EINVAL;

2375
	seed_devices = alloc_fs_devices(NULL, NULL);
2376 2377
	if (IS_ERR(seed_devices))
		return PTR_ERR(seed_devices);
Y
Yan Zheng 已提交
2378

Y
Yan Zheng 已提交
2379 2380 2381 2382
	old_devices = clone_fs_devices(fs_devices);
	if (IS_ERR(old_devices)) {
		kfree(seed_devices);
		return PTR_ERR(old_devices);
Y
Yan Zheng 已提交
2383
	}
Y
Yan Zheng 已提交
2384

2385
	list_add(&old_devices->fs_list, &fs_uuids);
Y
Yan Zheng 已提交
2386

Y
Yan Zheng 已提交
2387 2388 2389 2390
	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
	seed_devices->opened = 1;
	INIT_LIST_HEAD(&seed_devices->devices);
	INIT_LIST_HEAD(&seed_devices->alloc_list);
2391
	mutex_init(&seed_devices->device_list_mutex);
2392

2393
	mutex_lock(&fs_devices->device_list_mutex);
2394 2395
	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
			      synchronize_rcu);
M
Miao Xie 已提交
2396 2397
	list_for_each_entry(device, &seed_devices->devices, dev_list)
		device->fs_devices = seed_devices;
2398

2399
	mutex_lock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2400
	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2401
	mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2402

2403
	fs_devices->seeding = false;
Y
Yan Zheng 已提交
2404 2405
	fs_devices->num_devices = 0;
	fs_devices->open_devices = 0;
2406
	fs_devices->missing_devices = 0;
2407
	fs_devices->rotating = false;
Y
Yan Zheng 已提交
2408
	fs_devices->seed = seed_devices;
Y
Yan Zheng 已提交
2409 2410

	generate_random_uuid(fs_devices->fsid);
2411
	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
2412
	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2413
	mutex_unlock(&fs_devices->device_list_mutex);
2414

Y
Yan Zheng 已提交
2415 2416 2417 2418 2419 2420 2421 2422
	super_flags = btrfs_super_flags(disk_super) &
		      ~BTRFS_SUPER_FLAG_SEEDING;
	btrfs_set_super_flags(disk_super, super_flags);

	return 0;
}

/*
2423
 * Store the expected generation for seed devices in device items.
Y
Yan Zheng 已提交
2424
 */
2425
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
2426
{
2427
	struct btrfs_fs_info *fs_info = trans->fs_info;
2428
	struct btrfs_root *root = fs_info->chunk_root;
Y
Yan Zheng 已提交
2429 2430 2431 2432 2433
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_dev_item *dev_item;
	struct btrfs_device *device;
	struct btrfs_key key;
2434
	u8 fs_uuid[BTRFS_FSID_SIZE];
Y
Yan Zheng 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	u8 dev_uuid[BTRFS_UUID_SIZE];
	u64 devid;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = BTRFS_DEV_ITEM_KEY;

	while (1) {
		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
		if (ret < 0)
			goto error;

		leaf = path->nodes[0];
next_slot:
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret > 0)
				break;
			if (ret < 0)
				goto error;
			leaf = path->nodes[0];
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2462
			btrfs_release_path(path);
Y
Yan Zheng 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
		    key.type != BTRFS_DEV_ITEM_KEY)
			break;

		dev_item = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_dev_item);
		devid = btrfs_device_id(leaf, dev_item);
2474
		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
Y
Yan Zheng 已提交
2475
				   BTRFS_UUID_SIZE);
2476
		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2477
				   BTRFS_FSID_SIZE);
2478
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2479
					   fs_uuid, true);
2480
		BUG_ON(!device); /* Logic error */
Y
Yan Zheng 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

		if (device->fs_devices->seeding) {
			btrfs_set_device_generation(leaf, dev_item,
						    device->generation);
			btrfs_mark_buffer_dirty(leaf);
		}

		path->slots[0]++;
		goto next_slot;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

2497
int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2498
{
2499
	struct btrfs_root *root = fs_info->dev_root;
2500
	struct request_queue *q;
2501 2502 2503
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
2504
	struct super_block *sb = fs_info->sb;
2505
	struct rcu_string *name;
2506
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2507 2508
	u64 orig_super_total_bytes;
	u64 orig_super_num_devices;
Y
Yan Zheng 已提交
2509
	int seeding_dev = 0;
2510
	int ret = 0;
2511
	bool unlocked = false;
2512

2513
	if (sb_rdonly(sb) && !fs_devices->seeding)
2514
		return -EROFS;
2515

2516
	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2517
				  fs_info->bdev_holder);
2518 2519
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);
2520

2521
	if (fs_devices->seeding) {
Y
Yan Zheng 已提交
2522 2523 2524 2525 2526
		seeding_dev = 1;
		down_write(&sb->s_umount);
		mutex_lock(&uuid_mutex);
	}

2527
	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2528

2529
	mutex_lock(&fs_devices->device_list_mutex);
2530
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2531 2532
		if (device->bdev == bdev) {
			ret = -EEXIST;
2533
			mutex_unlock(
2534
				&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
2535
			goto error;
2536 2537
		}
	}
2538
	mutex_unlock(&fs_devices->device_list_mutex);
2539

2540
	device = btrfs_alloc_device(fs_info, NULL, NULL);
2541
	if (IS_ERR(device)) {
2542
		/* we can safely leave the fs_devices entry around */
2543
		ret = PTR_ERR(device);
Y
Yan Zheng 已提交
2544
		goto error;
2545 2546
	}

2547
	name = rcu_string_strdup(device_path, GFP_KERNEL);
2548
	if (!name) {
Y
Yan Zheng 已提交
2549
		ret = -ENOMEM;
2550
		goto error_free_device;
2551
	}
2552
	rcu_assign_pointer(device->name, name);
Y
Yan Zheng 已提交
2553

2554
	trans = btrfs_start_transaction(root, 0);
2555 2556
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
2557
		goto error_free_device;
2558 2559
	}

2560
	q = bdev_get_queue(bdev);
2561
	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
Y
Yan Zheng 已提交
2562
	device->generation = trans->transid;
2563 2564 2565
	device->io_width = fs_info->sectorsize;
	device->io_align = fs_info->sectorsize;
	device->sector_size = fs_info->sectorsize;
2566 2567
	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
					 fs_info->sectorsize);
2568
	device->disk_total_bytes = device->total_bytes;
2569
	device->commit_total_bytes = device->total_bytes;
2570
	device->fs_info = fs_info;
2571
	device->bdev = bdev;
2572
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2573
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2574
	device->mode = FMODE_EXCL;
2575
	device->dev_stats_valid = 1;
2576
	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2577

Y
Yan Zheng 已提交
2578
	if (seeding_dev) {
2579
		sb->s_flags &= ~SB_RDONLY;
2580
		ret = btrfs_prepare_sprout(fs_info);
2581 2582 2583 2584
		if (ret) {
			btrfs_abort_transaction(trans, ret);
			goto error_trans;
		}
Y
Yan Zheng 已提交
2585
	}
2586

2587
	device->fs_devices = fs_devices;
2588

2589
	mutex_lock(&fs_devices->device_list_mutex);
2590
	mutex_lock(&fs_info->chunk_mutex);
2591 2592 2593 2594 2595 2596 2597
	list_add_rcu(&device->dev_list, &fs_devices->devices);
	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
	fs_devices->num_devices++;
	fs_devices->open_devices++;
	fs_devices->rw_devices++;
	fs_devices->total_devices++;
	fs_devices->total_rw_bytes += device->total_bytes;
2598

2599
	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2600

2601
	if (!blk_queue_nonrot(q))
2602
		fs_devices->rotating = true;
C
Chris Mason 已提交
2603

2604
	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2605
	btrfs_set_super_total_bytes(fs_info->super_copy,
2606 2607
		round_down(orig_super_total_bytes + device->total_bytes,
			   fs_info->sectorsize));
2608

2609 2610 2611
	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices + 1);
2612 2613

	/* add sysfs device entry */
2614
	btrfs_sysfs_add_devices_dir(fs_devices, device);
2615

M
Miao Xie 已提交
2616 2617 2618 2619
	/*
	 * we've got more storage, clear any full flags on the space
	 * infos
	 */
2620
	btrfs_clear_space_info_full(fs_info);
M
Miao Xie 已提交
2621

2622
	mutex_unlock(&fs_info->chunk_mutex);
2623
	mutex_unlock(&fs_devices->device_list_mutex);
2624

Y
Yan Zheng 已提交
2625
	if (seeding_dev) {
2626
		mutex_lock(&fs_info->chunk_mutex);
2627
		ret = init_first_rw_device(trans);
2628
		mutex_unlock(&fs_info->chunk_mutex);
2629
		if (ret) {
2630
			btrfs_abort_transaction(trans, ret);
2631
			goto error_sysfs;
2632
		}
M
Miao Xie 已提交
2633 2634
	}

2635
	ret = btrfs_add_dev_item(trans, device);
M
Miao Xie 已提交
2636
	if (ret) {
2637
		btrfs_abort_transaction(trans, ret);
2638
		goto error_sysfs;
M
Miao Xie 已提交
2639 2640 2641
	}

	if (seeding_dev) {
2642
		ret = btrfs_finish_sprout(trans);
2643
		if (ret) {
2644
			btrfs_abort_transaction(trans, ret);
2645
			goto error_sysfs;
2646
		}
2647

2648 2649 2650 2651 2652
		/*
		 * fs_devices now represents the newly sprouted filesystem and
		 * its fsid has been changed by btrfs_prepare_sprout
		 */
		btrfs_sysfs_update_sprout_fsid(fs_devices);
Y
Yan Zheng 已提交
2653 2654
	}

2655
	ret = btrfs_commit_transaction(trans);
2656

Y
Yan Zheng 已提交
2657 2658 2659
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
2660
		unlocked = true;
2661

2662 2663 2664
		if (ret) /* transaction commit */
			return ret;

2665
		ret = btrfs_relocate_sys_chunks(fs_info);
2666
		if (ret < 0)
2667
			btrfs_handle_fs_error(fs_info, ret,
J
Jeff Mahoney 已提交
2668
				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2669 2670 2671 2672
		trans = btrfs_attach_transaction(root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) == -ENOENT)
				return 0;
2673 2674 2675
			ret = PTR_ERR(trans);
			trans = NULL;
			goto error_sysfs;
2676
		}
2677
		ret = btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
2678
	}
2679

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	/*
	 * Now that we have written a new super block to this device, check all
	 * other fs_devices list if device_path alienates any other scanned
	 * device.
	 * We can ignore the return value as it typically returns -EINVAL and
	 * only succeeds if the device was an alien.
	 */
	btrfs_forget_devices(device_path);

	/* Update ctime/mtime for blkid or udev */
2690
	update_dev_time(device_path);
2691

Y
Yan Zheng 已提交
2692
	return ret;
2693

2694
error_sysfs:
2695
	btrfs_sysfs_remove_devices_dir(fs_devices, device);
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	mutex_lock(&fs_info->chunk_mutex);
	list_del_rcu(&device->dev_list);
	list_del(&device->dev_alloc_list);
	fs_info->fs_devices->num_devices--;
	fs_info->fs_devices->open_devices--;
	fs_info->fs_devices->rw_devices--;
	fs_info->fs_devices->total_devices--;
	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
	btrfs_set_super_total_bytes(fs_info->super_copy,
				    orig_super_total_bytes);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices);
	mutex_unlock(&fs_info->chunk_mutex);
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2712
error_trans:
2713
	if (seeding_dev)
2714
		sb->s_flags |= SB_RDONLY;
2715 2716
	if (trans)
		btrfs_end_transaction(trans);
2717
error_free_device:
2718
	btrfs_free_device(device);
Y
Yan Zheng 已提交
2719
error:
2720
	blkdev_put(bdev, FMODE_EXCL);
2721
	if (seeding_dev && !unlocked) {
Y
Yan Zheng 已提交
2722 2723 2724
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
	}
2725
	return ret;
2726 2727
}

C
Chris Mason 已提交
2728 2729
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
					struct btrfs_device *device)
2730 2731 2732
{
	int ret;
	struct btrfs_path *path;
2733
	struct btrfs_root *root = device->fs_info->chunk_root;
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2763 2764 2765 2766
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
2767 2768 2769 2770 2771 2772 2773
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

M
Miao Xie 已提交
2774
int btrfs_grow_device(struct btrfs_trans_handle *trans,
2775 2776
		      struct btrfs_device *device, u64 new_size)
{
2777 2778
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_super_block *super_copy = fs_info->super_copy;
M
Miao Xie 已提交
2779 2780
	u64 old_total;
	u64 diff;
2781

2782
	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
Y
Yan Zheng 已提交
2783
		return -EACCES;
M
Miao Xie 已提交
2784

2785 2786
	new_size = round_down(new_size, fs_info->sectorsize);

2787
	mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2788
	old_total = btrfs_super_total_bytes(super_copy);
2789
	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
M
Miao Xie 已提交
2790

2791
	if (new_size <= device->total_bytes ||
2792
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2793
		mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2794
		return -EINVAL;
M
Miao Xie 已提交
2795
	}
Y
Yan Zheng 已提交
2796

2797 2798
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total + diff, fs_info->sectorsize));
Y
Yan Zheng 已提交
2799 2800
	device->fs_devices->total_rw_bytes += diff;

2801 2802
	btrfs_device_set_total_bytes(device, new_size);
	btrfs_device_set_disk_total_bytes(device, new_size);
2803
	btrfs_clear_space_info_full(device->fs_info);
2804 2805 2806
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
2807
	mutex_unlock(&fs_info->chunk_mutex);
2808

2809 2810 2811
	return btrfs_update_device(trans, device);
}

2812
static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2813
{
2814
	struct btrfs_fs_info *fs_info = trans->fs_info;
2815
	struct btrfs_root *root = fs_info->chunk_root;
2816 2817 2818 2819 2820 2821 2822 2823
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2824
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2825 2826 2827 2828
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2829 2830 2831
	if (ret < 0)
		goto out;
	else if (ret > 0) { /* Logic error or corruption */
2832 2833
		btrfs_handle_fs_error(fs_info, -ENOENT,
				      "Failed lookup while freeing chunk.");
2834 2835 2836
		ret = -ENOENT;
		goto out;
	}
2837 2838

	ret = btrfs_del_item(trans, root, path);
2839
	if (ret < 0)
2840 2841
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to delete chunk item.");
2842
out:
2843
	btrfs_free_path(path);
2844
	return ret;
2845 2846
}

2847
static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2848
{
2849
	struct btrfs_super_block *super_copy = fs_info->super_copy;
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

2860
	mutex_lock(&fs_info->chunk_mutex);
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
2880
		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2881 2882 2883 2884 2885 2886 2887 2888 2889
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
2890
	mutex_unlock(&fs_info->chunk_mutex);
2891 2892 2893
	return ret;
}

2894 2895 2896 2897 2898 2899 2900 2901 2902
/*
 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
 * @logical: Logical block offset in bytes.
 * @length: Length of extent in bytes.
 *
 * Return: Chunk mapping or ERR_PTR.
 */
struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
				       u64 logical, u64 length)
2903 2904 2905 2906
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;

2907
	em_tree = &fs_info->mapping_tree;
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, length);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
			   logical, length);
		return ERR_PTR(-EINVAL);
	}

	if (em->start > logical || em->start + em->len < logical) {
		btrfs_crit(fs_info,
			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
			   logical, length, em->start, em->start + em->len);
		free_extent_map(em);
		return ERR_PTR(-EINVAL);
	}

	/* callers are responsible for dropping em's ref. */
	return em;
}

2930
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2931
{
2932
	struct btrfs_fs_info *fs_info = trans->fs_info;
2933 2934
	struct extent_map *em;
	struct map_lookup *map;
M
Miao Xie 已提交
2935
	u64 dev_extent_len = 0;
2936
	int i, ret = 0;
2937
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2938

2939
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2940
	if (IS_ERR(em)) {
2941 2942
		/*
		 * This is a logic error, but we don't want to just rely on the
2943
		 * user having built with ASSERT enabled, so if ASSERT doesn't
2944 2945 2946
		 * do anything we still error out.
		 */
		ASSERT(0);
2947
		return PTR_ERR(em);
2948
	}
2949
	map = em->map_lookup;
2950
	mutex_lock(&fs_info->chunk_mutex);
2951
	check_system_chunk(trans, map->type);
2952
	mutex_unlock(&fs_info->chunk_mutex);
2953

2954 2955 2956 2957 2958 2959
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
	mutex_lock(&fs_devices->device_list_mutex);
2960
	for (i = 0; i < map->num_stripes; i++) {
2961
		struct btrfs_device *device = map->stripes[i].dev;
M
Miao Xie 已提交
2962 2963 2964
		ret = btrfs_free_dev_extent(trans, device,
					    map->stripes[i].physical,
					    &dev_extent_len);
2965
		if (ret) {
2966
			mutex_unlock(&fs_devices->device_list_mutex);
2967
			btrfs_abort_transaction(trans, ret);
2968 2969
			goto out;
		}
2970

M
Miao Xie 已提交
2971
		if (device->bytes_used > 0) {
2972
			mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2973 2974
			btrfs_device_set_bytes_used(device,
					device->bytes_used - dev_extent_len);
2975
			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2976
			btrfs_clear_space_info_full(fs_info);
2977
			mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2978
		}
2979

2980 2981 2982 2983 2984
		ret = btrfs_update_device(trans, device);
		if (ret) {
			mutex_unlock(&fs_devices->device_list_mutex);
			btrfs_abort_transaction(trans, ret);
			goto out;
2985
		}
2986
	}
2987 2988
	mutex_unlock(&fs_devices->device_list_mutex);

2989
	ret = btrfs_free_chunk(trans, chunk_offset);
2990
	if (ret) {
2991
		btrfs_abort_transaction(trans, ret);
2992 2993
		goto out;
	}
2994

2995
	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2996

2997
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2998
		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2999
		if (ret) {
3000
			btrfs_abort_transaction(trans, ret);
3001 3002
			goto out;
		}
3003 3004
	}

3005
	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3006
	if (ret) {
3007
		btrfs_abort_transaction(trans, ret);
3008 3009
		goto out;
	}
Y
Yan Zheng 已提交
3010

3011
out:
Y
Yan Zheng 已提交
3012 3013
	/* once for us */
	free_extent_map(em);
3014 3015
	return ret;
}
Y
Yan Zheng 已提交
3016

3017
static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3018
{
3019
	struct btrfs_root *root = fs_info->chunk_root;
3020
	struct btrfs_trans_handle *trans;
3021
	struct btrfs_block_group *block_group;
3022
	int ret;
Y
Yan Zheng 已提交
3023

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	/*
	 * Prevent races with automatic removal of unused block groups.
	 * After we relocate and before we remove the chunk with offset
	 * chunk_offset, automatic removal of the block group can kick in,
	 * resulting in a failure when calling btrfs_remove_chunk() below.
	 *
	 * Make sure to acquire this mutex before doing a tree search (dev
	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
	 * we release the path used to search the chunk/dev tree and before
	 * the current task acquires this mutex and calls us.
	 */
3036
	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3037

3038
	/* step one, relocate all the extents inside this chunk */
3039
	btrfs_scrub_pause(fs_info);
3040
	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3041
	btrfs_scrub_continue(fs_info);
3042 3043 3044
	if (ret)
		return ret;

3045 3046 3047 3048 3049 3050
	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
	if (!block_group)
		return -ENOENT;
	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
	btrfs_put_block_group(block_group);

3051 3052 3053 3054 3055 3056 3057 3058
	trans = btrfs_start_trans_remove_block_group(root->fs_info,
						     chunk_offset);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		btrfs_handle_fs_error(root->fs_info, ret, NULL);
		return ret;
	}

3059
	/*
3060 3061
	 * step two, delete the device extents and the
	 * chunk tree entries
3062
	 */
3063
	ret = btrfs_remove_chunk(trans, chunk_offset);
3064
	btrfs_end_transaction(trans);
3065
	return ret;
Y
Yan Zheng 已提交
3066 3067
}

3068
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
3069
{
3070
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
3071 3072 3073 3074 3075 3076
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	struct btrfs_key found_key;
	u64 chunk_type;
3077 3078
	bool retried = false;
	int failed = 0;
Y
Yan Zheng 已提交
3079 3080 3081 3082 3083 3084
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3085
again:
Y
Yan Zheng 已提交
3086 3087 3088 3089 3090
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while (1) {
3091
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3092
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3093
		if (ret < 0) {
3094
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3095
			goto error;
3096
		}
3097
		BUG_ON(ret == 0); /* Corruption */
Y
Yan Zheng 已提交
3098 3099 3100

		ret = btrfs_previous_item(chunk_root, path, key.objectid,
					  key.type);
3101
		if (ret)
3102
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3103 3104 3105 3106
		if (ret < 0)
			goto error;
		if (ret > 0)
			break;
Z
Zheng Yan 已提交
3107

Y
Yan Zheng 已提交
3108 3109
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
Z
Zheng Yan 已提交
3110

Y
Yan Zheng 已提交
3111 3112 3113
		chunk = btrfs_item_ptr(leaf, path->slots[0],
				       struct btrfs_chunk);
		chunk_type = btrfs_chunk_type(leaf, chunk);
3114
		btrfs_release_path(path);
3115

Y
Yan Zheng 已提交
3116
		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3117
			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3118 3119
			if (ret == -ENOSPC)
				failed++;
H
HIMANGI SARAOGI 已提交
3120 3121
			else
				BUG_ON(ret);
Y
Yan Zheng 已提交
3122
		}
3123
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3124

Y
Yan Zheng 已提交
3125 3126 3127 3128 3129
		if (found_key.offset == 0)
			break;
		key.offset = found_key.offset - 1;
	}
	ret = 0;
3130 3131 3132 3133
	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
3134
	} else if (WARN_ON(failed && retried)) {
3135 3136
		ret = -ENOSPC;
	}
Y
Yan Zheng 已提交
3137 3138 3139
error:
	btrfs_free_path(path);
	return ret;
3140 3141
}

3142 3143 3144 3145 3146 3147 3148 3149
/*
 * return 1 : allocate a data chunk successfully,
 * return <0: errors during allocating a data chunk,
 * return 0 : no need to allocate a data chunk.
 */
static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
				      u64 chunk_offset)
{
3150
	struct btrfs_block_group *cache;
3151 3152 3153 3154 3155 3156 3157 3158
	u64 bytes_used;
	u64 chunk_type;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
	ASSERT(cache);
	chunk_type = cache->flags;
	btrfs_put_block_group(cache);

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
		return 0;

	spin_lock(&fs_info->data_sinfo->lock);
	bytes_used = fs_info->data_sinfo->bytes_used;
	spin_unlock(&fs_info->data_sinfo->lock);

	if (!bytes_used) {
		struct btrfs_trans_handle *trans;
		int ret;

		trans =	btrfs_join_transaction(fs_info->tree_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);

		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
		btrfs_end_transaction(trans);
		if (ret < 0)
			return ret;
		return 1;
3179
	}
3180

3181 3182 3183
	return 0;
}

3184
static int insert_balance_item(struct btrfs_fs_info *fs_info,
3185 3186
			       struct btrfs_balance_control *bctl)
{
3187
	struct btrfs_root *root = fs_info->tree_root;
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	struct btrfs_trans_handle *trans;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3207
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	key.offset = 0;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*item));
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

3218
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
	btrfs_set_balance_data(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
	btrfs_set_balance_meta(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
	btrfs_set_balance_sys(leaf, item, &disk_bargs);

	btrfs_set_balance_flags(leaf, item, bctl->flags);

	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
3232
	err = btrfs_commit_transaction(trans);
3233 3234 3235 3236 3237
	if (err && !ret)
		ret = err;
	return ret;
}

3238
static int del_balance_item(struct btrfs_fs_info *fs_info)
3239
{
3240
	struct btrfs_root *root = fs_info->tree_root;
3241 3242 3243 3244 3245 3246 3247 3248 3249
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3250
	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3251 3252 3253 3254 3255 3256
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3257
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
	key.offset = 0;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
out:
	btrfs_free_path(path);
3271
	err = btrfs_commit_transaction(trans);
3272 3273 3274 3275 3276
	if (err && !ret)
		ret = err;
	return ret;
}

I
Ilya Dryomov 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
/*
 * This is a heuristic used to reduce the number of chunks balanced on
 * resume after balance was interrupted.
 */
static void update_balance_args(struct btrfs_balance_control *bctl)
{
	/*
	 * Turn on soft mode for chunk types that were being converted.
	 */
	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;

	/*
	 * Turn on usage filter if is not already used.  The idea is
	 * that chunks that we have already balanced should be
	 * reasonably full.  Don't do it for chunks that are being
	 * converted - that will keep us from relocating unconverted
	 * (albeit full) chunks.
	 */
	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3301
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3302 3303 3304 3305 3306
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->data.usage = 90;
	}
	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3307
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3308 3309 3310 3311 3312
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->sys.usage = 90;
	}
	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3313
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3314 3315 3316 3317 3318 3319
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->meta.usage = 90;
	}
}

3320 3321 3322 3323
/*
 * Clear the balance status in fs_info and delete the balance item from disk.
 */
static void reset_balance_state(struct btrfs_fs_info *fs_info)
3324 3325
{
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3326
	int ret;
3327 3328 3329 3330 3331 3332 3333 3334

	BUG_ON(!fs_info->balance_ctl);

	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = NULL;
	spin_unlock(&fs_info->balance_lock);

	kfree(bctl);
3335 3336 3337
	ret = del_balance_item(fs_info);
	if (ret)
		btrfs_handle_fs_error(fs_info, ret, NULL);
3338 3339
}

I
Ilya Dryomov 已提交
3340 3341 3342 3343
/*
 * Balance filters.  Return 1 if chunk should be filtered out
 * (should not be balanced).
 */
3344
static int chunk_profiles_filter(u64 chunk_type,
I
Ilya Dryomov 已提交
3345 3346
				 struct btrfs_balance_args *bargs)
{
3347 3348
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
I
Ilya Dryomov 已提交
3349

3350
	if (bargs->profiles & chunk_type)
I
Ilya Dryomov 已提交
3351 3352 3353 3354 3355
		return 0;

	return 1;
}

3356
static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
I
Ilya Dryomov 已提交
3357
			      struct btrfs_balance_args *bargs)
3358
{
3359
	struct btrfs_block_group *cache;
3360 3361 3362 3363 3364 3365
	u64 chunk_used;
	u64 user_thresh_min;
	u64 user_thresh_max;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3366
	chunk_used = cache->used;
3367 3368 3369 3370

	if (bargs->usage_min == 0)
		user_thresh_min = 0;
	else
3371 3372
		user_thresh_min = div_factor_fine(cache->length,
						  bargs->usage_min);
3373 3374 3375 3376

	if (bargs->usage_max == 0)
		user_thresh_max = 1;
	else if (bargs->usage_max > 100)
3377
		user_thresh_max = cache->length;
3378
	else
3379 3380
		user_thresh_max = div_factor_fine(cache->length,
						  bargs->usage_max);
3381 3382 3383 3384 3385 3386 3387 3388

	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

3389
static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3390
		u64 chunk_offset, struct btrfs_balance_args *bargs)
I
Ilya Dryomov 已提交
3391
{
3392
	struct btrfs_block_group *cache;
I
Ilya Dryomov 已提交
3393 3394 3395 3396
	u64 chunk_used, user_thresh;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397
	chunk_used = cache->used;
I
Ilya Dryomov 已提交
3398

3399
	if (bargs->usage_min == 0)
3400
		user_thresh = 1;
3401
	else if (bargs->usage > 100)
3402
		user_thresh = cache->length;
3403
	else
3404
		user_thresh = div_factor_fine(cache->length, bargs->usage);
3405

I
Ilya Dryomov 已提交
3406 3407 3408 3409 3410 3411 3412
	if (chunk_used < user_thresh)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

I
Ilya Dryomov 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
static int chunk_devid_filter(struct extent_buffer *leaf,
			      struct btrfs_chunk *chunk,
			      struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	int i;

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
			return 0;
	}

	return 1;
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
static u64 calc_data_stripes(u64 type, int num_stripes)
{
	const int index = btrfs_bg_flags_to_raid_index(type);
	const int ncopies = btrfs_raid_array[index].ncopies;
	const int nparity = btrfs_raid_array[index].nparity;

	if (nparity)
		return num_stripes - nparity;
	else
		return num_stripes / ncopies;
}

I
Ilya Dryomov 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450
/* [pstart, pend) */
static int chunk_drange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	u64 stripe_offset;
	u64 stripe_length;
3451
	u64 type;
I
Ilya Dryomov 已提交
3452 3453 3454 3455 3456 3457
	int factor;
	int i;

	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
		return 0;

3458 3459
	type = btrfs_chunk_type(leaf, chunk);
	factor = calc_data_stripes(type, num_stripes);
I
Ilya Dryomov 已提交
3460 3461 3462 3463 3464 3465 3466 3467

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
			continue;

		stripe_offset = btrfs_stripe_offset(leaf, stripe);
		stripe_length = btrfs_chunk_length(leaf, chunk);
3468
		stripe_length = div_u64(stripe_length, factor);
I
Ilya Dryomov 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477

		if (stripe_offset < bargs->pend &&
		    stripe_offset + stripe_length > bargs->pstart)
			return 0;
	}

	return 1;
}

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
/* [vstart, vend) */
static int chunk_vrange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       u64 chunk_offset,
			       struct btrfs_balance_args *bargs)
{
	if (chunk_offset < bargs->vend &&
	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
		/* at least part of the chunk is inside this vrange */
		return 0;

	return 1;
}

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
static int chunk_stripes_range_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

	if (bargs->stripes_min <= num_stripes
			&& num_stripes <= bargs->stripes_max)
		return 0;

	return 1;
}

3505
static int chunk_soft_convert_filter(u64 chunk_type,
3506 3507 3508 3509 3510
				     struct btrfs_balance_args *bargs)
{
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return 0;

3511 3512
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
3513

3514
	if (bargs->target == chunk_type)
3515 3516 3517 3518 3519
		return 1;

	return 0;
}

3520
static int should_balance_chunk(struct extent_buffer *leaf,
3521 3522
				struct btrfs_chunk *chunk, u64 chunk_offset)
{
3523
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3524
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	struct btrfs_balance_args *bargs = NULL;
	u64 chunk_type = btrfs_chunk_type(leaf, chunk);

	/* type filter */
	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
		return 0;
	}

	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
		bargs = &bctl->data;
	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
		bargs = &bctl->sys;
	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
		bargs = &bctl->meta;

I
Ilya Dryomov 已提交
3541 3542 3543 3544
	/* profiles filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
	    chunk_profiles_filter(chunk_type, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3545 3546 3547 3548
	}

	/* usage filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549
	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
I
Ilya Dryomov 已提交
3550
		return 0;
3551
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3552
	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3553
		return 0;
I
Ilya Dryomov 已提交
3554 3555 3556 3557 3558 3559
	}

	/* devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
	    chunk_devid_filter(leaf, chunk, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3560 3561 3562 3563
	}

	/* drange filter, makes sense only with devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3564
	    chunk_drange_filter(leaf, chunk, bargs)) {
I
Ilya Dryomov 已提交
3565
		return 0;
3566 3567 3568 3569 3570 3571
	}

	/* vrange filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3572 3573
	}

3574 3575 3576 3577 3578 3579
	/* stripes filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
		return 0;
	}

3580 3581 3582 3583 3584 3585
	/* soft profile changing mode */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
	    chunk_soft_convert_filter(chunk_type, bargs)) {
		return 0;
	}

3586 3587 3588 3589 3590 3591 3592 3593
	/*
	 * limited by count, must be the last filter
	 */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
		if (bargs->limit == 0)
			return 0;
		else
			bargs->limit--;
3594 3595 3596
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
		/*
		 * Same logic as the 'limit' filter; the minimum cannot be
3597
		 * determined here because we do not have the global information
3598 3599 3600 3601 3602 3603
		 * about the count of all chunks that satisfy the filters.
		 */
		if (bargs->limit_max == 0)
			return 0;
		else
			bargs->limit_max--;
3604 3605
	}

3606 3607 3608
	return 1;
}

3609
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3610
{
3611
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3612
	struct btrfs_root *chunk_root = fs_info->chunk_root;
3613
	u64 chunk_type;
3614
	struct btrfs_chunk *chunk;
3615
	struct btrfs_path *path = NULL;
3616 3617
	struct btrfs_key key;
	struct btrfs_key found_key;
3618 3619
	struct extent_buffer *leaf;
	int slot;
3620 3621
	int ret;
	int enospc_errors = 0;
3622
	bool counting = true;
3623
	/* The single value limit and min/max limits use the same bytes in the */
3624 3625 3626
	u64 limit_data = bctl->data.limit;
	u64 limit_meta = bctl->meta.limit;
	u64 limit_sys = bctl->sys.limit;
3627 3628 3629
	u32 count_data = 0;
	u32 count_meta = 0;
	u32 count_sys = 0;
3630
	int chunk_reserved = 0;
3631 3632

	path = btrfs_alloc_path();
3633 3634 3635 3636
	if (!path) {
		ret = -ENOMEM;
		goto error;
	}
3637 3638 3639 3640 3641 3642

	/* zero out stat counters */
	spin_lock(&fs_info->balance_lock);
	memset(&bctl->stat, 0, sizeof(bctl->stat));
	spin_unlock(&fs_info->balance_lock);
again:
3643
	if (!counting) {
3644 3645 3646 3647
		/*
		 * The single value limit and min/max limits use the same bytes
		 * in the
		 */
3648 3649 3650 3651
		bctl->data.limit = limit_data;
		bctl->meta.limit = limit_meta;
		bctl->sys.limit = limit_sys;
	}
3652 3653 3654 3655
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

C
Chris Mason 已提交
3656
	while (1) {
3657
		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3658
		    atomic_read(&fs_info->balance_cancel_req)) {
3659 3660 3661 3662
			ret = -ECANCELED;
			goto error;
		}

3663
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3664
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3665 3666
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3667
			goto error;
3668
		}
3669 3670 3671 3672 3673 3674

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
3675
			BUG(); /* FIXME break ? */
3676 3677 3678

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
3679
		if (ret) {
3680
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3681
			ret = 0;
3682
			break;
3683
		}
3684

3685 3686 3687
		leaf = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3688

3689 3690
		if (found_key.objectid != key.objectid) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3691
			break;
3692
		}
3693

3694
		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3695
		chunk_type = btrfs_chunk_type(leaf, chunk);
3696

3697 3698 3699 3700 3701 3702
		if (!counting) {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.considered++;
			spin_unlock(&fs_info->balance_lock);
		}

3703
		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3704

3705
		btrfs_release_path(path);
3706 3707
		if (!ret) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3708
			goto loop;
3709
		}
3710

3711
		if (counting) {
3712
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3713 3714 3715
			spin_lock(&fs_info->balance_lock);
			bctl->stat.expected++;
			spin_unlock(&fs_info->balance_lock);
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737

			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
				count_data++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
				count_sys++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
				count_meta++;

			goto loop;
		}

		/*
		 * Apply limit_min filter, no need to check if the LIMITS
		 * filter is used, limit_min is 0 by default
		 */
		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
					count_data < bctl->data.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
					count_meta < bctl->meta.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
					count_sys < bctl->sys.limit_min)) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3738 3739 3740
			goto loop;
		}

3741 3742 3743 3744 3745 3746 3747 3748 3749
		if (!chunk_reserved) {
			/*
			 * We may be relocating the only data chunk we have,
			 * which could potentially end up with losing data's
			 * raid profile, so lets allocate an empty one in
			 * advance.
			 */
			ret = btrfs_may_alloc_data_chunk(fs_info,
							 found_key.offset);
3750 3751 3752
			if (ret < 0) {
				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
				goto error;
3753 3754
			} else if (ret == 1) {
				chunk_reserved = 1;
3755 3756 3757
			}
		}

3758
		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3759
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760
		if (ret == -ENOSPC) {
3761
			enospc_errors++;
3762 3763 3764 3765 3766 3767 3768
		} else if (ret == -ETXTBSY) {
			btrfs_info(fs_info,
	   "skipping relocation of block group %llu due to active swapfile",
				   found_key.offset);
			ret = 0;
		} else if (ret) {
			goto error;
3769 3770 3771 3772 3773
		} else {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.completed++;
			spin_unlock(&fs_info->balance_lock);
		}
3774
loop:
3775 3776
		if (found_key.offset == 0)
			break;
3777
		key.offset = found_key.offset - 1;
3778
	}
3779

3780 3781 3782 3783 3784
	if (counting) {
		btrfs_release_path(path);
		counting = false;
		goto again;
	}
3785 3786
error:
	btrfs_free_path(path);
3787
	if (enospc_errors) {
3788
		btrfs_info(fs_info, "%d enospc errors during balance",
J
Jeff Mahoney 已提交
3789
			   enospc_errors);
3790 3791 3792 3793
		if (!ret)
			ret = -ENOSPC;
	}

3794 3795 3796
	return ret;
}

3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
/**
 * alloc_profile_is_valid - see if a given profile is valid and reduced
 * @flags: profile to validate
 * @extended: if true @flags is treated as an extended profile
 */
static int alloc_profile_is_valid(u64 flags, int extended)
{
	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
			       BTRFS_BLOCK_GROUP_PROFILE_MASK);

	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;

	/* 1) check that all other bits are zeroed */
	if (flags & ~mask)
		return 0;

	/* 2) see if profile is reduced */
	if (flags == 0)
		return !extended; /* "0" is valid for usual profiles */

3817
	return has_single_bit_set(flags);
3818 3819
}

3820 3821
static inline int balance_need_close(struct btrfs_fs_info *fs_info)
{
3822 3823 3824 3825
	/* cancel requested || normal exit path */
	return atomic_read(&fs_info->balance_cancel_req) ||
		(atomic_read(&fs_info->balance_pause_req) == 0 &&
		 atomic_read(&fs_info->balance_cancel_req) == 0);
3826 3827
}

3828 3829 3830 3831 3832 3833 3834
/*
 * Validate target profile against allowed profiles and return true if it's OK.
 * Otherwise print the error message and return false.
 */
static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
		const struct btrfs_balance_args *bargs,
		u64 allowed, const char *type)
3835
{
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return true;

	/* Profile is valid and does not have bits outside of the allowed set */
	if (alloc_profile_is_valid(bargs->target, 1) &&
	    (bargs->target & ~allowed) == 0)
		return true;

	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
			type, btrfs_bg_type_to_raid_name(bargs->target));
	return false;
3847 3848
}

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
/*
 * Fill @buf with textual description of balance filter flags @bargs, up to
 * @size_buf including the terminating null. The output may be trimmed if it
 * does not fit into the provided buffer.
 */
static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
				 u32 size_buf)
{
	int ret;
	u32 size_bp = size_buf;
	char *bp = buf;
	u64 flags = bargs->flags;
	char tmp_buf[128] = {'\0'};

	if (!flags)
		return;

#define CHECK_APPEND_NOARG(a)						\
	do {								\
		ret = snprintf(bp, size_bp, (a));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_2ARG(a, v1, v2)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

3893 3894 3895
	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
		CHECK_APPEND_1ARG("convert=%s,",
				  btrfs_bg_type_to_raid_name(bargs->target));
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

	if (flags & BTRFS_BALANCE_ARGS_SOFT)
		CHECK_APPEND_NOARG("soft,");

	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
					    sizeof(tmp_buf));
		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
	}

	if (flags & BTRFS_BALANCE_ARGS_USAGE)
		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);

	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
		CHECK_APPEND_2ARG("usage=%u..%u,",
				  bargs->usage_min, bargs->usage_max);

	if (flags & BTRFS_BALANCE_ARGS_DEVID)
		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);

	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
		CHECK_APPEND_2ARG("drange=%llu..%llu,",
				  bargs->pstart, bargs->pend);

	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
				  bargs->vstart, bargs->vend);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
		CHECK_APPEND_2ARG("limit=%u..%u,",
				bargs->limit_min, bargs->limit_max);

	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
		CHECK_APPEND_2ARG("stripes=%u..%u,",
				  bargs->stripes_min, bargs->stripes_max);

#undef CHECK_APPEND_2ARG
#undef CHECK_APPEND_1ARG
#undef CHECK_APPEND_NOARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
	else
		buf[0] = '\0';
}

static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
{
	u32 size_buf = 1024;
	char tmp_buf[192] = {'\0'};
	char *buf;
	char *bp;
	u32 size_bp = size_buf;
	int ret;
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;

	buf = kzalloc(size_buf, GFP_KERNEL);
	if (!buf)
		return;

	bp = buf;

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

	if (bctl->flags & BTRFS_BALANCE_FORCE)
		CHECK_APPEND_1ARG("%s", "-f ");

	if (bctl->flags & BTRFS_BALANCE_DATA) {
		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_METADATA) {
		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
	}

#undef CHECK_APPEND_1ARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
	btrfs_info(fs_info, "balance: %s %s",
		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
		   "resume" : "start", buf);

	kfree(buf);
}

4003
/*
4004
 * Should be called with balance mutexe held
4005
 */
4006 4007
int btrfs_balance(struct btrfs_fs_info *fs_info,
		  struct btrfs_balance_control *bctl,
4008 4009
		  struct btrfs_ioctl_balance_args *bargs)
{
4010
	u64 meta_target, data_target;
4011
	u64 allowed;
4012
	int mixed = 0;
4013
	int ret;
4014
	u64 num_devices;
4015
	unsigned seq;
4016
	bool reducing_redundancy;
4017
	int i;
4018

4019
	if (btrfs_fs_closing(fs_info) ||
4020
	    atomic_read(&fs_info->balance_pause_req) ||
4021
	    btrfs_should_cancel_balance(fs_info)) {
4022 4023 4024 4025
		ret = -EINVAL;
		goto out;
	}

4026 4027 4028 4029
	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
		mixed = 1;

4030 4031 4032 4033
	/*
	 * In case of mixed groups both data and meta should be picked,
	 * and identical options should be given for both of them.
	 */
4034 4035
	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
	if (mixed && (bctl->flags & allowed)) {
4036 4037 4038
		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
J
Jeff Mahoney 已提交
4039
			btrfs_err(fs_info,
4040
	  "balance: mixed groups data and metadata options must be the same");
4041 4042 4043 4044 4045
			ret = -EINVAL;
			goto out;
		}
	}

4046 4047 4048 4049 4050
	/*
	 * rw_devices will not change at the moment, device add/delete/replace
	 * are excluded by EXCL_OP
	 */
	num_devices = fs_info->fs_devices->rw_devices;
4051 4052 4053 4054 4055 4056 4057

	/*
	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
	 * special bit for it, to make it easier to distinguish.  Thus we need
	 * to set it manually, or balance would refuse the profile.
	 */
	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4058 4059 4060
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
		if (num_devices >= btrfs_raid_array[i].devs_min)
			allowed |= btrfs_raid_array[i].bg_flag;
4061

4062 4063 4064
	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4065 4066 4067 4068
		ret = -EINVAL;
		goto out;
	}

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
	/*
	 * Allow to reduce metadata or system integrity only if force set for
	 * profiles with redundancy (copies, parity)
	 */
	allowed = 0;
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
		if (btrfs_raid_array[i].ncopies >= 2 ||
		    btrfs_raid_array[i].tolerated_failures >= 1)
			allowed |= btrfs_raid_array[i].bg_flag;
	}
4079 4080 4081 4082 4083 4084 4085 4086
	do {
		seq = read_seqbegin(&fs_info->profiles_lock);

		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_system_alloc_bits & allowed) &&
		     !(bctl->sys.target & allowed)) ||
		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4087
		     !(bctl->meta.target & allowed)))
4088
			reducing_redundancy = true;
4089
		else
4090
			reducing_redundancy = false;
4091 4092 4093 4094 4095 4096

		/* if we're not converting, the target field is uninitialized */
		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->data.target : fs_info->avail_data_alloc_bits;
4097
	} while (read_seqretry(&fs_info->profiles_lock, seq));
4098

4099
	if (reducing_redundancy) {
4100 4101
		if (bctl->flags & BTRFS_BALANCE_FORCE) {
			btrfs_info(fs_info,
4102
			   "balance: force reducing metadata redundancy");
4103 4104
		} else {
			btrfs_err(fs_info,
4105
	"balance: reduces metadata redundancy, use --force if you want this");
4106 4107 4108 4109 4110
			ret = -EINVAL;
			goto out;
		}
	}

4111 4112
	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4113
		btrfs_warn(fs_info,
4114
	"balance: metadata profile %s has lower redundancy than data profile %s",
4115 4116
				btrfs_bg_type_to_raid_name(meta_target),
				btrfs_bg_type_to_raid_name(data_target));
4117 4118
	}

4119 4120 4121 4122 4123 4124 4125 4126
	if (fs_info->send_in_progress) {
		btrfs_warn_rl(fs_info,
"cannot run balance while send operations are in progress (%d in progress)",
			      fs_info->send_in_progress);
		ret = -EAGAIN;
		goto out;
	}

4127
	ret = insert_balance_item(fs_info, bctl);
I
Ilya Dryomov 已提交
4128
	if (ret && ret != -EEXIST)
4129 4130
		goto out;

I
Ilya Dryomov 已提交
4131 4132
	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
		BUG_ON(ret == -EEXIST);
4133 4134 4135 4136
		BUG_ON(fs_info->balance_ctl);
		spin_lock(&fs_info->balance_lock);
		fs_info->balance_ctl = bctl;
		spin_unlock(&fs_info->balance_lock);
I
Ilya Dryomov 已提交
4137 4138 4139 4140 4141 4142
	} else {
		BUG_ON(ret != -EEXIST);
		spin_lock(&fs_info->balance_lock);
		update_balance_args(bctl);
		spin_unlock(&fs_info->balance_lock);
	}
4143

4144 4145
	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4146
	describe_balance_start_or_resume(fs_info);
4147 4148 4149 4150 4151
	mutex_unlock(&fs_info->balance_mutex);

	ret = __btrfs_balance(fs_info);

	mutex_lock(&fs_info->balance_mutex);
4152 4153
	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
		btrfs_info(fs_info, "balance: paused");
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	/*
	 * Balance can be canceled by:
	 *
	 * - Regular cancel request
	 *   Then ret == -ECANCELED and balance_cancel_req > 0
	 *
	 * - Fatal signal to "btrfs" process
	 *   Either the signal caught by wait_reserve_ticket() and callers
	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
	 *   got -ECANCELED.
	 *   Either way, in this case balance_cancel_req = 0, and
	 *   ret == -EINTR or ret == -ECANCELED.
	 *
	 * So here we only check the return value to catch canceled balance.
	 */
	else if (ret == -ECANCELED || ret == -EINTR)
4170 4171 4172 4173
		btrfs_info(fs_info, "balance: canceled");
	else
		btrfs_info(fs_info, "balance: ended with status: %d", ret);

4174
	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4175 4176 4177

	if (bargs) {
		memset(bargs, 0, sizeof(*bargs));
4178
		btrfs_update_ioctl_balance_args(fs_info, bargs);
4179 4180
	}

4181 4182
	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
	    balance_need_close(fs_info)) {
4183
		reset_balance_state(fs_info);
4184
		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4185 4186
	}

4187
	wake_up(&fs_info->balance_wait_q);
4188 4189 4190

	return ret;
out:
I
Ilya Dryomov 已提交
4191
	if (bctl->flags & BTRFS_BALANCE_RESUME)
4192
		reset_balance_state(fs_info);
4193
	else
I
Ilya Dryomov 已提交
4194
		kfree(bctl);
4195 4196
	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);

I
Ilya Dryomov 已提交
4197 4198 4199 4200 4201
	return ret;
}

static int balance_kthread(void *data)
{
4202
	struct btrfs_fs_info *fs_info = data;
4203
	int ret = 0;
I
Ilya Dryomov 已提交
4204 4205

	mutex_lock(&fs_info->balance_mutex);
4206
	if (fs_info->balance_ctl)
4207
		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
I
Ilya Dryomov 已提交
4208
	mutex_unlock(&fs_info->balance_mutex);
4209

I
Ilya Dryomov 已提交
4210 4211 4212
	return ret;
}

4213 4214 4215 4216
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
{
	struct task_struct *tsk;

4217
	mutex_lock(&fs_info->balance_mutex);
4218
	if (!fs_info->balance_ctl) {
4219
		mutex_unlock(&fs_info->balance_mutex);
4220 4221
		return 0;
	}
4222
	mutex_unlock(&fs_info->balance_mutex);
4223

4224
	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4225
		btrfs_info(fs_info, "balance: resume skipped");
4226 4227 4228
		return 0;
	}

4229 4230 4231 4232 4233 4234 4235 4236 4237
	/*
	 * A ro->rw remount sequence should continue with the paused balance
	 * regardless of who pauses it, system or the user as of now, so set
	 * the resume flag.
	 */
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
	spin_unlock(&fs_info->balance_lock);

4238
	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4239
	return PTR_ERR_OR_ZERO(tsk);
4240 4241
}

4242
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
I
Ilya Dryomov 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
{
	struct btrfs_balance_control *bctl;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_BALANCE_OBJECTID;
4257
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
I
Ilya Dryomov 已提交
4258 4259
	key.offset = 0;

4260
	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
I
Ilya Dryomov 已提交
4261
	if (ret < 0)
4262
		goto out;
I
Ilya Dryomov 已提交
4263 4264
	if (ret > 0) { /* ret = -ENOENT; */
		ret = 0;
4265 4266 4267 4268 4269 4270 4271
		goto out;
	}

	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
	if (!bctl) {
		ret = -ENOMEM;
		goto out;
I
Ilya Dryomov 已提交
4272 4273 4274 4275 4276
	}

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

4277 4278
	bctl->flags = btrfs_balance_flags(leaf, item);
	bctl->flags |= BTRFS_BALANCE_RESUME;
I
Ilya Dryomov 已提交
4279 4280 4281 4282 4283 4284 4285 4286

	btrfs_balance_data(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
	btrfs_balance_meta(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
	btrfs_balance_sys(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	/*
	 * This should never happen, as the paused balance state is recovered
	 * during mount without any chance of other exclusive ops to collide.
	 *
	 * This gives the exclusive op status to balance and keeps in paused
	 * state until user intervention (cancel or umount). If the ownership
	 * cannot be assigned, show a message but do not fail. The balance
	 * is in a paused state and must have fs_info::balance_ctl properly
	 * set up.
	 */
	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
		btrfs_warn(fs_info,
4299
	"balance: cannot set exclusive op status, resume manually");
4300

4301
	mutex_lock(&fs_info->balance_mutex);
4302 4303 4304 4305
	BUG_ON(fs_info->balance_ctl);
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = bctl;
	spin_unlock(&fs_info->balance_lock);
4306
	mutex_unlock(&fs_info->balance_mutex);
I
Ilya Dryomov 已提交
4307 4308
out:
	btrfs_free_path(path);
4309 4310 4311
	return ret;
}

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
{
	int ret = 0;

	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4322
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4323 4324 4325 4326
		atomic_inc(&fs_info->balance_pause_req);
		mutex_unlock(&fs_info->balance_mutex);

		wait_event(fs_info->balance_wait_q,
4327
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4328 4329 4330

		mutex_lock(&fs_info->balance_mutex);
		/* we are good with balance_ctl ripped off from under us */
4331
		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4332 4333 4334 4335 4336 4337 4338 4339 4340
		atomic_dec(&fs_info->balance_pause_req);
	} else {
		ret = -ENOTCONN;
	}

	mutex_unlock(&fs_info->balance_mutex);
	return ret;
}

4341 4342 4343 4344 4345 4346 4347 4348
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
{
	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
	/*
	 * A paused balance with the item stored on disk can be resumed at
	 * mount time if the mount is read-write. Otherwise it's still paused
	 * and we must not allow cancelling as it deletes the item.
	 */
	if (sb_rdonly(fs_info->sb)) {
		mutex_unlock(&fs_info->balance_mutex);
		return -EROFS;
	}

4359 4360 4361 4362 4363
	atomic_inc(&fs_info->balance_cancel_req);
	/*
	 * if we are running just wait and return, balance item is
	 * deleted in btrfs_balance in this case
	 */
4364
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4365 4366
		mutex_unlock(&fs_info->balance_mutex);
		wait_event(fs_info->balance_wait_q,
4367
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4368 4369 4370
		mutex_lock(&fs_info->balance_mutex);
	} else {
		mutex_unlock(&fs_info->balance_mutex);
4371 4372 4373 4374
		/*
		 * Lock released to allow other waiters to continue, we'll
		 * reexamine the status again.
		 */
4375 4376
		mutex_lock(&fs_info->balance_mutex);

4377
		if (fs_info->balance_ctl) {
4378
			reset_balance_state(fs_info);
4379
			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4380
			btrfs_info(fs_info, "balance: canceled");
4381
		}
4382 4383
	}

4384 4385
	BUG_ON(fs_info->balance_ctl ||
		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4386 4387 4388 4389 4390
	atomic_dec(&fs_info->balance_cancel_req);
	mutex_unlock(&fs_info->balance_mutex);
	return 0;
}

4391
int btrfs_uuid_scan_kthread(void *data)
S
Stefan Behrens 已提交
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
{
	struct btrfs_fs_info *fs_info = data;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	int ret = 0;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_root_item root_item;
	u32 item_size;
4402
	struct btrfs_trans_handle *trans = NULL;
4403
	bool closing = false;
S
Stefan Behrens 已提交
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = 0;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;

	while (1) {
4416 4417 4418 4419
		if (btrfs_fs_closing(fs_info)) {
			closing = true;
			break;
		}
4420 4421
		ret = btrfs_search_forward(root, &key, path,
				BTRFS_OLDEST_GENERATION);
S
Stefan Behrens 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
		if (ret) {
			if (ret > 0)
				ret = 0;
			break;
		}

		if (key.type != BTRFS_ROOT_ITEM_KEY ||
		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
			goto skip;

		eb = path->nodes[0];
		slot = path->slots[0];
		item_size = btrfs_item_size_nr(eb, slot);
		if (item_size < sizeof(root_item))
			goto skip;

		read_extent_buffer(eb, &root_item,
				   btrfs_item_ptr_offset(eb, slot),
				   (int)sizeof(root_item));
		if (btrfs_root_refs(&root_item) == 0)
			goto skip;
4445 4446 4447 4448 4449 4450 4451

		if (!btrfs_is_empty_uuid(root_item.uuid) ||
		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
			if (trans)
				goto update_tree;

			btrfs_release_path(path);
S
Stefan Behrens 已提交
4452 4453 4454 4455 4456 4457 4458 4459 4460
			/*
			 * 1 - subvol uuid item
			 * 1 - received_subvol uuid item
			 */
			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
			if (IS_ERR(trans)) {
				ret = PTR_ERR(trans);
				break;
			}
4461 4462 4463 4464 4465
			continue;
		} else {
			goto skip;
		}
update_tree:
4466
		btrfs_release_path(path);
4467
		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4468
			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
S
Stefan Behrens 已提交
4469 4470 4471
						  BTRFS_UUID_KEY_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4472
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4473 4474 4475 4476 4477 4478
					ret);
				break;
			}
		}

		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4479
			ret = btrfs_uuid_tree_add(trans,
S
Stefan Behrens 已提交
4480 4481 4482 4483
						  root_item.received_uuid,
						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4484
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4485 4486 4487 4488 4489
					ret);
				break;
			}
		}

4490
skip:
4491
		btrfs_release_path(path);
S
Stefan Behrens 已提交
4492
		if (trans) {
4493
			ret = btrfs_end_transaction(trans);
4494
			trans = NULL;
S
Stefan Behrens 已提交
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
			if (ret)
				break;
		}

		if (key.offset < (u64)-1) {
			key.offset++;
		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
		} else if (key.objectid < (u64)-1) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.objectid++;
		} else {
			break;
		}
		cond_resched();
	}

out:
	btrfs_free_path(path);
4516
	if (trans && !IS_ERR(trans))
4517
		btrfs_end_transaction(trans);
S
Stefan Behrens 已提交
4518
	if (ret)
4519
		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4520
	else if (!closing)
4521
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
S
Stefan Behrens 已提交
4522 4523 4524 4525
	up(&fs_info->uuid_tree_rescan_sem);
	return 0;
}

4526 4527 4528 4529 4530
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *uuid_root;
S
Stefan Behrens 已提交
4531 4532
	struct task_struct *task;
	int ret;
4533 4534 4535 4536 4537 4538 4539 4540 4541

	/*
	 * 1 - root node
	 * 1 - root item
	 */
	trans = btrfs_start_transaction(tree_root, 2);
	if (IS_ERR(trans))
		return PTR_ERR(trans);

4542
	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4543
	if (IS_ERR(uuid_root)) {
4544
		ret = PTR_ERR(uuid_root);
4545
		btrfs_abort_transaction(trans, ret);
4546
		btrfs_end_transaction(trans);
4547
		return ret;
4548 4549 4550 4551
	}

	fs_info->uuid_root = uuid_root;

4552
	ret = btrfs_commit_transaction(trans);
S
Stefan Behrens 已提交
4553 4554 4555 4556 4557 4558
	if (ret)
		return ret;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
4559
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4560
		btrfs_warn(fs_info, "failed to start uuid_scan task");
S
Stefan Behrens 已提交
4561 4562 4563 4564 4565
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
4566
}
S
Stefan Behrens 已提交
4567

4568 4569 4570 4571 4572 4573 4574
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
4575 4576
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
4577 4578 4579 4580 4581 4582 4583
	struct btrfs_trans_handle *trans;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_offset;
	int ret;
	int slot;
4584 4585
	int failed = 0;
	bool retried = false;
4586 4587
	struct extent_buffer *l;
	struct btrfs_key key;
4588
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4589
	u64 old_total = btrfs_super_total_bytes(super_copy);
4590
	u64 old_size = btrfs_device_get_total_bytes(device);
4591
	u64 diff;
4592
	u64 start;
4593 4594

	new_size = round_down(new_size, fs_info->sectorsize);
4595
	start = new_size;
4596
	diff = round_down(old_size - new_size, fs_info->sectorsize);
4597

4598
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4599 4600
		return -EINVAL;

4601 4602 4603 4604
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4605
	path->reada = READA_BACK;
4606

4607 4608 4609 4610 4611 4612
	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

4613
	mutex_lock(&fs_info->chunk_mutex);
4614

4615
	btrfs_device_set_total_bytes(device, new_size);
4616
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
4617
		device->fs_devices->total_rw_bytes -= diff;
4618
		atomic64_sub(diff, &fs_info->free_chunk_space);
4619
	}
4620 4621 4622 4623 4624 4625

	/*
	 * Once the device's size has been set to the new size, ensure all
	 * in-memory chunks are synced to disk so that the loop below sees them
	 * and relocates them accordingly.
	 */
4626
	if (contains_pending_extent(device, &start, diff)) {
4627 4628 4629 4630 4631 4632 4633 4634
		mutex_unlock(&fs_info->chunk_mutex);
		ret = btrfs_commit_transaction(trans);
		if (ret)
			goto done;
	} else {
		mutex_unlock(&fs_info->chunk_mutex);
		btrfs_end_transaction(trans);
	}
4635

4636
again:
4637 4638 4639 4640
	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

4641
	do {
4642
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4643
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4644
		if (ret < 0) {
4645
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4646
			goto done;
4647
		}
4648 4649

		ret = btrfs_previous_item(root, path, 0, key.type);
4650
		if (ret)
4651
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4652 4653 4654 4655
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
4656
			btrfs_release_path(path);
4657
			break;
4658 4659 4660 4661 4662 4663
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

4664
		if (key.objectid != device->devid) {
4665
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4666
			btrfs_release_path(path);
4667
			break;
4668
		}
4669 4670 4671 4672

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

4673
		if (key.offset + length <= new_size) {
4674
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4675
			btrfs_release_path(path);
4676
			break;
4677
		}
4678 4679

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4680
		btrfs_release_path(path);
4681

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
		/*
		 * We may be relocating the only data chunk we have,
		 * which could potentially end up with losing data's
		 * raid profile, so lets allocate an empty one in
		 * advance.
		 */
		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
			goto done;
		}

4694 4695
		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4696
		if (ret == -ENOSPC) {
4697
			failed++;
4698 4699 4700 4701 4702 4703 4704 4705
		} else if (ret) {
			if (ret == -ETXTBSY) {
				btrfs_warn(fs_info,
		   "could not shrink block group %llu due to active swapfile",
					   chunk_offset);
			}
			goto done;
		}
4706
	} while (key.offset-- > 0);
4707 4708 4709 4710 4711 4712 4713 4714

	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
	} else if (failed && retried) {
		ret = -ENOSPC;
		goto done;
4715 4716
	}

4717
	/* Shrinking succeeded, else we would be at "done". */
4718
	trans = btrfs_start_transaction(root, 0);
4719 4720 4721 4722 4723
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto done;
	}

4724
	mutex_lock(&fs_info->chunk_mutex);
4725 4726 4727 4728
	/* Clear all state bits beyond the shrunk device size */
	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
			  CHUNK_STATE_MASK);

4729
	btrfs_device_set_disk_total_bytes(device, new_size);
4730 4731 4732
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
4733 4734

	WARN_ON(diff > old_total);
4735 4736
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total - diff, fs_info->sectorsize));
4737
	mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
4738 4739 4740

	/* Now btrfs_update_device() will change the on-disk size. */
	ret = btrfs_update_device(trans, device);
4741 4742 4743 4744 4745 4746
	if (ret < 0) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	} else {
		ret = btrfs_commit_transaction(trans);
	}
4747 4748
done:
	btrfs_free_path(path);
4749
	if (ret) {
4750
		mutex_lock(&fs_info->chunk_mutex);
4751
		btrfs_device_set_total_bytes(device, old_size);
4752
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4753
			device->fs_devices->total_rw_bytes += diff;
4754
		atomic64_add(diff, &fs_info->free_chunk_space);
4755
		mutex_unlock(&fs_info->chunk_mutex);
4756
	}
4757 4758 4759
	return ret;
}

4760
static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4761 4762 4763
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
4764
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4765 4766 4767 4768
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

4769
	mutex_lock(&fs_info->chunk_mutex);
4770
	array_size = btrfs_super_sys_array_size(super_copy);
4771
	if (array_size + item_size + sizeof(disk_key)
4772
			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4773
		mutex_unlock(&fs_info->chunk_mutex);
4774
		return -EFBIG;
4775
	}
4776 4777 4778 4779 4780 4781 4782 4783

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4784
	mutex_unlock(&fs_info->chunk_mutex);
4785

4786 4787 4788
	return 0;
}

4789 4790 4791 4792
/*
 * sort the devices in descending order by max_avail, total_avail
 */
static int btrfs_cmp_device_info(const void *a, const void *b)
4793
{
4794 4795
	const struct btrfs_device_info *di_a = a;
	const struct btrfs_device_info *di_b = b;
4796

4797
	if (di_a->max_avail > di_b->max_avail)
4798
		return -1;
4799
	if (di_a->max_avail < di_b->max_avail)
4800
		return 1;
4801 4802 4803 4804 4805
	if (di_a->total_avail > di_b->total_avail)
		return -1;
	if (di_a->total_avail < di_b->total_avail)
		return 1;
	return 0;
4806
}
4807

D
David Woodhouse 已提交
4808 4809
static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
4810
	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
D
David Woodhouse 已提交
4811 4812
		return;

4813
	btrfs_set_fs_incompat(info, RAID56);
D
David Woodhouse 已提交
4814 4815
}

4816 4817 4818 4819 4820 4821 4822 4823
static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
		return;

	btrfs_set_fs_incompat(info, RAID1C34);
}

N
Naohiro Aota 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
/*
 * Structure used internally for __btrfs_alloc_chunk() function.
 * Wraps needed parameters.
 */
struct alloc_chunk_ctl {
	u64 start;
	u64 type;
	/* Total number of stripes to allocate */
	int num_stripes;
	/* sub_stripes info for map */
	int sub_stripes;
	/* Stripes per device */
	int dev_stripes;
	/* Maximum number of devices to use */
	int devs_max;
	/* Minimum number of devices to use */
	int devs_min;
	/* ndevs has to be a multiple of this */
	int devs_increment;
	/* Number of copies */
	int ncopies;
	/* Number of stripes worth of bytes to store parity information */
	int nparity;
	u64 max_stripe_size;
	u64 max_chunk_size;
4849
	u64 dev_extent_min;
N
Naohiro Aota 已提交
4850 4851 4852 4853 4854
	u64 stripe_size;
	u64 chunk_size;
	int ndevs;
};

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
static void init_alloc_chunk_ctl_policy_regular(
				struct btrfs_fs_devices *fs_devices,
				struct alloc_chunk_ctl *ctl)
{
	u64 type = ctl->type;

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		ctl->max_stripe_size = SZ_1G;
		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		/* For larger filesystems, use larger metadata chunks */
		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
			ctl->max_stripe_size = SZ_1G;
		else
			ctl->max_stripe_size = SZ_256M;
		ctl->max_chunk_size = ctl->max_stripe_size;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ctl->max_stripe_size = SZ_32M;
		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
		ctl->devs_max = min_t(int, ctl->devs_max,
				      BTRFS_MAX_DEVS_SYS_CHUNK);
	} else {
		BUG();
	}

	/* We don't want a chunk larger than 10% of writable space */
	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
				  ctl->max_chunk_size);
4883
	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
}

static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
				 struct alloc_chunk_ctl *ctl)
{
	int index = btrfs_bg_flags_to_raid_index(ctl->type);

	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
	ctl->devs_max = btrfs_raid_array[index].devs_max;
	if (!ctl->devs_max)
		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
	ctl->devs_min = btrfs_raid_array[index].devs_min;
	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
	ctl->ncopies = btrfs_raid_array[index].ncopies;
	ctl->nparity = btrfs_raid_array[index].nparity;
	ctl->ndevs = 0;

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
		break;
	default:
		BUG();
	}
}

4911 4912 4913
static int gather_device_info(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
4914
{
4915
	struct btrfs_fs_info *info = fs_devices->fs_info;
4916
	struct btrfs_device *device;
4917
	u64 total_avail;
4918
	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4919
	int ret;
4920 4921 4922
	int ndevs = 0;
	u64 max_avail;
	u64 dev_offset;
4923

4924
	/*
4925 4926
	 * in the first pass through the devices list, we gather information
	 * about the available holes on each device.
4927
	 */
4928
	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4929
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
J
Julia Lawall 已提交
4930
			WARN(1, KERN_ERR
4931
			       "BTRFS: read-only device in alloc_list\n");
4932 4933
			continue;
		}
4934

4935 4936
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
					&device->dev_state) ||
4937
		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4938
			continue;
4939

4940 4941 4942 4943
		if (device->total_bytes > device->bytes_used)
			total_avail = device->total_bytes - device->bytes_used;
		else
			total_avail = 0;
4944 4945

		/* If there is no space on this device, skip it. */
4946
		if (total_avail < ctl->dev_extent_min)
4947
			continue;
4948

4949 4950
		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
					   &max_avail);
4951
		if (ret && ret != -ENOSPC)
4952
			return ret;
4953

4954
		if (ret == 0)
4955
			max_avail = dev_extent_want;
4956

4957
		if (max_avail < ctl->dev_extent_min) {
4958 4959
			if (btrfs_test_opt(info, ENOSPC_DEBUG))
				btrfs_debug(info,
4960
			"%s: devid %llu has no free space, have=%llu want=%llu",
4961
					    __func__, device->devid, max_avail,
4962
					    ctl->dev_extent_min);
4963
			continue;
4964
		}
4965

4966 4967 4968 4969 4970
		if (ndevs == fs_devices->rw_devices) {
			WARN(1, "%s: found more than %llu devices\n",
			     __func__, fs_devices->rw_devices);
			break;
		}
4971 4972 4973 4974 4975 4976
		devices_info[ndevs].dev_offset = dev_offset;
		devices_info[ndevs].max_avail = max_avail;
		devices_info[ndevs].total_avail = total_avail;
		devices_info[ndevs].dev = device;
		++ndevs;
	}
4977
	ctl->ndevs = ndevs;
4978

4979 4980 4981
	/*
	 * now sort the devices by hole size / available space
	 */
4982
	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4983
	     btrfs_cmp_device_info, NULL);
4984

4985 4986 4987
	return 0;
}

4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
				      struct btrfs_device_info *devices_info)
{
	/* Number of stripes that count for block group size */
	int data_stripes;

	/*
	 * The primary goal is to maximize the number of stripes, so use as
	 * many devices as possible, even if the stripes are not maximum sized.
	 *
	 * The DUP profile stores more than one stripe per device, the
	 * max_avail is the total size so we have to adjust.
	 */
	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
				   ctl->dev_stripes);
	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;

	/* This will have to be fixed for RAID1 and RAID10 over more drives */
	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;

	/*
	 * Use the number of data stripes to figure out how big this chunk is
	 * really going to be in terms of logical address space, and compare
	 * that answer with the max chunk size. If it's higher, we try to
	 * reduce stripe_size.
	 */
	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
		/*
		 * Reduce stripe_size, round it up to a 16MB boundary again and
		 * then use it, unless it ends up being even bigger than the
		 * previous value we had already.
		 */
		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
							data_stripes), SZ_16M),
				       ctl->stripe_size);
	}

	/* Align to BTRFS_STRIPE_LEN */
	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
	ctl->chunk_size = ctl->stripe_size * data_stripes;

	return 0;
}

static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
{
	struct btrfs_fs_info *info = fs_devices->fs_info;

	/*
	 * Round down to number of usable stripes, devs_increment can be any
	 * number so we can't use round_down() that requires power of 2, while
	 * rounddown is safe.
	 */
	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);

	if (ctl->ndevs < ctl->devs_min) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
			btrfs_debug(info,
	"%s: not enough devices with free space: have=%d minimum required=%d",
				    __func__, ctl->ndevs, ctl->devs_min);
		}
		return -ENOSPC;
	}

	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		return decide_stripe_size_regular(ctl, devices_info);
	default:
		BUG();
	}
}

N
Naohiro Aota 已提交
5064 5065 5066
static int create_chunk(struct btrfs_trans_handle *trans,
			struct alloc_chunk_ctl *ctl,
			struct btrfs_device_info *devices_info)
5067 5068 5069 5070 5071
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct map_lookup *map = NULL;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
N
Naohiro Aota 已提交
5072 5073
	u64 start = ctl->start;
	u64 type = ctl->type;
5074 5075 5076 5077
	int ret;
	int i;
	int j;

N
Naohiro Aota 已提交
5078 5079
	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
	if (!map)
5080
		return -ENOMEM;
N
Naohiro Aota 已提交
5081
	map->num_stripes = ctl->num_stripes;
5082

N
Naohiro Aota 已提交
5083 5084 5085
	for (i = 0; i < ctl->ndevs; ++i) {
		for (j = 0; j < ctl->dev_stripes; ++j) {
			int s = i * ctl->dev_stripes + j;
5086 5087
			map->stripes[s].dev = devices_info[i].dev;
			map->stripes[s].physical = devices_info[i].dev_offset +
N
Naohiro Aota 已提交
5088
						   j * ctl->stripe_size;
5089 5090
		}
	}
5091 5092 5093
	map->stripe_len = BTRFS_STRIPE_LEN;
	map->io_align = BTRFS_STRIPE_LEN;
	map->io_width = BTRFS_STRIPE_LEN;
Y
Yan Zheng 已提交
5094
	map->type = type;
N
Naohiro Aota 已提交
5095
	map->sub_stripes = ctl->sub_stripes;
5096

N
Naohiro Aota 已提交
5097
	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5098

5099
	em = alloc_extent_map();
Y
Yan Zheng 已提交
5100
	if (!em) {
5101
		kfree(map);
N
Naohiro Aota 已提交
5102
		return -ENOMEM;
5103
	}
5104
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5105
	em->map_lookup = map;
Y
Yan Zheng 已提交
5106
	em->start = start;
N
Naohiro Aota 已提交
5107
	em->len = ctl->chunk_size;
Y
Yan Zheng 已提交
5108 5109
	em->block_start = 0;
	em->block_len = em->len;
N
Naohiro Aota 已提交
5110
	em->orig_block_len = ctl->stripe_size;
5111

5112
	em_tree = &info->mapping_tree;
5113
	write_lock(&em_tree->lock);
J
Josef Bacik 已提交
5114
	ret = add_extent_mapping(em_tree, em, 0);
5115
	if (ret) {
5116
		write_unlock(&em_tree->lock);
5117
		free_extent_map(em);
N
Naohiro Aota 已提交
5118
		return ret;
5119
	}
5120 5121
	write_unlock(&em_tree->lock);

N
Naohiro Aota 已提交
5122
	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5123 5124
	if (ret)
		goto error_del_extent;
Y
Yan Zheng 已提交
5125

5126 5127 5128
	for (i = 0; i < map->num_stripes; i++) {
		struct btrfs_device *dev = map->stripes[i].dev;

N
Naohiro Aota 已提交
5129
		btrfs_device_set_bytes_used(dev,
N
Naohiro Aota 已提交
5130
					    dev->bytes_used + ctl->stripe_size);
5131 5132 5133 5134
		if (list_empty(&dev->post_commit_list))
			list_add_tail(&dev->post_commit_list,
				      &trans->transaction->dev_update_list);
	}
5135

N
Naohiro Aota 已提交
5136
	atomic64_sub(ctl->stripe_size * map->num_stripes,
N
Naohiro Aota 已提交
5137
		     &info->free_chunk_space);
5138

5139
	free_extent_map(em);
5140
	check_raid56_incompat_flag(info, type);
5141
	check_raid1c34_incompat_flag(info, type);
D
David Woodhouse 已提交
5142

Y
Yan Zheng 已提交
5143
	return 0;
5144

5145
error_del_extent:
5146 5147 5148 5149 5150 5151 5152 5153
	write_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	write_unlock(&em_tree->lock);

	/* One for our allocation */
	free_extent_map(em);
	/* One for the tree reference */
	free_extent_map(em);
N
Naohiro Aota 已提交
5154 5155 5156 5157

	return ret;
}

5158
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
N
Naohiro Aota 已提交
5159 5160 5161 5162 5163 5164 5165
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct btrfs_fs_devices *fs_devices = info->fs_devices;
	struct btrfs_device_info *devices_info = NULL;
	struct alloc_chunk_ctl ctl;
	int ret;

5166 5167
	lockdep_assert_held(&info->chunk_mutex);

N
Naohiro Aota 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
	if (!alloc_profile_is_valid(type, 0)) {
		ASSERT(0);
		return -EINVAL;
	}

	if (list_empty(&fs_devices->alloc_list)) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG))
			btrfs_debug(info, "%s: no writable device", __func__);
		return -ENOSPC;
	}

	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
		ASSERT(0);
		return -EINVAL;
	}

5185
	ctl.start = find_next_chunk(info);
N
Naohiro Aota 已提交
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
	ctl.type = type;
	init_alloc_chunk_ctl(fs_devices, &ctl);

	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
			       GFP_NOFS);
	if (!devices_info)
		return -ENOMEM;

	ret = gather_device_info(fs_devices, &ctl, devices_info);
	if (ret < 0)
		goto out;

	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
	if (ret < 0)
		goto out;

	ret = create_chunk(trans, &ctl, devices_info);

out:
5205 5206
	kfree(devices_info);
	return ret;
Y
Yan Zheng 已提交
5207 5208
}

5209 5210 5211 5212 5213 5214 5215
/*
 * Chunk allocation falls into two parts. The first part does work
 * that makes the new allocated chunk usable, but does not do any operation
 * that modifies the chunk tree. The second part does the work that
 * requires modifying the chunk tree. This division is important for the
 * bootstrap process of adding storage to a seed btrfs.
 */
5216
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5217
			     u64 chunk_offset, u64 chunk_size)
Y
Yan Zheng 已提交
5218
{
5219
	struct btrfs_fs_info *fs_info = trans->fs_info;
5220 5221
	struct btrfs_root *extent_root = fs_info->extent_root;
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
5222 5223 5224 5225
	struct btrfs_key key;
	struct btrfs_device *device;
	struct btrfs_chunk *chunk;
	struct btrfs_stripe *stripe;
5226 5227 5228 5229 5230 5231
	struct extent_map *em;
	struct map_lookup *map;
	size_t item_size;
	u64 dev_offset;
	u64 stripe_size;
	int i = 0;
5232
	int ret = 0;
Y
Yan Zheng 已提交
5233

5234
	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5235 5236
	if (IS_ERR(em))
		return PTR_ERR(em);
5237

5238
	map = em->map_lookup;
5239 5240 5241
	item_size = btrfs_chunk_item_size(map->num_stripes);
	stripe_size = em->orig_block_len;

Y
Yan Zheng 已提交
5242
	chunk = kzalloc(item_size, GFP_NOFS);
5243 5244 5245 5246 5247
	if (!chunk) {
		ret = -ENOMEM;
		goto out;
	}

5248 5249 5250 5251 5252 5253 5254
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with the map's stripes, because the device object's id can change
	 * at any time during that final phase of the device replace operation
	 * (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
5255
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5256 5257 5258
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
Y
Yan Zheng 已提交
5259

5260
		ret = btrfs_update_device(trans, device);
5261
		if (ret)
5262
			break;
5263 5264
		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
					     dev_offset, stripe_size);
5265
		if (ret)
5266 5267 5268
			break;
	}
	if (ret) {
5269
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5270
		goto out;
Y
Yan Zheng 已提交
5271 5272 5273
	}

	stripe = &chunk->stripe;
5274 5275 5276
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
5277

5278 5279 5280
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
5281
		stripe++;
5282
	}
5283
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5284

Y
Yan Zheng 已提交
5285
	btrfs_set_stack_chunk_length(chunk, chunk_size);
5286
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
Y
Yan Zheng 已提交
5287 5288 5289 5290 5291
	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
	btrfs_set_stack_chunk_type(chunk, map->type);
	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5292
	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
Y
Yan Zheng 已提交
5293
	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5294

Y
Yan Zheng 已提交
5295 5296 5297
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	key.offset = chunk_offset;
5298

Y
Yan Zheng 已提交
5299
	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5300 5301 5302 5303 5304
	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		/*
		 * TODO: Cleanup of inserted chunk root in case of
		 * failure.
		 */
5305
		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5306
	}
5307

5308
out:
5309
	kfree(chunk);
5310
	free_extent_map(em);
5311
	return ret;
Y
Yan Zheng 已提交
5312
}
5313

5314
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
5315
{
5316
	struct btrfs_fs_info *fs_info = trans->fs_info;
Y
Yan Zheng 已提交
5317 5318 5319
	u64 alloc_profile;
	int ret;

5320
	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5321
	ret = btrfs_alloc_chunk(trans, alloc_profile);
5322 5323
	if (ret)
		return ret;
Y
Yan Zheng 已提交
5324

5325
	alloc_profile = btrfs_system_alloc_profile(fs_info);
5326
	ret = btrfs_alloc_chunk(trans, alloc_profile);
5327
	return ret;
Y
Yan Zheng 已提交
5328 5329
}

5330 5331
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
{
5332
	const int index = btrfs_bg_flags_to_raid_index(map->type);
Y
Yan Zheng 已提交
5333

5334
	return btrfs_raid_array[index].tolerated_failures;
Y
Yan Zheng 已提交
5335 5336
}

5337
int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
Y
Yan Zheng 已提交
5338 5339 5340 5341
{
	struct extent_map *em;
	struct map_lookup *map;
	int readonly = 0;
5342
	int miss_ndevs = 0;
Y
Yan Zheng 已提交
5343 5344
	int i;

5345
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5346
	if (IS_ERR(em))
Y
Yan Zheng 已提交
5347 5348
		return 1;

5349
	map = em->map_lookup;
Y
Yan Zheng 已提交
5350
	for (i = 0; i < map->num_stripes; i++) {
5351 5352
		if (test_bit(BTRFS_DEV_STATE_MISSING,
					&map->stripes[i].dev->dev_state)) {
5353 5354 5355
			miss_ndevs++;
			continue;
		}
5356 5357
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
					&map->stripes[i].dev->dev_state)) {
Y
Yan Zheng 已提交
5358
			readonly = 1;
5359
			goto end;
Y
Yan Zheng 已提交
5360 5361
		}
	}
5362 5363 5364 5365 5366 5367 5368 5369 5370

	/*
	 * If the number of missing devices is larger than max errors,
	 * we can not write the data into that chunk successfully, so
	 * set it readonly.
	 */
	if (miss_ndevs > btrfs_chunk_max_errors(map))
		readonly = 1;
end:
5371
	free_extent_map(em);
Y
Yan Zheng 已提交
5372
	return readonly;
5373 5374
}

5375
void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5376 5377 5378
{
	struct extent_map *em;

C
Chris Mason 已提交
5379
	while (1) {
5380 5381
		write_lock(&tree->lock);
		em = lookup_extent_mapping(tree, 0, (u64)-1);
5382
		if (em)
5383 5384
			remove_extent_mapping(tree, em);
		write_unlock(&tree->lock);
5385 5386 5387 5388 5389 5390 5391 5392 5393
		if (!em)
			break;
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

5394
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5395 5396 5397 5398 5399
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret;

5400
	em = btrfs_get_chunk_map(fs_info, logical, len);
5401 5402 5403 5404 5405 5406 5407
	if (IS_ERR(em))
		/*
		 * We could return errors for these cases, but that could get
		 * ugly and we'd probably do the same thing which is just not do
		 * anything else and exit, so return 1 so the callers don't try
		 * to use other copies.
		 */
5408 5409
		return 1;

5410
	map = em->map_lookup;
5411
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5412
		ret = map->num_stripes;
C
Chris Mason 已提交
5413 5414
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
D
David Woodhouse 已提交
5415 5416 5417
	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		ret = 2;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
L
Liu Bo 已提交
5418 5419 5420
		/*
		 * There could be two corrupted data stripes, we need
		 * to loop retry in order to rebuild the correct data.
5421
		 *
L
Liu Bo 已提交
5422 5423 5424 5425
		 * Fail a stripe at a time on every retry except the
		 * stripe under reconstruction.
		 */
		ret = map->num_stripes;
5426 5427 5428
	else
		ret = 1;
	free_extent_map(em);
5429

5430
	down_read(&fs_info->dev_replace.rwsem);
5431 5432
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
	    fs_info->dev_replace.tgtdev)
5433
		ret++;
5434
	up_read(&fs_info->dev_replace.rwsem);
5435

5436 5437 5438
	return ret;
}

5439
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
D
David Woodhouse 已提交
5440 5441 5442 5443
				    u64 logical)
{
	struct extent_map *em;
	struct map_lookup *map;
5444
	unsigned long len = fs_info->sectorsize;
D
David Woodhouse 已提交
5445

5446
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5447

5448 5449 5450 5451 5452 5453
	if (!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			len = map->stripe_len * nr_data_stripes(map);
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5454 5455 5456
	return len;
}

5457
int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
D
David Woodhouse 已提交
5458 5459 5460 5461 5462
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret = 0;

5463
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5464

5465 5466 5467 5468 5469 5470
	if(!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			ret = 1;
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5471 5472 5473
	return ret;
}

5474
static int find_live_mirror(struct btrfs_fs_info *fs_info,
5475
			    struct map_lookup *map, int first,
5476
			    int dev_replace_is_ongoing)
5477 5478
{
	int i;
5479
	int num_stripes;
5480
	int preferred_mirror;
5481 5482 5483
	int tolerance;
	struct btrfs_device *srcdev;

5484
	ASSERT((map->type &
5485
		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5486 5487 5488 5489 5490 5491

	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		num_stripes = map->sub_stripes;
	else
		num_stripes = map->num_stripes;

5492 5493
	preferred_mirror = first + current->pid % num_stripes;

5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
	if (dev_replace_is_ongoing &&
	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
		srcdev = fs_info->dev_replace.srcdev;
	else
		srcdev = NULL;

	/*
	 * try to avoid the drive that is the source drive for a
	 * dev-replace procedure, only choose it if no other non-missing
	 * mirror is available
	 */
	for (tolerance = 0; tolerance < 2; tolerance++) {
5507 5508 5509
		if (map->stripes[preferred_mirror].dev->bdev &&
		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
			return preferred_mirror;
5510
		for (i = first; i < first + num_stripes; i++) {
5511 5512 5513 5514
			if (map->stripes[i].dev->bdev &&
			    (tolerance || map->stripes[i].dev != srcdev))
				return i;
		}
5515
	}
5516

5517 5518 5519
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
5520
	return preferred_mirror;
5521 5522
}

D
David Woodhouse 已提交
5523
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5524
static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
D
David Woodhouse 已提交
5525 5526 5527 5528 5529 5530
{
	int i;
	int again = 1;

	while (again) {
		again = 0;
5531
		for (i = 0; i < num_stripes - 1; i++) {
5532 5533 5534 5535
			/* Swap if parity is on a smaller index */
			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
				swap(bbio->stripes[i], bbio->stripes[i + 1]);
				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
D
David Woodhouse 已提交
5536 5537 5538 5539 5540 5541
				again = 1;
			}
		}
	}
}

5542 5543 5544
static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
{
	struct btrfs_bio *bbio = kzalloc(
5545
		 /* the size of the btrfs_bio */
5546
		sizeof(struct btrfs_bio) +
5547
		/* plus the variable array for the stripes */
5548
		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5549
		/* plus the variable array for the tgt dev */
5550
		sizeof(int) * (real_stripes) +
5551 5552 5553 5554 5555
		/*
		 * plus the raid_map, which includes both the tgt dev
		 * and the stripes
		 */
		sizeof(u64) * (total_stripes),
5556
		GFP_NOFS|__GFP_NOFAIL);
5557 5558

	atomic_set(&bbio->error, 0);
5559
	refcount_set(&bbio->refs, 1);
5560

5561 5562 5563
	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);

5564 5565 5566 5567 5568
	return bbio;
}

void btrfs_get_bbio(struct btrfs_bio *bbio)
{
5569 5570
	WARN_ON(!refcount_read(&bbio->refs));
	refcount_inc(&bbio->refs);
5571 5572 5573 5574 5575 5576
}

void btrfs_put_bbio(struct btrfs_bio *bbio)
{
	if (!bbio)
		return;
5577
	if (refcount_dec_and_test(&bbio->refs))
5578 5579 5580
		kfree(bbio);
}

5581 5582 5583 5584 5585 5586
/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
/*
 * Please note that, discard won't be sent to target device of device
 * replace.
 */
static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5587
					 u64 logical, u64 *length_ret,
5588 5589 5590 5591 5592
					 struct btrfs_bio **bbio_ret)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_bio *bbio;
5593
	u64 length = *length_ret;
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
	u64 offset;
	u64 stripe_nr;
	u64 stripe_nr_end;
	u64 stripe_end_offset;
	u64 stripe_cnt;
	u64 stripe_len;
	u64 stripe_offset;
	u64 num_stripes;
	u32 stripe_index;
	u32 factor = 0;
	u32 sub_stripes = 0;
	u64 stripes_per_dev = 0;
	u32 remaining_stripes = 0;
	u32 last_stripe = 0;
	int ret = 0;
	int i;

	/* discard always return a bbio */
	ASSERT(bbio_ret);

5614
	em = btrfs_get_chunk_map(fs_info, logical, length);
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* we don't discard raid56 yet */
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ret = -EOPNOTSUPP;
		goto out;
	}

	offset = logical - em->start;
5626
	length = min_t(u64, em->start + em->len - logical, length);
5627
	*length_ret = length;
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639

	stripe_len = map->stripe_len;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	stripe_nr = div64_u64(offset, stripe_len);

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_nr * stripe_len;

	stripe_nr_end = round_up(offset + length, map->stripe_len);
5640
	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
	stripe_cnt = stripe_nr_end - stripe_nr;
	stripe_end_offset = stripe_nr_end * map->stripe_len -
			    (offset + length);
	/*
	 * after this, stripe_nr is the number of stripes on this
	 * device we have to walk to find the data, and stripe_index is
	 * the number of our device in the stripe array
	 */
	num_stripes = 1;
	stripe_index = 0;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			 BTRFS_BLOCK_GROUP_RAID10)) {
		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
			sub_stripes = 1;
		else
			sub_stripes = map->sub_stripes;

		factor = map->num_stripes / sub_stripes;
		num_stripes = min_t(u64, map->num_stripes,
				    sub_stripes * stripe_cnt);
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
		stripe_index *= sub_stripes;
		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
					      &remaining_stripes);
		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
		last_stripe *= sub_stripes;
5667
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
				BTRFS_BLOCK_GROUP_DUP)) {
		num_stripes = map->num_stripes;
	} else {
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
					&stripe_index);
	}

	bbio = alloc_btrfs_bio(num_stripes, 0);
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical =
			map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;

		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
				 BTRFS_BLOCK_GROUP_RAID10)) {
			bbio->stripes[i].length = stripes_per_dev *
				map->stripe_len;

			if (i / sub_stripes < remaining_stripes)
				bbio->stripes[i].length +=
					map->stripe_len;

			/*
			 * Special for the first stripe and
			 * the last stripe:
			 *
			 * |-------|...|-------|
			 *     |----------|
			 *    off     end_off
			 */
			if (i < sub_stripes)
				bbio->stripes[i].length -=
					stripe_offset;

			if (stripe_index >= last_stripe &&
			    stripe_index <= (last_stripe +
					     sub_stripes - 1))
				bbio->stripes[i].length -=
					stripe_end_offset;

			if (i == sub_stripes - 1)
				stripe_offset = 0;
		} else {
			bbio->stripes[i].length = length;
		}

		stripe_index++;
		if (stripe_index == map->num_stripes) {
			stripe_index = 0;
			stripe_nr++;
		}
	}

	*bbio_ret = bbio;
	bbio->map_type = map->type;
	bbio->num_stripes = num_stripes;
out:
	free_extent_map(em);
	return ret;
}

5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
/*
 * In dev-replace case, for repair case (that's the only case where the mirror
 * is selected explicitly when calling btrfs_map_block), blocks left of the
 * left cursor can also be read from the target drive.
 *
 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
 * array of stripes.
 * For READ, it also needs to be supported using the same mirror number.
 *
 * If the requested block is not left of the left cursor, EIO is returned. This
 * can happen because btrfs_num_copies() returns one more in the dev-replace
 * case.
 */
static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
					 u64 logical, u64 length,
					 u64 srcdev_devid, int *mirror_num,
					 u64 *physical)
{
	struct btrfs_bio *bbio = NULL;
	int num_stripes;
	int index_srcdev = 0;
	int found = 0;
	u64 physical_of_found = 0;
	int i;
	int ret = 0;

	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
				logical, &length, &bbio, 0, 0);
	if (ret) {
		ASSERT(bbio == NULL);
		return ret;
	}

	num_stripes = bbio->num_stripes;
	if (*mirror_num > num_stripes) {
		/*
		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
		 * that means that the requested area is not left of the left
		 * cursor
		 */
		btrfs_put_bbio(bbio);
		return -EIO;
	}

	/*
	 * process the rest of the function using the mirror_num of the source
	 * drive. Therefore look it up first.  At the end, patch the device
	 * pointer to the one of the target drive.
	 */
	for (i = 0; i < num_stripes; i++) {
		if (bbio->stripes[i].dev->devid != srcdev_devid)
			continue;

		/*
		 * In case of DUP, in order to keep it simple, only add the
		 * mirror with the lowest physical address
		 */
		if (found &&
		    physical_of_found <= bbio->stripes[i].physical)
			continue;

		index_srcdev = i;
		found = 1;
		physical_of_found = bbio->stripes[i].physical;
	}

	btrfs_put_bbio(bbio);

	ASSERT(found);
	if (!found)
		return -EIO;

	*mirror_num = index_srcdev + 1;
	*physical = physical_of_found;
	return ret;
}

5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
static void handle_ops_on_dev_replace(enum btrfs_map_op op,
				      struct btrfs_bio **bbio_ret,
				      struct btrfs_dev_replace *dev_replace,
				      int *num_stripes_ret, int *max_errors_ret)
{
	struct btrfs_bio *bbio = *bbio_ret;
	u64 srcdev_devid = dev_replace->srcdev->devid;
	int tgtdev_indexes = 0;
	int num_stripes = *num_stripes_ret;
	int max_errors = *max_errors_ret;
	int i;

	if (op == BTRFS_MAP_WRITE) {
		int index_where_to_add;

		/*
		 * duplicate the write operations while the dev replace
		 * procedure is running. Since the copying of the old disk to
		 * the new disk takes place at run time while the filesystem is
		 * mounted writable, the regular write operations to the old
		 * disk have to be duplicated to go to the new disk as well.
		 *
		 * Note that device->missing is handled by the caller, and that
		 * the write to the old disk is already set up in the stripes
		 * array.
		 */
		index_where_to_add = num_stripes;
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/* write to new disk, too */
				struct btrfs_bio_stripe *new =
					bbio->stripes + index_where_to_add;
				struct btrfs_bio_stripe *old =
					bbio->stripes + i;

				new->physical = old->physical;
				new->length = old->length;
				new->dev = dev_replace->tgtdev;
				bbio->tgtdev_map[i] = index_where_to_add;
				index_where_to_add++;
				max_errors++;
				tgtdev_indexes++;
			}
		}
		num_stripes = index_where_to_add;
	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
		int index_srcdev = 0;
		int found = 0;
		u64 physical_of_found = 0;

		/*
		 * During the dev-replace procedure, the target drive can also
		 * be used to read data in case it is needed to repair a corrupt
		 * block elsewhere. This is possible if the requested area is
		 * left of the left cursor. In this area, the target drive is a
		 * full copy of the source drive.
		 */
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/*
				 * In case of DUP, in order to keep it simple,
				 * only add the mirror with the lowest physical
				 * address
				 */
				if (found &&
				    physical_of_found <=
				     bbio->stripes[i].physical)
					continue;
				index_srcdev = i;
				found = 1;
				physical_of_found = bbio->stripes[i].physical;
			}
		}
		if (found) {
			struct btrfs_bio_stripe *tgtdev_stripe =
				bbio->stripes + num_stripes;

			tgtdev_stripe->physical = physical_of_found;
			tgtdev_stripe->length =
				bbio->stripes[index_srcdev].length;
			tgtdev_stripe->dev = dev_replace->tgtdev;
			bbio->tgtdev_map[index_srcdev] = num_stripes;

			tgtdev_indexes++;
			num_stripes++;
		}
	}

	*num_stripes_ret = num_stripes;
	*max_errors_ret = max_errors;
	bbio->num_tgtdevs = tgtdev_indexes;
	*bbio_ret = bbio;
}

5906 5907 5908 5909 5910
static bool need_full_stripe(enum btrfs_map_op op)
{
	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
}

5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
/*
 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
 *		       tuple. This information is used to calculate how big a
 *		       particular bio can get before it straddles a stripe.
 *
 * @fs_info - the filesystem
 * @logical - address that we want to figure out the geometry of
 * @len	    - the length of IO we are going to perform, starting at @logical
 * @op      - type of operation - write or read
 * @io_geom - pointer used to return values
 *
 * Returns < 0 in case a chunk for the given logical address cannot be found,
 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
 */
int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5926
			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5927 5928 5929 5930 5931 5932 5933 5934 5935
{
	struct extent_map *em;
	struct map_lookup *map;
	u64 offset;
	u64 stripe_offset;
	u64 stripe_nr;
	u64 stripe_len;
	u64 raid56_full_stripe_start = (u64)-1;
	int data_stripes;
5936
	int ret = 0;
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956

	ASSERT(op != BTRFS_MAP_DISCARD);

	em = btrfs_get_chunk_map(fs_info, logical, len);
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* Offset of this logical address in the chunk */
	offset = logical - em->start;
	/* Len of a stripe in a chunk */
	stripe_len = map->stripe_len;
	/* Stripe wher this block falls in */
	stripe_nr = div64_u64(offset, stripe_len);
	/* Offset of stripe in the chunk */
	stripe_offset = stripe_nr * stripe_len;
	if (offset < stripe_offset) {
		btrfs_crit(fs_info,
"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
			stripe_offset, offset, em->start, logical, stripe_len);
5957 5958
		ret = -EINVAL;
		goto out;
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
	}

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_offset;
	data_stripes = nr_data_stripes(map);

	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
		u64 max_len = stripe_len - stripe_offset;

		/*
		 * In case of raid56, we need to know the stripe aligned start
		 */
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			unsigned long full_stripe_len = stripe_len * data_stripes;
			raid56_full_stripe_start = offset;

			/*
			 * Allow a write of a full stripe, but make sure we
			 * don't allow straddling of stripes
			 */
			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
					full_stripe_len);
			raid56_full_stripe_start *= full_stripe_len;

			/*
			 * For writes to RAID[56], allow a full stripeset across
			 * all disks. For other RAID types and for RAID[56]
			 * reads, just allow a single stripe (on a single disk).
			 */
			if (op == BTRFS_MAP_WRITE) {
				max_len = stripe_len * data_stripes -
					  (offset - raid56_full_stripe_start);
			}
		}
		len = min_t(u64, em->len - offset, max_len);
	} else {
		len = em->len - offset;
	}

	io_geom->len = len;
	io_geom->offset = offset;
	io_geom->stripe_len = stripe_len;
	io_geom->stripe_nr = stripe_nr;
	io_geom->stripe_offset = stripe_offset;
	io_geom->raid56_stripe_offset = raid56_full_stripe_start;

6005 6006 6007 6008
out:
	/* once for us */
	free_extent_map(em);
	return ret;
6009 6010
}

6011 6012
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
6013
			     u64 logical, u64 *length,
6014
			     struct btrfs_bio **bbio_ret,
6015
			     int mirror_num, int need_raid_map)
6016 6017 6018
{
	struct extent_map *em;
	struct map_lookup *map;
6019 6020
	u64 stripe_offset;
	u64 stripe_nr;
D
David Woodhouse 已提交
6021
	u64 stripe_len;
6022
	u32 stripe_index;
6023
	int data_stripes;
6024
	int i;
L
Li Zefan 已提交
6025
	int ret = 0;
6026
	int num_stripes;
6027
	int max_errors = 0;
6028
	int tgtdev_indexes = 0;
6029
	struct btrfs_bio *bbio = NULL;
6030 6031 6032
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
	int dev_replace_is_ongoing = 0;
	int num_alloc_stripes;
6033 6034
	int patch_the_first_stripe_for_dev_replace = 0;
	u64 physical_to_patch_in_first_stripe = 0;
D
David Woodhouse 已提交
6035
	u64 raid56_full_stripe_start = (u64)-1;
6036 6037 6038
	struct btrfs_io_geometry geom;

	ASSERT(bbio_ret);
6039
	ASSERT(op != BTRFS_MAP_DISCARD);
6040

6041 6042 6043
	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
	if (ret < 0)
		return ret;
6044

6045
	em = btrfs_get_chunk_map(fs_info, logical, *length);
6046
	ASSERT(!IS_ERR(em));
6047
	map = em->map_lookup;
6048

6049 6050 6051 6052 6053
	*length = geom.len;
	stripe_len = geom.stripe_len;
	stripe_nr = geom.stripe_nr;
	stripe_offset = geom.stripe_offset;
	raid56_full_stripe_start = geom.raid56_stripe_offset;
6054
	data_stripes = nr_data_stripes(map);
6055

6056
	down_read(&dev_replace->rwsem);
6057
	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6058 6059 6060 6061
	/*
	 * Hold the semaphore for read during the whole operation, write is
	 * requested at commit time but must wait.
	 */
6062
	if (!dev_replace_is_ongoing)
6063
		up_read(&dev_replace->rwsem);
6064

6065
	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6066
	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6067 6068 6069 6070 6071
		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
						    dev_replace->srcdev->devid,
						    &mirror_num,
					    &physical_to_patch_in_first_stripe);
		if (ret)
6072
			goto out;
6073 6074
		else
			patch_the_first_stripe_for_dev_replace = 1;
6075 6076 6077 6078
	} else if (mirror_num > map->num_stripes) {
		mirror_num = 0;
	}

6079
	num_stripes = 1;
6080
	stripe_index = 0;
6081
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6082 6083
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6084
		if (!need_full_stripe(op))
6085
			mirror_num = 1;
6086
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6087
		if (need_full_stripe(op))
6088
			num_stripes = map->num_stripes;
6089
		else if (mirror_num)
6090
			stripe_index = mirror_num - 1;
6091
		else {
6092 6093
			stripe_index = find_live_mirror(fs_info, map, 0,
					    dev_replace_is_ongoing);
6094
			mirror_num = stripe_index + 1;
6095
		}
6096

6097
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6098
		if (need_full_stripe(op)) {
6099
			num_stripes = map->num_stripes;
6100
		} else if (mirror_num) {
6101
			stripe_index = mirror_num - 1;
6102 6103 6104
		} else {
			mirror_num = 1;
		}
6105

C
Chris Mason 已提交
6106
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6107
		u32 factor = map->num_stripes / map->sub_stripes;
C
Chris Mason 已提交
6108

6109
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
C
Chris Mason 已提交
6110 6111
		stripe_index *= map->sub_stripes;

6112
		if (need_full_stripe(op))
6113
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
6114 6115
		else if (mirror_num)
			stripe_index += mirror_num - 1;
6116
		else {
J
Jan Schmidt 已提交
6117
			int old_stripe_index = stripe_index;
6118 6119 6120
			stripe_index = find_live_mirror(fs_info, map,
					      stripe_index,
					      dev_replace_is_ongoing);
J
Jan Schmidt 已提交
6121
			mirror_num = stripe_index - old_stripe_index + 1;
6122
		}
D
David Woodhouse 已提交
6123

6124
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6125
		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
D
David Woodhouse 已提交
6126
			/* push stripe_nr back to the start of the full stripe */
6127
			stripe_nr = div64_u64(raid56_full_stripe_start,
6128
					stripe_len * data_stripes);
D
David Woodhouse 已提交
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142

			/* RAID[56] write or recovery. Return all stripes */
			num_stripes = map->num_stripes;
			max_errors = nr_parity_stripes(map);

			*length = map->stripe_len;
			stripe_index = 0;
			stripe_offset = 0;
		} else {
			/*
			 * Mirror #0 or #1 means the original data block.
			 * Mirror #2 is RAID5 parity block.
			 * Mirror #3 is RAID6 Q block.
			 */
6143
			stripe_nr = div_u64_rem(stripe_nr,
6144
					data_stripes, &stripe_index);
D
David Woodhouse 已提交
6145
			if (mirror_num > 1)
6146
				stripe_index = data_stripes + mirror_num - 2;
D
David Woodhouse 已提交
6147 6148

			/* We distribute the parity blocks across stripes */
6149 6150
			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
					&stripe_index);
6151
			if (!need_full_stripe(op) && mirror_num <= 1)
6152
				mirror_num = 1;
D
David Woodhouse 已提交
6153
		}
6154 6155
	} else {
		/*
6156 6157 6158
		 * after this, stripe_nr is the number of stripes on this
		 * device we have to walk to find the data, and stripe_index is
		 * the number of our device in the stripe array
6159
		 */
6160 6161
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6162
		mirror_num = stripe_index + 1;
6163
	}
6164
	if (stripe_index >= map->num_stripes) {
J
Jeff Mahoney 已提交
6165 6166
		btrfs_crit(fs_info,
			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6167 6168 6169 6170
			   stripe_index, map->num_stripes);
		ret = -EINVAL;
		goto out;
	}
6171

6172
	num_alloc_stripes = num_stripes;
6173
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6174
		if (op == BTRFS_MAP_WRITE)
6175
			num_alloc_stripes <<= 1;
6176
		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6177
			num_alloc_stripes++;
6178
		tgtdev_indexes = num_stripes;
6179
	}
6180

6181
	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
L
Li Zefan 已提交
6182 6183 6184 6185
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}
6186 6187 6188 6189 6190 6191 6192

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
		stripe_index++;
	}
L
Li Zefan 已提交
6193

6194
	/* build raid_map */
6195 6196
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
	    (need_full_stripe(op) || mirror_num > 1)) {
6197
		u64 tmp;
6198
		unsigned rot;
6199 6200

		/* Work out the disk rotation on this stripe-set */
6201
		div_u64_rem(stripe_nr, num_stripes, &rot);
6202 6203

		/* Fill in the logical address of each stripe */
6204 6205
		tmp = stripe_nr * data_stripes;
		for (i = 0; i < data_stripes; i++)
6206 6207 6208 6209 6210 6211 6212 6213
			bbio->raid_map[(i+rot) % num_stripes] =
				em->start + (tmp + i) * map->stripe_len;

		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
			bbio->raid_map[(i+rot+1) % num_stripes] =
				RAID6_Q_STRIPE;

6214
		sort_parity_stripes(bbio, num_stripes);
6215
	}
L
Li Zefan 已提交
6216

6217
	if (need_full_stripe(op))
6218
		max_errors = btrfs_chunk_max_errors(map);
L
Li Zefan 已提交
6219

6220
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6221
	    need_full_stripe(op)) {
6222 6223
		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
					  &max_errors);
6224 6225
	}

L
Li Zefan 已提交
6226
	*bbio_ret = bbio;
Z
Zhao Lei 已提交
6227
	bbio->map_type = map->type;
L
Li Zefan 已提交
6228 6229 6230
	bbio->num_stripes = num_stripes;
	bbio->max_errors = max_errors;
	bbio->mirror_num = mirror_num;
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242

	/*
	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
	 * mirror_num == num_stripes + 1 && dev_replace target drive is
	 * available as a mirror
	 */
	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
		WARN_ON(num_stripes > 1);
		bbio->stripes[0].dev = dev_replace->tgtdev;
		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
		bbio->mirror_num = map->num_stripes + 1;
	}
6243
out:
6244
	if (dev_replace_is_ongoing) {
6245 6246
		lockdep_assert_held(&dev_replace->rwsem);
		/* Unlock and let waiting writers proceed */
6247
		up_read(&dev_replace->rwsem);
6248
	}
6249
	free_extent_map(em);
L
Li Zefan 已提交
6250
	return ret;
6251 6252
}

6253
int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6254
		      u64 logical, u64 *length,
6255
		      struct btrfs_bio **bbio_ret, int mirror_num)
6256
{
6257 6258 6259 6260
	if (op == BTRFS_MAP_DISCARD)
		return __btrfs_map_block_for_discard(fs_info, logical,
						     length, bbio_ret);

6261
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6262
				 mirror_num, 0);
6263 6264
}

6265
/* For Scrub/replace */
6266
int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6267
		     u64 logical, u64 *length,
6268
		     struct btrfs_bio **bbio_ret)
6269
{
6270
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6271 6272
}

6273
static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6274
{
6275 6276
	bio->bi_private = bbio->private;
	bio->bi_end_io = bbio->end_io;
6277
	bio_endio(bio);
6278

6279
	btrfs_put_bbio(bbio);
6280 6281
}

6282
static void btrfs_end_bio(struct bio *bio)
6283
{
6284
	struct btrfs_bio *bbio = bio->bi_private;
6285
	int is_orig_bio = 0;
6286

6287
	if (bio->bi_status) {
6288
		atomic_inc(&bbio->error);
6289 6290
		if (bio->bi_status == BLK_STS_IOERR ||
		    bio->bi_status == BLK_STS_TARGET) {
6291
			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6292

6293 6294 6295
			ASSERT(dev->bdev);
			if (bio_op(bio) == REQ_OP_WRITE)
				btrfs_dev_stat_inc_and_print(dev,
6296
						BTRFS_DEV_STAT_WRITE_ERRS);
6297 6298
			else if (!(bio->bi_opf & REQ_RAHEAD))
				btrfs_dev_stat_inc_and_print(dev,
6299
						BTRFS_DEV_STAT_READ_ERRS);
6300 6301
			if (bio->bi_opf & REQ_PREFLUSH)
				btrfs_dev_stat_inc_and_print(dev,
6302
						BTRFS_DEV_STAT_FLUSH_ERRS);
6303 6304
		}
	}
6305

6306
	if (bio == bbio->orig_bio)
6307 6308
		is_orig_bio = 1;

6309 6310
	btrfs_bio_counter_dec(bbio->fs_info);

6311
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6312 6313
		if (!is_orig_bio) {
			bio_put(bio);
6314
			bio = bbio->orig_bio;
6315
		}
6316

6317
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6318
		/* only send an error to the higher layers if it is
D
David Woodhouse 已提交
6319
		 * beyond the tolerance of the btrfs bio
6320
		 */
6321
		if (atomic_read(&bbio->error) > bbio->max_errors) {
6322
			bio->bi_status = BLK_STS_IOERR;
6323
		} else {
6324 6325 6326 6327
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
6328
			bio->bi_status = BLK_STS_OK;
6329
		}
6330

6331
		btrfs_end_bbio(bbio, bio);
6332
	} else if (!is_orig_bio) {
6333 6334 6335 6336
		bio_put(bio);
	}
}

6337
static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6338
			      u64 physical, struct btrfs_device *dev)
6339
{
6340
	struct btrfs_fs_info *fs_info = bbio->fs_info;
6341 6342

	bio->bi_private = bbio;
6343
	btrfs_io_bio(bio)->device = dev;
6344
	bio->bi_end_io = btrfs_end_bio;
6345
	bio->bi_iter.bi_sector = physical >> 9;
6346 6347 6348
	btrfs_debug_in_rcu(fs_info,
	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6349 6350
		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
		dev->devid, bio->bi_iter.bi_size);
6351
	bio_set_dev(bio, dev->bdev);
6352

6353
	btrfs_bio_counter_inc_noblocked(fs_info);
6354

6355
	btrfsic_submit_bio(bio);
6356 6357 6358 6359 6360 6361
}

static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
{
	atomic_inc(&bbio->error);
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6362
		/* Should be the original bio. */
6363 6364
		WARN_ON(bio != bbio->orig_bio);

6365
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6366
		bio->bi_iter.bi_sector = logical >> 9;
6367 6368 6369 6370
		if (atomic_read(&bbio->error) > bbio->max_errors)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_status = BLK_STS_OK;
6371
		btrfs_end_bbio(bbio, bio);
6372 6373 6374
	}
}

6375
blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6376
			   int mirror_num)
6377 6378
{
	struct btrfs_device *dev;
6379
	struct bio *first_bio = bio;
6380
	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6381 6382 6383
	u64 length = 0;
	u64 map_length;
	int ret;
6384 6385
	int dev_nr;
	int total_devs;
6386
	struct btrfs_bio *bbio = NULL;
6387

6388
	length = bio->bi_iter.bi_size;
6389
	map_length = length;
6390

6391
	btrfs_bio_counter_inc_blocked(fs_info);
6392
	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
M
Mike Christie 已提交
6393
				&map_length, &bbio, mirror_num, 1);
6394
	if (ret) {
6395
		btrfs_bio_counter_dec(fs_info);
6396
		return errno_to_blk_status(ret);
6397
	}
6398

6399
	total_devs = bbio->num_stripes;
D
David Woodhouse 已提交
6400 6401 6402
	bbio->orig_bio = first_bio;
	bbio->private = first_bio->bi_private;
	bbio->end_io = first_bio->bi_end_io;
6403
	bbio->fs_info = fs_info;
D
David Woodhouse 已提交
6404 6405
	atomic_set(&bbio->stripes_pending, bbio->num_stripes);

6406
	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
M
Mike Christie 已提交
6407
	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
D
David Woodhouse 已提交
6408 6409
		/* In this case, map_length has been set to the length of
		   a single stripe; not the whole write */
M
Mike Christie 已提交
6410
		if (bio_op(bio) == REQ_OP_WRITE) {
6411 6412
			ret = raid56_parity_write(fs_info, bio, bbio,
						  map_length);
D
David Woodhouse 已提交
6413
		} else {
6414 6415
			ret = raid56_parity_recover(fs_info, bio, bbio,
						    map_length, mirror_num, 1);
D
David Woodhouse 已提交
6416
		}
6417

6418
		btrfs_bio_counter_dec(fs_info);
6419
		return errno_to_blk_status(ret);
D
David Woodhouse 已提交
6420 6421
	}

6422
	if (map_length < length) {
6423
		btrfs_crit(fs_info,
J
Jeff Mahoney 已提交
6424 6425
			   "mapping failed logical %llu bio len %llu len %llu",
			   logical, length, map_length);
6426 6427
		BUG();
	}
6428

6429
	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6430
		dev = bbio->stripes[dev_nr].dev;
6431 6432
		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
						   &dev->dev_state) ||
6433 6434
		    (bio_op(first_bio) == REQ_OP_WRITE &&
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6435 6436 6437 6438
			bbio_error(bbio, first_bio, logical);
			continue;
		}

6439
		if (dev_nr < total_devs - 1)
6440
			bio = btrfs_bio_clone(first_bio);
6441
		else
6442
			bio = first_bio;
6443

6444
		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6445
	}
6446
	btrfs_bio_counter_dec(fs_info);
6447
	return BLK_STS_OK;
6448 6449
}

6450 6451 6452 6453 6454 6455 6456 6457 6458
/*
 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 * return NULL.
 *
 * If devid and uuid are both specified, the match must be exact, otherwise
 * only devid is used.
 *
 * If @seed is true, traverse through the seed devices.
 */
6459
struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6460 6461
				       u64 devid, u8 *uuid, u8 *fsid,
				       bool seed)
6462
{
Y
Yan Zheng 已提交
6463 6464
	struct btrfs_device *device;

6465
	while (fs_devices) {
Y
Yan Zheng 已提交
6466
		if (!fsid ||
6467
		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6468 6469 6470 6471 6472 6473 6474
			list_for_each_entry(device, &fs_devices->devices,
					    dev_list) {
				if (device->devid == devid &&
				    (!uuid || memcmp(device->uuid, uuid,
						     BTRFS_UUID_SIZE) == 0))
					return device;
			}
Y
Yan Zheng 已提交
6475
		}
6476 6477 6478 6479
		if (seed)
			fs_devices = fs_devices->seed;
		else
			return NULL;
Y
Yan Zheng 已提交
6480 6481
	}
	return NULL;
6482 6483
}

6484
static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6485 6486 6487
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
6488
	unsigned int nofs_flag;
6489

6490 6491 6492 6493 6494 6495 6496
	/*
	 * We call this under the chunk_mutex, so we want to use NOFS for this
	 * allocation, however we don't want to change btrfs_alloc_device() to
	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
	 * places.
	 */
	nofs_flag = memalloc_nofs_save();
6497
	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6498
	memalloc_nofs_restore(nofs_flag);
6499
	if (IS_ERR(device))
6500
		return device;
6501 6502

	list_add(&device->dev_list, &fs_devices->devices);
Y
Yan Zheng 已提交
6503
	device->fs_devices = fs_devices;
6504
	fs_devices->num_devices++;
6505

6506
	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6507
	fs_devices->missing_devices++;
6508

6509 6510 6511
	return device;
}

6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
/**
 * btrfs_alloc_device - allocate struct btrfs_device
 * @fs_info:	used only for generating a new devid, can be NULL if
 *		devid is provided (i.e. @devid != NULL).
 * @devid:	a pointer to devid for this device.  If NULL a new devid
 *		is generated.
 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
 *		is generated.
 *
 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6522
 * on error.  Returned struct is not linked onto any lists and must be
6523
 * destroyed with btrfs_free_device.
6524 6525 6526 6527 6528 6529 6530 6531
 */
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
					const u64 *devid,
					const u8 *uuid)
{
	struct btrfs_device *dev;
	u64 tmp;

6532
	if (WARN_ON(!devid && !fs_info))
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
		return ERR_PTR(-EINVAL);

	dev = __alloc_device();
	if (IS_ERR(dev))
		return dev;

	if (devid)
		tmp = *devid;
	else {
		int ret;

		ret = find_next_devid(fs_info, &tmp);
		if (ret) {
6546
			btrfs_free_device(dev);
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
			return ERR_PTR(ret);
		}
	}
	dev->devid = tmp;

	if (uuid)
		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
	else
		generate_random_uuid(dev->uuid);

	return dev;
}

6560
static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6561
					u64 devid, u8 *uuid, bool error)
6562
{
6563 6564 6565 6566 6567 6568
	if (error)
		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
	else
		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
6569 6570
}

6571 6572 6573 6574
static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
{
	int index = btrfs_bg_flags_to_raid_index(type);
	int ncopies = btrfs_raid_array[index].ncopies;
6575
	const int nparity = btrfs_raid_array[index].nparity;
6576 6577
	int data_stripes;

6578 6579 6580
	if (nparity)
		data_stripes = num_stripes - nparity;
	else
6581
		data_stripes = num_stripes / ncopies;
6582

6583 6584 6585
	return div_u64(chunk_len, data_stripes);
}

6586
static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6587 6588
			  struct btrfs_chunk *chunk)
{
6589
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6590
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
	u8 uuid[BTRFS_UUID_SIZE];
	int num_stripes;
	int ret;
	int i;

	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

6605 6606 6607 6608 6609
	/*
	 * Only need to verify chunk item if we're reading from sys chunk array,
	 * as chunk item in tree block is already verified by tree-checker.
	 */
	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6610
		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6611 6612 6613
		if (ret)
			return ret;
	}
6614

6615 6616 6617
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, logical, 1);
	read_unlock(&map_tree->lock);
6618 6619 6620 6621 6622 6623 6624 6625 6626

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

6627
	em = alloc_extent_map();
6628 6629
	if (!em)
		return -ENOMEM;
6630
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6631 6632 6633 6634 6635
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

6636
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6637
	em->map_lookup = map;
6638 6639
	em->start = logical;
	em->len = length;
6640
	em->orig_start = 0;
6641
	em->block_start = 0;
C
Chris Mason 已提交
6642
	em->block_len = em->len;
6643

6644 6645 6646 6647 6648
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
6649
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6650
	map->verified_stripes = 0;
6651 6652
	em->orig_block_len = calc_stripe_length(map->type, em->len,
						map->num_stripes);
6653 6654 6655 6656
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6657 6658 6659
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
6660
		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6661
							devid, uuid, NULL, true);
6662
		if (!map->stripes[i].dev &&
6663
		    !btrfs_test_opt(fs_info, DEGRADED)) {
6664
			free_extent_map(em);
6665
			btrfs_report_missing_device(fs_info, devid, uuid, true);
6666
			return -ENOENT;
6667
		}
6668 6669
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
6670 6671
				add_missing_dev(fs_info->fs_devices, devid,
						uuid);
6672
			if (IS_ERR(map->stripes[i].dev)) {
6673
				free_extent_map(em);
6674 6675 6676 6677
				btrfs_err(fs_info,
					"failed to init missing dev %llu: %ld",
					devid, PTR_ERR(map->stripes[i].dev));
				return PTR_ERR(map->stripes[i].dev);
6678
			}
6679
			btrfs_report_missing_device(fs_info, devid, uuid, false);
6680
		}
6681 6682 6683
		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				&(map->stripes[i].dev->dev_state));

6684 6685
	}

6686 6687 6688
	write_lock(&map_tree->lock);
	ret = add_extent_mapping(map_tree, em, 0);
	write_unlock(&map_tree->lock);
6689 6690 6691 6692 6693
	if (ret < 0) {
		btrfs_err(fs_info,
			  "failed to add chunk map, start=%llu len=%llu: %d",
			  em->start, em->len, ret);
	}
6694 6695
	free_extent_map(em);

6696
	return ret;
6697 6698
}

6699
static void fill_device_from_item(struct extent_buffer *leaf,
6700 6701 6702 6703 6704 6705
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
6706 6707
	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->total_bytes = device->disk_total_bytes;
6708
	device->commit_total_bytes = device->disk_total_bytes;
6709
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6710
	device->commit_bytes_used = device->bytes_used;
6711 6712 6713 6714
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6715
	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6716
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6717

6718
	ptr = btrfs_device_uuid(dev_item);
6719
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6720 6721
}

6722
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6723
						  u8 *fsid)
Y
Yan Zheng 已提交
6724 6725 6726 6727
{
	struct btrfs_fs_devices *fs_devices;
	int ret;

6728
	lockdep_assert_held(&uuid_mutex);
D
David Sterba 已提交
6729
	ASSERT(fsid);
Y
Yan Zheng 已提交
6730

6731
	fs_devices = fs_info->fs_devices->seed;
Y
Yan Zheng 已提交
6732
	while (fs_devices) {
6733
		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6734 6735
			return fs_devices;

Y
Yan Zheng 已提交
6736 6737 6738
		fs_devices = fs_devices->seed;
	}

6739
	fs_devices = find_fsid(fsid, NULL);
Y
Yan Zheng 已提交
6740
	if (!fs_devices) {
6741
		if (!btrfs_test_opt(fs_info, DEGRADED))
6742 6743
			return ERR_PTR(-ENOENT);

6744
		fs_devices = alloc_fs_devices(fsid, NULL);
6745 6746 6747
		if (IS_ERR(fs_devices))
			return fs_devices;

6748
		fs_devices->seeding = true;
6749 6750
		fs_devices->opened = 1;
		return fs_devices;
Y
Yan Zheng 已提交
6751
	}
Y
Yan Zheng 已提交
6752 6753

	fs_devices = clone_fs_devices(fs_devices);
6754 6755
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
6756

6757
	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6758 6759
	if (ret) {
		free_fs_devices(fs_devices);
6760
		fs_devices = ERR_PTR(ret);
Y
Yan Zheng 已提交
6761
		goto out;
6762
	}
Y
Yan Zheng 已提交
6763 6764

	if (!fs_devices->seeding) {
6765
		close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
6766
		free_fs_devices(fs_devices);
6767
		fs_devices = ERR_PTR(-EINVAL);
Y
Yan Zheng 已提交
6768 6769 6770
		goto out;
	}

6771 6772
	fs_devices->seed = fs_info->fs_devices->seed;
	fs_info->fs_devices->seed = fs_devices;
Y
Yan Zheng 已提交
6773
out:
6774
	return fs_devices;
Y
Yan Zheng 已提交
6775 6776
}

6777
static int read_one_dev(struct extent_buffer *leaf,
6778 6779
			struct btrfs_dev_item *dev_item)
{
6780
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6781
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6782 6783 6784
	struct btrfs_device *device;
	u64 devid;
	int ret;
6785
	u8 fs_uuid[BTRFS_FSID_SIZE];
6786 6787
	u8 dev_uuid[BTRFS_UUID_SIZE];

6788
	devid = btrfs_device_id(leaf, dev_item);
6789
	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6790
			   BTRFS_UUID_SIZE);
6791
	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6792
			   BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
6793

6794
	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6795
		fs_devices = open_seed_devices(fs_info, fs_uuid);
6796 6797
		if (IS_ERR(fs_devices))
			return PTR_ERR(fs_devices);
Y
Yan Zheng 已提交
6798 6799
	}

6800
	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6801
				   fs_uuid, true);
6802
	if (!device) {
6803
		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6804 6805
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, true);
6806
			return -ENOENT;
6807
		}
Y
Yan Zheng 已提交
6808

6809
		device = add_missing_dev(fs_devices, devid, dev_uuid);
6810 6811 6812 6813 6814 6815
		if (IS_ERR(device)) {
			btrfs_err(fs_info,
				"failed to add missing dev %llu: %ld",
				devid, PTR_ERR(device));
			return PTR_ERR(device);
		}
6816
		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6817
	} else {
6818
		if (!device->bdev) {
6819 6820 6821
			if (!btrfs_test_opt(fs_info, DEGRADED)) {
				btrfs_report_missing_device(fs_info,
						devid, dev_uuid, true);
6822
				return -ENOENT;
6823 6824 6825
			}
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, false);
6826
		}
6827

6828 6829
		if (!device->bdev &&
		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6830 6831 6832 6833 6834 6835
			/*
			 * this happens when a device that was properly setup
			 * in the device info lists suddenly goes bad.
			 * device->bdev is NULL, and so we have to set
			 * device->missing to one here
			 */
6836
			device->fs_devices->missing_devices++;
6837
			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
Y
Yan Zheng 已提交
6838
		}
6839 6840 6841

		/* Move the device to its own fs_devices */
		if (device->fs_devices != fs_devices) {
6842 6843
			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
							&device->dev_state));
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853

			list_move(&device->dev_list, &fs_devices->devices);
			device->fs_devices->num_devices--;
			fs_devices->num_devices++;

			device->fs_devices->missing_devices--;
			fs_devices->missing_devices++;

			device->fs_devices = fs_devices;
		}
Y
Yan Zheng 已提交
6854 6855
	}

6856
	if (device->fs_devices != fs_info->fs_devices) {
6857
		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
Y
Yan Zheng 已提交
6858 6859 6860
		if (device->generation !=
		    btrfs_device_generation(leaf, dev_item))
			return -EINVAL;
6861
	}
6862 6863

	fill_device_from_item(leaf, dev_item, device);
6864
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6865
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6866
	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
Y
Yan Zheng 已提交
6867
		device->fs_devices->total_rw_bytes += device->total_bytes;
6868 6869
		atomic64_add(device->total_bytes - device->bytes_used,
				&fs_info->free_chunk_space);
6870
	}
6871 6872 6873 6874
	ret = 0;
	return ret;
}

6875
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6876
{
6877
	struct btrfs_root *root = fs_info->tree_root;
6878
	struct btrfs_super_block *super_copy = fs_info->super_copy;
6879
	struct extent_buffer *sb;
6880 6881
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
6882 6883
	u8 *array_ptr;
	unsigned long sb_array_offset;
6884
	int ret = 0;
6885 6886 6887
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
6888
	u32 cur_offset;
6889
	u64 type;
6890
	struct btrfs_key key;
6891

6892
	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6893 6894 6895 6896 6897
	/*
	 * This will create extent buffer of nodesize, superblock size is
	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
	 * overallocate but we can keep it as-is, only the first page is used.
	 */
6898
	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6899 6900
	if (IS_ERR(sb))
		return PTR_ERR(sb);
6901
	set_extent_buffer_uptodate(sb);
6902
	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6903
	/*
6904
	 * The sb extent buffer is artificial and just used to read the system array.
6905
	 * set_extent_buffer_uptodate() call does not properly mark all it's
6906 6907 6908 6909 6910 6911 6912 6913 6914
	 * pages up-to-date when the page is larger: extent does not cover the
	 * whole page and consequently check_page_uptodate does not find all
	 * the page's extents up-to-date (the hole beyond sb),
	 * write_extent_buffer then triggers a WARN_ON.
	 *
	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
	 * but sb spans only this function. Add an explicit SetPageUptodate call
	 * to silence the warning eg. on PowerPC 64.
	 */
6915
	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6916
		SetPageUptodate(sb->pages[0]);
6917

6918
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6919 6920
	array_size = btrfs_super_sys_array_size(super_copy);

6921 6922 6923
	array_ptr = super_copy->sys_chunk_array;
	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur_offset = 0;
6924

6925 6926
	while (cur_offset < array_size) {
		disk_key = (struct btrfs_disk_key *)array_ptr;
6927 6928 6929 6930
		len = sizeof(*disk_key);
		if (cur_offset + len > array_size)
			goto out_short_read;

6931 6932
		btrfs_disk_key_to_cpu(&key, disk_key);

6933 6934 6935
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6936

6937 6938 6939 6940 6941 6942 6943
		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
			btrfs_err(fs_info,
			    "unexpected item type %u in sys_array at offset %u",
				  (u32)key.type, cur_offset);
			ret = -EIO;
			break;
		}
6944

6945 6946 6947 6948 6949 6950 6951 6952
		chunk = (struct btrfs_chunk *)sb_array_offset;
		/*
		 * At least one btrfs_chunk with one stripe must be present,
		 * exact stripe count check comes afterwards
		 */
		len = btrfs_chunk_item_size(1);
		if (cur_offset + len > array_size)
			goto out_short_read;
6953

6954 6955 6956 6957 6958 6959 6960 6961
		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
		if (!num_stripes) {
			btrfs_err(fs_info,
			"invalid number of stripes %u in sys_array at offset %u",
				  num_stripes, cur_offset);
			ret = -EIO;
			break;
		}
6962

6963 6964
		type = btrfs_chunk_type(sb, chunk);
		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6965
			btrfs_err(fs_info,
6966 6967
			"invalid chunk type %llu in sys_array at offset %u",
				  type, cur_offset);
6968 6969
			ret = -EIO;
			break;
6970
		}
6971 6972 6973 6974 6975 6976 6977 6978 6979

		len = btrfs_chunk_item_size(num_stripes);
		if (cur_offset + len > array_size)
			goto out_short_read;

		ret = read_one_chunk(&key, sb, chunk);
		if (ret)
			break;

6980 6981 6982
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6983
	}
6984
	clear_extent_buffer_uptodate(sb);
6985
	free_extent_buffer_stale(sb);
6986
	return ret;
6987 6988

out_short_read:
6989
	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6990
			len, cur_offset);
6991
	clear_extent_buffer_uptodate(sb);
6992
	free_extent_buffer_stale(sb);
6993
	return -EIO;
6994 6995
}

6996 6997 6998
/*
 * Check if all chunks in the fs are OK for read-write degraded mount
 *
6999 7000
 * If the @failing_dev is specified, it's accounted as missing.
 *
7001 7002 7003
 * Return true if all chunks meet the minimal RW mount requirements.
 * Return false if any chunk doesn't meet the minimal RW mount requirements.
 */
7004 7005
bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
					struct btrfs_device *failing_dev)
7006
{
7007
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7008 7009 7010 7011
	struct extent_map *em;
	u64 next_start = 0;
	bool ret = true;

7012 7013 7014
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
	read_unlock(&map_tree->lock);
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
	/* No chunk at all? Return false anyway */
	if (!em) {
		ret = false;
		goto out;
	}
	while (em) {
		struct map_lookup *map;
		int missing = 0;
		int max_tolerated;
		int i;

		map = em->map_lookup;
		max_tolerated =
			btrfs_get_num_tolerated_disk_barrier_failures(
					map->type);
		for (i = 0; i < map->num_stripes; i++) {
			struct btrfs_device *dev = map->stripes[i].dev;

7033 7034
			if (!dev || !dev->bdev ||
			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7035 7036
			    dev->last_flush_error)
				missing++;
7037 7038
			else if (failing_dev && failing_dev == dev)
				missing++;
7039 7040
		}
		if (missing > max_tolerated) {
7041 7042
			if (!failing_dev)
				btrfs_warn(fs_info,
7043
	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7044 7045 7046 7047 7048 7049 7050 7051
				   em->start, missing, max_tolerated);
			free_extent_map(em);
			ret = false;
			goto out;
		}
		next_start = extent_map_end(em);
		free_extent_map(em);

7052 7053
		read_lock(&map_tree->lock);
		em = lookup_extent_mapping(map_tree, next_start,
7054
					   (u64)(-1) - next_start);
7055
		read_unlock(&map_tree->lock);
7056 7057 7058 7059 7060
	}
out:
	return ret;
}

7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073
static void readahead_tree_node_children(struct extent_buffer *node)
{
	int i;
	const int nr_items = btrfs_header_nritems(node);

	for (i = 0; i < nr_items; i++) {
		u64 start;

		start = btrfs_node_blockptr(node, i);
		readahead_tree_block(node->fs_info, start);
	}
}

7074
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7075
{
7076
	struct btrfs_root *root = fs_info->chunk_root;
7077 7078 7079 7080 7081 7082
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;
7083
	u64 total_dev = 0;
7084
	u64 last_ra_node = 0;
7085 7086 7087 7088 7089

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

7090 7091 7092 7093
	/*
	 * uuid_mutex is needed only if we are mounting a sprout FS
	 * otherwise we don't need it.
	 */
7094 7095
	mutex_lock(&uuid_mutex);

7096 7097 7098 7099 7100 7101 7102 7103
	/*
	 * It is possible for mount and umount to race in such a way that
	 * we execute this code path, but open_fs_devices failed to clear
	 * total_rw_bytes. We certainly want it cleared before reading the
	 * device items, so clear it here.
	 */
	fs_info->fs_devices->total_rw_bytes = 0;

7104 7105 7106 7107 7108
	/*
	 * Read all device items, and then all the chunk items. All
	 * device items are found before any chunk item (their object id
	 * is smaller than the lowest possible object id for a chunk
	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7109 7110 7111 7112 7113
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7114 7115
	if (ret < 0)
		goto error;
C
Chris Mason 已提交
7116
	while (1) {
7117 7118
		struct extent_buffer *node;

7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
		/*
		 * The nodes on level 1 are not locked but we don't need to do
		 * that during mount time as nothing else can access the tree
		 */
		node = path->nodes[1];
		if (node) {
			if (last_ra_node != node->start) {
				readahead_tree_node_children(node);
				last_ra_node = node->start;
			}
		}
7140
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7141 7142 7143
		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
			struct btrfs_dev_item *dev_item;
			dev_item = btrfs_item_ptr(leaf, slot,
7144
						  struct btrfs_dev_item);
7145
			ret = read_one_dev(leaf, dev_item);
7146 7147
			if (ret)
				goto error;
7148
			total_dev++;
7149 7150 7151
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7152
			mutex_lock(&fs_info->chunk_mutex);
7153
			ret = read_one_chunk(&found_key, leaf, chunk);
7154
			mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
7155 7156
			if (ret)
				goto error;
7157 7158 7159
		}
		path->slots[0]++;
	}
7160 7161 7162 7163 7164

	/*
	 * After loading chunk tree, we've got all device information,
	 * do another round of validation checks.
	 */
7165 7166
	if (total_dev != fs_info->fs_devices->total_devices) {
		btrfs_err(fs_info,
7167
	   "super_num_devices %llu mismatch with num_devices %llu found here",
7168
			  btrfs_super_num_devices(fs_info->super_copy),
7169 7170 7171 7172
			  total_dev);
		ret = -EINVAL;
		goto error;
	}
7173 7174 7175
	if (btrfs_super_total_bytes(fs_info->super_copy) <
	    fs_info->fs_devices->total_rw_bytes) {
		btrfs_err(fs_info,
7176
	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7177 7178
			  btrfs_super_total_bytes(fs_info->super_copy),
			  fs_info->fs_devices->total_rw_bytes);
7179 7180 7181
		ret = -EINVAL;
		goto error;
	}
7182 7183
	ret = 0;
error:
7184 7185
	mutex_unlock(&uuid_mutex);

Y
Yan Zheng 已提交
7186
	btrfs_free_path(path);
7187 7188
	return ret;
}
7189

7190 7191 7192 7193 7194
void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;

7195 7196 7197
	while (fs_devices) {
		mutex_lock(&fs_devices->device_list_mutex);
		list_for_each_entry(device, &fs_devices->devices, dev_list)
7198
			device->fs_info = fs_info;
7199 7200 7201 7202
		mutex_unlock(&fs_devices->device_list_mutex);

		fs_devices = fs_devices->seed;
	}
7203 7204
}

7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
				 const struct btrfs_dev_stats_item *ptr,
				 int index)
{
	u64 val;

	read_extent_buffer(eb, &val,
			   offsetof(struct btrfs_dev_stats_item, values) +
			    ((unsigned long)ptr) + (index * sizeof(u64)),
			   sizeof(val));
	return val;
}

static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
				      struct btrfs_dev_stats_item *ptr,
				      int index, u64 val)
{
	write_extent_buffer(eb, &val,
			    offsetof(struct btrfs_dev_stats_item, values) +
			     ((unsigned long)ptr) + (index * sizeof(u64)),
			    sizeof(val));
}

7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
{
	struct btrfs_key key;
	struct btrfs_root *dev_root = fs_info->dev_root;
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct extent_buffer *eb;
	int slot;
	int ret = 0;
	struct btrfs_device *device;
	struct btrfs_path *path = NULL;
	int i;

	path = btrfs_alloc_path();
A
Anand Jain 已提交
7241 7242
	if (!path)
		return -ENOMEM;
7243 7244 7245 7246 7247 7248

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		int item_size;
		struct btrfs_dev_stats_item *ptr;

7249 7250
		key.objectid = BTRFS_DEV_STATS_OBJECTID;
		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7251 7252 7253
		key.offset = device->devid;
		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
		if (ret) {
7254 7255
			for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
				btrfs_dev_stat_set(device, i, 0);
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
			device->dev_stats_valid = 1;
			btrfs_release_path(path);
			continue;
		}
		slot = path->slots[0];
		eb = path->nodes[0];
		item_size = btrfs_item_size_nr(eb, slot);

		ptr = btrfs_item_ptr(eb, slot,
				     struct btrfs_dev_stats_item);

		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (item_size >= (1 + i) * sizeof(__le64))
				btrfs_dev_stat_set(device, i,
					btrfs_dev_stats_value(eb, ptr, i));
			else
7272
				btrfs_dev_stat_set(device, i, 0);
7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287
		}

		device->dev_stats_valid = 1;
		btrfs_dev_stat_print_on_load(device);
		btrfs_release_path(path);
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

static int update_dev_stat_item(struct btrfs_trans_handle *trans,
				struct btrfs_device *device)
{
7288
	struct btrfs_fs_info *fs_info = trans->fs_info;
7289
	struct btrfs_root *dev_root = fs_info->dev_root;
7290 7291 7292 7293 7294 7295 7296
	struct btrfs_path *path;
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_dev_stats_item *ptr;
	int ret;
	int i;

7297 7298
	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7299 7300 7301
	key.offset = device->devid;

	path = btrfs_alloc_path();
7302 7303
	if (!path)
		return -ENOMEM;
7304 7305
	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
	if (ret < 0) {
7306
		btrfs_warn_in_rcu(fs_info,
7307
			"error %d while searching for dev_stats item for device %s",
7308
			      ret, rcu_str_deref(device->name));
7309 7310 7311 7312 7313 7314 7315 7316
		goto out;
	}

	if (ret == 0 &&
	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
		/* need to delete old one and insert a new one */
		ret = btrfs_del_item(trans, dev_root, path);
		if (ret != 0) {
7317
			btrfs_warn_in_rcu(fs_info,
7318
				"delete too small dev_stats item for device %s failed %d",
7319
				      rcu_str_deref(device->name), ret);
7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330
			goto out;
		}
		ret = 1;
	}

	if (ret == 1) {
		/* need to insert a new item */
		btrfs_release_path(path);
		ret = btrfs_insert_empty_item(trans, dev_root, path,
					      &key, sizeof(*ptr));
		if (ret < 0) {
7331
			btrfs_warn_in_rcu(fs_info,
7332 7333
				"insert dev_stats item for device %s failed %d",
				rcu_str_deref(device->name), ret);
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352
			goto out;
		}
	}

	eb = path->nodes[0];
	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		btrfs_set_dev_stats_value(eb, ptr, i,
					  btrfs_dev_stat_read(device, i));
	btrfs_mark_buffer_dirty(eb);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * called from commit_transaction. Writes all changed device stats to disk.
 */
7353
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7354
{
7355
	struct btrfs_fs_info *fs_info = trans->fs_info;
7356 7357
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
7358
	int stats_cnt;
7359 7360 7361 7362
	int ret = 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7363 7364
		stats_cnt = atomic_read(&device->dev_stats_ccnt);
		if (!device->dev_stats_valid || stats_cnt == 0)
7365 7366
			continue;

7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380

		/*
		 * There is a LOAD-LOAD control dependency between the value of
		 * dev_stats_ccnt and updating the on-disk values which requires
		 * reading the in-memory counters. Such control dependencies
		 * require explicit read memory barriers.
		 *
		 * This memory barriers pairs with smp_mb__before_atomic in
		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
		 * barrier implied by atomic_xchg in
		 * btrfs_dev_stats_read_and_reset
		 */
		smp_rmb();

7381
		ret = update_dev_stat_item(trans, device);
7382
		if (!ret)
7383
			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7384 7385 7386 7387 7388 7389
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

7390 7391 7392 7393 7394 7395
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
{
	btrfs_dev_stat_inc(dev, index);
	btrfs_dev_stat_print_on_error(dev);
}

7396
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7397
{
7398 7399
	if (!dev->dev_stats_valid)
		return;
7400
	btrfs_err_rl_in_rcu(dev->fs_info,
7401
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7402
			   rcu_str_deref(dev->name),
7403 7404 7405
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7406 7407
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7408
}
7409

7410 7411
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
{
7412 7413 7414 7415 7416 7417 7418 7419
	int i;

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		if (btrfs_dev_stat_read(dev, i) != 0)
			break;
	if (i == BTRFS_DEV_STAT_VALUES_MAX)
		return; /* all values == 0, suppress message */

7420
	btrfs_info_in_rcu(dev->fs_info,
7421
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7422
	       rcu_str_deref(dev->name),
7423 7424 7425 7426 7427 7428 7429
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
}

7430
int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7431
			struct btrfs_ioctl_get_dev_stats *stats)
7432 7433
{
	struct btrfs_device *dev;
7434
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7435 7436 7437
	int i;

	mutex_lock(&fs_devices->device_list_mutex);
7438 7439
	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
				true);
7440 7441 7442
	mutex_unlock(&fs_devices->device_list_mutex);

	if (!dev) {
7443
		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7444
		return -ENODEV;
7445
	} else if (!dev->dev_stats_valid) {
7446
		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7447
		return -ENODEV;
7448
	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7449 7450 7451 7452 7453
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (stats->nr_items > i)
				stats->values[i] =
					btrfs_dev_stat_read_and_reset(dev, i);
			else
7454
				btrfs_dev_stat_set(dev, i, 0);
7455
		}
7456 7457
		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
			   current->comm, task_pid_nr(current));
7458 7459 7460 7461 7462 7463 7464 7465 7466
	} else {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			if (stats->nr_items > i)
				stats->values[i] = btrfs_dev_stat_read(dev, i);
	}
	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
	return 0;
}
7467

7468
/*
7469 7470 7471 7472 7473
 * Update the size and bytes used for each device where it changed.  This is
 * delayed since we would otherwise get errors while writing out the
 * superblocks.
 *
 * Must be invoked during transaction commit.
7474
 */
7475
void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7476 7477 7478
{
	struct btrfs_device *curr, *next;

7479
	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7480

7481
	if (list_empty(&trans->dev_update_list))
7482 7483
		return;

7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
	/*
	 * We don't need the device_list_mutex here.  This list is owned by the
	 * transaction and the transaction must complete before the device is
	 * released.
	 */
	mutex_lock(&trans->fs_info->chunk_mutex);
	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&curr->post_commit_list);
		curr->commit_total_bytes = curr->disk_total_bytes;
		curr->commit_bytes_used = curr->bytes_used;
7495
	}
7496
	mutex_unlock(&trans->fs_info->chunk_mutex);
7497
}
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515

void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	while (fs_devices) {
		fs_devices->fs_info = fs_info;
		fs_devices = fs_devices->seed;
	}
}

void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	while (fs_devices) {
		fs_devices->fs_info = NULL;
		fs_devices = fs_devices->seed;
	}
}
7516 7517 7518 7519 7520 7521

/*
 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
 */
int btrfs_bg_type_to_factor(u64 flags)
{
7522 7523 7524
	const int index = btrfs_bg_flags_to_raid_index(flags);

	return btrfs_raid_array[index].ncopies;
7525
}
7526 7527 7528 7529 7530 7531 7532



static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
				 u64 chunk_offset, u64 devid,
				 u64 physical_offset, u64 physical_len)
{
7533
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7534 7535
	struct extent_map *em;
	struct map_lookup *map;
7536
	struct btrfs_device *dev;
7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585
	u64 stripe_len;
	bool found = false;
	int ret = 0;
	int i;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
			  physical_offset, devid);
		ret = -EUCLEAN;
		goto out;
	}

	map = em->map_lookup;
	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
	if (physical_len != stripe_len) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
			  physical_offset, devid, em->start, physical_len,
			  stripe_len);
		ret = -EUCLEAN;
		goto out;
	}

	for (i = 0; i < map->num_stripes; i++) {
		if (map->stripes[i].dev->devid == devid &&
		    map->stripes[i].physical == physical_offset) {
			found = true;
			if (map->verified_stripes >= map->num_stripes) {
				btrfs_err(fs_info,
				"too many dev extents for chunk %llu found",
					  em->start);
				ret = -EUCLEAN;
				goto out;
			}
			map->verified_stripes++;
			break;
		}
	}
	if (!found) {
		btrfs_err(fs_info,
	"dev extent physical offset %llu devid %llu has no corresponding chunk",
			physical_offset, devid);
		ret = -EUCLEAN;
	}
7586 7587

	/* Make sure no dev extent is beyond device bondary */
7588
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7589 7590 7591 7592 7593
	if (!dev) {
		btrfs_err(fs_info, "failed to find devid %llu", devid);
		ret = -EUCLEAN;
		goto out;
	}
7594 7595 7596

	/* It's possible this device is a dummy for seed device */
	if (dev->disk_total_bytes == 0) {
7597 7598
		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
					NULL, false);
7599 7600 7601 7602 7603 7604 7605 7606
		if (!dev) {
			btrfs_err(fs_info, "failed to find seed devid %llu",
				  devid);
			ret = -EUCLEAN;
			goto out;
		}
	}

7607 7608 7609 7610 7611 7612 7613 7614
	if (physical_offset + physical_len > dev->disk_total_bytes) {
		btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
			  devid, physical_offset, physical_len,
			  dev->disk_total_bytes);
		ret = -EUCLEAN;
		goto out;
	}
7615 7616 7617 7618 7619 7620 7621
out:
	free_extent_map(em);
	return ret;
}

static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
{
7622
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7623 7624 7625 7626 7627
	struct extent_map *em;
	struct rb_node *node;
	int ret = 0;

	read_lock(&em_tree->lock);
L
Liu Bo 已提交
7628
	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
		em = rb_entry(node, struct extent_map, rb_node);
		if (em->map_lookup->num_stripes !=
		    em->map_lookup->verified_stripes) {
			btrfs_err(fs_info,
			"chunk %llu has missing dev extent, have %d expect %d",
				  em->start, em->map_lookup->verified_stripes,
				  em->map_lookup->num_stripes);
			ret = -EUCLEAN;
			goto out;
		}
	}
out:
	read_unlock(&em_tree->lock);
	return ret;
}

/*
 * Ensure that all dev extents are mapped to correct chunk, otherwise
 * later chunk allocation/free would cause unexpected behavior.
 *
 * NOTE: This will iterate through the whole device tree, which should be of
 * the same size level as the chunk tree.  This slightly increases mount time.
 */
int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_key key;
7657 7658
	u64 prev_devid = 0;
	u64 prev_dev_ext_end = 0;
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
	int ret = 0;

	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = READA_FORWARD;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		/* No dev extents at all? Not good */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}
	while (1) {
		struct extent_buffer *leaf = path->nodes[0];
		struct btrfs_dev_extent *dext;
		int slot = path->slots[0];
		u64 chunk_offset;
		u64 physical_offset;
		u64 physical_len;
		u64 devid;

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.type != BTRFS_DEV_EXTENT_KEY)
			break;
		devid = key.objectid;
		physical_offset = key.offset;

		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
		physical_len = btrfs_dev_extent_length(leaf, dext);

7703 7704 7705 7706 7707 7708 7709 7710 7711
		/* Check if this dev extent overlaps with the previous one */
		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
			btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
				  devid, physical_offset, prev_dev_ext_end);
			ret = -EUCLEAN;
			goto out;
		}

7712 7713 7714 7715
		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
					    physical_offset, physical_len);
		if (ret < 0)
			goto out;
7716 7717 7718
		prev_devid = devid;
		prev_dev_ext_end = physical_offset + physical_len;

7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
	}

	/* Ensure all chunks have corresponding dev extents */
	ret = verify_chunk_dev_extent_mapping(fs_info);
out:
	btrfs_free_path(path);
	return ret;
}
7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757

/*
 * Check whether the given block group or device is pinned by any inode being
 * used as a swapfile.
 */
bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
{
	struct btrfs_swapfile_pin *sp;
	struct rb_node *node;

	spin_lock(&fs_info->swapfile_pins_lock);
	node = fs_info->swapfile_pins.rb_node;
	while (node) {
		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
		if (ptr < sp->ptr)
			node = node->rb_left;
		else if (ptr > sp->ptr)
			node = node->rb_right;
		else
			break;
	}
	spin_unlock(&fs_info->swapfile_pins_lock);
	return node != NULL;
}