spi-sh-msiof.c 38.0 KB
Newer Older
1 2 3 4
/*
 * SuperH MSIOF SPI Master Interface
 *
 * Copyright (c) 2009 Magnus Damm
5 6
 * Copyright (C) 2014 Renesas Electronics Corporation
 * Copyright (C) 2014-2017 Glider bvba
7 8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

14 15 16
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/completion.h>
17
#include <linux/delay.h>
18 19
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
20 21
#include <linux/err.h>
#include <linux/gpio.h>
22
#include <linux/gpio/consumer.h>
23
#include <linux/interrupt.h>
24 25
#include <linux/io.h>
#include <linux/kernel.h>
26
#include <linux/module.h>
27
#include <linux/of.h>
28
#include <linux/of_device.h>
29 30
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
31
#include <linux/sh_dma.h>
32

33
#include <linux/spi/sh_msiof.h>
34 35 36 37
#include <linux/spi/spi.h>

#include <asm/unaligned.h>

38 39 40
struct sh_msiof_chipdata {
	u16 tx_fifo_size;
	u16 rx_fifo_size;
41
	u16 master_flags;
42
	u16 min_div;
43 44
};

45
struct sh_msiof_spi_priv {
46
	struct spi_master *master;
47 48 49 50 51
	void __iomem *mapbase;
	struct clk *clk;
	struct platform_device *pdev;
	struct sh_msiof_spi_info *info;
	struct completion done;
52 53
	unsigned int tx_fifo_size;
	unsigned int rx_fifo_size;
54
	unsigned int min_div;
55 56 57 58
	void *tx_dma_page;
	void *rx_dma_page;
	dma_addr_t tx_dma_addr;
	dma_addr_t rx_dma_addr;
59
	unsigned short unused_ss;
60 61
	bool native_cs_inited;
	bool native_cs_high;
62
	bool slave_aborted;
63 64
};

65 66
#define MAX_SS	3	/* Maximum number of native chip selects */

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
#define TMDR1	0x00	/* Transmit Mode Register 1 */
#define TMDR2	0x04	/* Transmit Mode Register 2 */
#define TMDR3	0x08	/* Transmit Mode Register 3 */
#define RMDR1	0x10	/* Receive Mode Register 1 */
#define RMDR2	0x14	/* Receive Mode Register 2 */
#define RMDR3	0x18	/* Receive Mode Register 3 */
#define TSCR	0x20	/* Transmit Clock Select Register */
#define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
#define CTR	0x28	/* Control Register */
#define FCTR	0x30	/* FIFO Control Register */
#define STR	0x40	/* Status Register */
#define IER	0x44	/* Interrupt Enable Register */
#define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
#define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
#define TFDR	0x50	/* Transmit FIFO Data Register */
#define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
#define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
#define RFDR	0x60	/* Receive FIFO Data Register */

/* TMDR1 and RMDR1 */
#define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
#define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
#define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
#define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
#define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
93 94
#define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
#define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
95
#define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
96 97 98 99
#define MDR1_FLD_SHIFT		  2
#define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
/* TMDR1 */
#define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
100 101
#define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
#define TMDR1_SYNCCH_SHIFT	 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

/* TMDR2 and RMDR2 */
#define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
#define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
#define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */

/* TSCR and RSCR */
#define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
#define SCR_BRPS(i)	(((i) - 1) << 8)
#define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
#define SCR_BRDV_DIV_2	    0x0000
#define SCR_BRDV_DIV_4	    0x0001
#define SCR_BRDV_DIV_8	    0x0002
#define SCR_BRDV_DIV_16	    0x0003
#define SCR_BRDV_DIV_32	    0x0004
#define SCR_BRDV_DIV_1	    0x0007

/* CTR */
#define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
#define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
#define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
#define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
#define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
#define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
#define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
#define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
#define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
#define CTR_TXDIZ_LOW	0x00000000 /*   0 */
#define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
#define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
#define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
#define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
#define CTR_TXE		0x00000200 /* Transmit Enable */
#define CTR_RXE		0x00000100 /* Receive Enable */

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/* FCTR */
#define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
#define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
#define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
#define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
#define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
#define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
#define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
#define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
#define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
#define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
#define FCTR_TFUA_SHIFT		20
#define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
#define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
#define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
#define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
#define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
#define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
#define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
#define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
#define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
#define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
#define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
#define FCTR_RFUA_SHIFT		 4
#define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)

/* STR */
#define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
#define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
166
#define STR_TEOF	0x00800000 /* Frame Transmission End */
167 168 169 170 171
#define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
#define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
#define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
#define STR_RFFUL	0x00002000 /* Receive FIFO Full */
#define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
172
#define STR_REOF	0x00000080 /* Frame Reception End */
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
#define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
#define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */

/* IER */
#define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
#define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
#define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
#define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
#define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
#define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
#define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
#define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
#define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
#define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
#define IER_REOFE	0x00000080 /* Frame Reception End Enable */
#define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
#define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
#define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
192

193

194
static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
195 196 197 198 199 200 201 202 203 204 205
{
	switch (reg_offs) {
	case TSCR:
	case RSCR:
		return ioread16(p->mapbase + reg_offs);
	default:
		return ioread32(p->mapbase + reg_offs);
	}
}

static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
206
			   u32 value)
207 208 209 210 211 212 213 214 215 216 217 218 219
{
	switch (reg_offs) {
	case TSCR:
	case RSCR:
		iowrite16(value, p->mapbase + reg_offs);
		break;
	default:
		iowrite32(value, p->mapbase + reg_offs);
		break;
	}
}

static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
220
				    u32 clr, u32 set)
221
{
222 223
	u32 mask = clr | set;
	u32 data;
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	int k;

	data = sh_msiof_read(p, CTR);
	data &= ~clr;
	data |= set;
	sh_msiof_write(p, CTR, data);

	for (k = 100; k > 0; k--) {
		if ((sh_msiof_read(p, CTR) & mask) == set)
			break;

		udelay(10);
	}

	return k > 0 ? 0 : -ETIMEDOUT;
}

static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
{
	struct sh_msiof_spi_priv *p = data;

	/* just disable the interrupt and wake up */
	sh_msiof_write(p, IER, 0);
	complete(&p->done);

	return IRQ_HANDLED;
}

static struct {
	unsigned short div;
254 255 256 257 258 259 260 261
	unsigned short brdv;
} const sh_msiof_spi_div_table[] = {
	{ 1,	SCR_BRDV_DIV_1 },
	{ 2,	SCR_BRDV_DIV_2 },
	{ 4,	SCR_BRDV_DIV_4 },
	{ 8,	SCR_BRDV_DIV_8 },
	{ 16,	SCR_BRDV_DIV_16 },
	{ 32,	SCR_BRDV_DIV_32 },
262 263 264
};

static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
265
				      unsigned long parent_rate, u32 spi_hz)
266 267
{
	unsigned long div = 1024;
268
	u32 brps, scr;
269 270 271
	size_t k;

	if (!WARN_ON(!spi_hz || !parent_rate))
272
		div = DIV_ROUND_UP(parent_rate, spi_hz);
273

274 275
	div = max_t(unsigned long, div, p->min_div);

276 277
	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
		brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
278 279 280
		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
		if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
			continue;
281
		if (brps <= 32) /* max of brdv is 32 */
282 283 284
			break;
	}

285
	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
286

287 288
	scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
	sh_msiof_write(p, TSCR, scr);
289
	if (!(p->master->flags & SPI_MASTER_MUST_TX))
290
		sh_msiof_write(p, RSCR, scr);
291 292
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
{
	/*
	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
	 * b'000		: 0
	 * b'001		: 100
	 * b'010		: 200
	 * b'011 (SYNCDL only)	: 300
	 * b'101		: 50
	 * b'110		: 150
	 */
	if (dtdl_or_syncdl % 100)
		return dtdl_or_syncdl / 100 + 5;
	else
		return dtdl_or_syncdl / 100;
}

static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
{
	u32 val;

	if (!p->info)
		return 0;

	/* check if DTDL and SYNCDL is allowed value */
	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
		return 0;
	}

	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
	if ((p->info->dtdl + p->info->syncdl) % 100) {
		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
		return 0;
	}

	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;

	return val;
}

335
static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
336
				      u32 cpol, u32 cpha,
337
				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
338
{
339
	u32 tmp;
340 341 342
	int edge;

	/*
343 344 345 346 347
	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
	 *    0    0         10     10    1    1
	 *    0    1         10     10    0    0
	 *    1    0         11     11    0    0
	 *    1    1         11     11    1    1
348
	 */
349 350 351
	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
352
	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
353
	if (spi_controller_is_slave(p->master)) {
354
		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
355 356 357 358 359
	} else {
		sh_msiof_write(p, TMDR1,
			       tmp | MDR1_TRMD | TMDR1_PCON |
			       (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
	}
360
	if (p->master->flags & SPI_MASTER_MUST_TX) {
361 362 363
		/* These bits are reserved if RX needs TX */
		tmp &= ~0x0000ffff;
	}
364
	sh_msiof_write(p, RMDR1, tmp);
365

366 367 368
	tmp = 0;
	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
369

370
	edge = cpol ^ !cpha;
371

372 373 374
	tmp |= edge << CTR_TEDG_SHIFT;
	tmp |= edge << CTR_REDG_SHIFT;
	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
375 376 377 378 379
	sh_msiof_write(p, CTR, tmp);
}

static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, void *rx_buf,
380
				       u32 bits, u32 words)
381
{
382
	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
383

384
	if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
385 386
		sh_msiof_write(p, TMDR2, dr2);
	else
387
		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
388 389 390 391 392 393 394 395 396 397 398 399 400

	if (rx_buf)
		sh_msiof_write(p, RMDR2, dr2);
}

static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
{
	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
}

static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
				      const void *tx_buf, int words, int fs)
{
401
	const u8 *buf_8 = tx_buf;
402 403 404 405 406 407 408 409 410
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_8[k] << fs);
}

static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
411
	const u16 *buf_16 = tx_buf;
412 413 414 415 416 417 418 419 420
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_16[k] << fs);
}

static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
421
	const u16 *buf_16 = tx_buf;
422 423 424 425 426 427 428 429 430
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
}

static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
431
	const u32 *buf_32 = tx_buf;
432 433 434 435 436 437 438 439 440
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_32[k] << fs);
}

static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
441
	const u32 *buf_32 = tx_buf;
442 443 444 445 446 447
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
}

static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
					 const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
}

468 469 470
static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
				     void *rx_buf, int words, int fs)
{
471
	u8 *buf_8 = rx_buf;
472 473 474 475 476 477 478 479 480
	int k;

	for (k = 0; k < words; k++)
		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
481
	u16 *buf_16 = rx_buf;
482 483 484 485 486 487 488 489 490
	int k;

	for (k = 0; k < words; k++)
		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
491
	u16 *buf_16 = rx_buf;
492 493 494 495 496 497 498 499 500
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
}

static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
501
	u32 *buf_32 = rx_buf;
502 503 504 505 506 507 508 509 510
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
511
	u32 *buf_32 = rx_buf;
512 513 514 515 516 517
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
}

static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
}

538
static int sh_msiof_spi_setup(struct spi_device *spi)
539
{
540
	struct device_node	*np = spi->master->dev.of_node;
541
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
542
	u32 clr, set, tmp;
543

544 545 546 547 548 549 550
	if (!np) {
		/*
		 * Use spi->controller_data for CS (same strategy as spi_gpio),
		 * if any. otherwise let HW control CS
		 */
		spi->cs_gpio = (uintptr_t)spi->controller_data;
	}
551

552 553
	if (gpio_is_valid(spi->cs_gpio)) {
		gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
554 555
		return 0;
	}
556

557 558
	if (spi_controller_is_slave(p->master))
		return 0;
559

560 561 562
	if (p->native_cs_inited &&
	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
		return 0;
563

564 565 566 567 568 569 570 571 572 573
	/* Configure native chip select mode/polarity early */
	clr = MDR1_SYNCMD_MASK;
	set = MDR1_TRMD | TMDR1_PCON | MDR1_SYNCMD_SPI;
	if (spi->mode & SPI_CS_HIGH)
		clr |= BIT(MDR1_SYNCAC_SHIFT);
	else
		set |= BIT(MDR1_SYNCAC_SHIFT);
	pm_runtime_get_sync(&p->pdev->dev);
	tmp = sh_msiof_read(p, TMDR1) & ~clr;
	sh_msiof_write(p, TMDR1, tmp | set);
574
	pm_runtime_put(&p->pdev->dev);
575 576
	p->native_cs_high = spi->mode & SPI_CS_HIGH;
	p->native_cs_inited = true;
577
	return 0;
578 579
}

580 581
static int sh_msiof_prepare_message(struct spi_master *master,
				    struct spi_message *msg)
582
{
583 584
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
	const struct spi_device *spi = msg->spi;
585
	u32 ss, cs_high;
586

587
	/* Configure pins before asserting CS */
588 589 590 591 592 593 594 595
	if (gpio_is_valid(spi->cs_gpio)) {
		ss = p->unused_ss;
		cs_high = p->native_cs_high;
	} else {
		ss = spi->chip_select;
		cs_high = !!(spi->mode & SPI_CS_HIGH);
	}
	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
596 597
				  !!(spi->mode & SPI_CPHA),
				  !!(spi->mode & SPI_3WIRE),
598
				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
599
	return 0;
600 601
}

602 603
static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
{
604 605
	bool slave = spi_controller_is_slave(p->master);
	int ret = 0;
606 607

	/* setup clock and rx/tx signals */
608 609
	if (!slave)
		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
610 611 612 613 614 615
	if (rx_buf && !ret)
		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);

	/* start by setting frame bit */
616
	if (!ret && !slave)
617 618 619 620 621 622 623
		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);

	return ret;
}

static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
{
624 625
	bool slave = spi_controller_is_slave(p->master);
	int ret = 0;
626 627

	/* shut down frame, rx/tx and clock signals */
628 629
	if (!slave)
		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
630 631 632 633
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
	if (rx_buf && !ret)
		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
634
	if (!ret && !slave)
635 636 637 638 639
		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);

	return ret;
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
static int sh_msiof_slave_abort(struct spi_master *master)
{
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);

	p->slave_aborted = true;
	complete(&p->done);
	return 0;
}

static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
{
	if (spi_controller_is_slave(p->master)) {
		if (wait_for_completion_interruptible(&p->done) ||
		    p->slave_aborted) {
			dev_dbg(&p->pdev->dev, "interrupted\n");
			return -EINTR;
		}
	} else {
		if (!wait_for_completion_timeout(&p->done, HZ)) {
			dev_err(&p->pdev->dev, "timeout\n");
			return -ETIMEDOUT;
		}
	}

	return 0;
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
						  const void *, int, int),
				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
						  void *, int, int),
				  const void *tx_buf, void *rx_buf,
				  int words, int bits)
{
	int fifo_shift;
	int ret;

	/* limit maximum word transfer to rx/tx fifo size */
	if (tx_buf)
		words = min_t(int, words, p->tx_fifo_size);
	if (rx_buf)
		words = min_t(int, words, p->rx_fifo_size);

	/* the fifo contents need shifting */
	fifo_shift = 32 - bits;

687 688 689
	/* default FIFO watermarks for PIO */
	sh_msiof_write(p, FCTR, 0);

690 691
	/* setup msiof transfer mode registers */
	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
692
	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
693 694 695 696 697

	/* write tx fifo */
	if (tx_buf)
		tx_fifo(p, tx_buf, words, fifo_shift);

698
	reinit_completion(&p->done);
699
	p->slave_aborted = false;
700 701

	ret = sh_msiof_spi_start(p, rx_buf);
702 703
	if (ret) {
		dev_err(&p->pdev->dev, "failed to start hardware\n");
704
		goto stop_ier;
705 706 707
	}

	/* wait for tx fifo to be emptied / rx fifo to be filled */
708 709
	ret = sh_msiof_wait_for_completion(p);
	if (ret)
710
		goto stop_reset;
711 712 713 714 715 716 717 718

	/* read rx fifo */
	if (rx_buf)
		rx_fifo(p, rx_buf, words, fifo_shift);

	/* clear status bits */
	sh_msiof_reset_str(p);

719
	ret = sh_msiof_spi_stop(p, rx_buf);
720 721
	if (ret) {
		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
722
		return ret;
723 724 725 726
	}

	return words;

727 728 729 730
stop_reset:
	sh_msiof_reset_str(p);
	sh_msiof_spi_stop(p, rx_buf);
stop_ier:
731 732 733 734
	sh_msiof_write(p, IER, 0);
	return ret;
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
static void sh_msiof_dma_complete(void *arg)
{
	struct sh_msiof_spi_priv *p = arg;

	sh_msiof_write(p, IER, 0);
	complete(&p->done);
}

static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
			     void *rx, unsigned int len)
{
	u32 ier_bits = 0;
	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
	dma_cookie_t cookie;
	int ret;

751
	/* First prepare and submit the DMA request(s), as this may fail */
752 753 754 755 756
	if (rx) {
		ier_bits |= IER_RDREQE | IER_RDMAE;
		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
					p->rx_dma_addr, len, DMA_FROM_DEVICE,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
757 758
		if (!desc_rx)
			return -EAGAIN;
759 760 761 762

		desc_rx->callback = sh_msiof_dma_complete;
		desc_rx->callback_param = p;
		cookie = dmaengine_submit(desc_rx);
763 764
		if (dma_submit_error(cookie))
			return cookie;
765 766 767
	}

	if (tx) {
768 769 770 771 772 773 774 775 776 777 778
		ier_bits |= IER_TDREQE | IER_TDMAE;
		dma_sync_single_for_device(p->master->dma_tx->device->dev,
					   p->tx_dma_addr, len, DMA_TO_DEVICE);
		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
					p->tx_dma_addr, len, DMA_TO_DEVICE,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc_tx) {
			ret = -EAGAIN;
			goto no_dma_tx;
		}

779 780 781 782 783 784 785 786 787 788
		if (rx) {
			/* No callback */
			desc_tx->callback = NULL;
		} else {
			desc_tx->callback = sh_msiof_dma_complete;
			desc_tx->callback_param = p;
		}
		cookie = dmaengine_submit(desc_tx);
		if (dma_submit_error(cookie)) {
			ret = cookie;
789
			goto no_dma_tx;
790 791 792
		}
	}

793 794 795 796 797 798 799 800 801
	/* 1 stage FIFO watermarks for DMA */
	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);

	/* setup msiof transfer mode registers (32-bit words) */
	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);

	sh_msiof_write(p, IER, ier_bits);

	reinit_completion(&p->done);
802
	p->slave_aborted = false;
803 804 805

	/* Now start DMA */
	if (rx)
806 807
		dma_async_issue_pending(p->master->dma_rx);
	if (tx)
808 809
		dma_async_issue_pending(p->master->dma_tx);

810 811 812
	ret = sh_msiof_spi_start(p, rx);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to start hardware\n");
813
		goto stop_dma;
814 815
	}

816
	/* wait for tx/rx DMA completion */
817 818
	ret = sh_msiof_wait_for_completion(p);
	if (ret)
819 820
		goto stop_reset;

821 822 823 824 825 826 827 828 829 830
	if (!rx) {
		reinit_completion(&p->done);
		sh_msiof_write(p, IER, IER_TEOFE);

		/* wait for tx fifo to be emptied */
		ret = sh_msiof_wait_for_completion(p);
		if (ret)
			goto stop_reset;
	}

831 832 833 834 835 836 837 838 839 840
	/* clear status bits */
	sh_msiof_reset_str(p);

	ret = sh_msiof_spi_stop(p, rx);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
		return ret;
	}

	if (rx)
841 842
		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
					p->rx_dma_addr, len,
843 844 845 846 847 848 849
					DMA_FROM_DEVICE);

	return 0;

stop_reset:
	sh_msiof_reset_str(p);
	sh_msiof_spi_stop(p, rx);
850
stop_dma:
851 852
	if (tx)
		dmaengine_terminate_all(p->master->dma_tx);
853
no_dma_tx:
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	if (rx)
		dmaengine_terminate_all(p->master->dma_rx);
	sh_msiof_write(p, IER, 0);
	return ret;
}

static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
{
	/* src or dst can be unaligned, but not both */
	if ((unsigned long)src & 3) {
		while (words--) {
			*dst++ = swab32(get_unaligned(src));
			src++;
		}
	} else if ((unsigned long)dst & 3) {
		while (words--) {
			put_unaligned(swab32(*src++), dst);
			dst++;
		}
	} else {
		while (words--)
			*dst++ = swab32(*src++);
	}
}

static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
{
	/* src or dst can be unaligned, but not both */
	if ((unsigned long)src & 3) {
		while (words--) {
			*dst++ = swahw32(get_unaligned(src));
			src++;
		}
	} else if ((unsigned long)dst & 3) {
		while (words--) {
			put_unaligned(swahw32(*src++), dst);
			dst++;
		}
	} else {
		while (words--)
			*dst++ = swahw32(*src++);
	}
}

static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
{
	memcpy(dst, src, words * 4);
}

903 904 905
static int sh_msiof_transfer_one(struct spi_master *master,
				 struct spi_device *spi,
				 struct spi_transfer *t)
906
{
907
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
908
	void (*copy32)(u32 *, const u32 *, unsigned int);
909 910
	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
911 912 913 914 915 916
	const void *tx_buf = t->tx_buf;
	void *rx_buf = t->rx_buf;
	unsigned int len = t->len;
	unsigned int bits = t->bits_per_word;
	unsigned int bytes_per_word;
	unsigned int words;
917
	int n;
918
	bool swab;
919 920 921
	int ret;

	/* setup clocks (clock already enabled in chipselect()) */
922 923
	if (!spi_controller_is_slave(p->master))
		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
924 925 926 927 928 929

	while (master->dma_tx && len > 15) {
		/*
		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
		 *  words, with byte resp. word swapping.
		 */
930 931 932 933 934 935
		unsigned int l = 0;

		if (tx_buf)
			l = min(len, p->tx_fifo_size * 4);
		if (rx_buf)
			l = min(len, p->rx_fifo_size * 4);
936 937 938 939 940 941

		if (bits <= 8) {
			if (l & 3)
				break;
			copy32 = copy_bswap32;
		} else if (bits <= 16) {
942
			if (l & 3)
943 944 945 946 947 948 949 950
				break;
			copy32 = copy_wswap32;
		} else {
			copy32 = copy_plain32;
		}

		if (tx_buf)
			copy32(p->tx_dma_page, tx_buf, l / 4);
951

952
		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
953
		if (ret == -EAGAIN) {
954 955
			dev_warn_once(&p->pdev->dev,
				"DMA not available, falling back to PIO\n");
956 957
			break;
		}
958 959 960 961 962 963 964 965 966 967 968 969 970 971
		if (ret)
			return ret;

		if (rx_buf) {
			copy32(rx_buf, p->rx_dma_page, l / 4);
			rx_buf += l;
		}
		if (tx_buf)
			tx_buf += l;

		len -= l;
		if (!len)
			return 0;
	}
972

973
	if (bits <= 8 && len > 15 && !(len & 3)) {
974 975 976 977 978 979
		bits = 32;
		swab = true;
	} else {
		swab = false;
	}

980 981 982 983 984 985 986
	/* setup bytes per word and fifo read/write functions */
	if (bits <= 8) {
		bytes_per_word = 1;
		tx_fifo = sh_msiof_spi_write_fifo_8;
		rx_fifo = sh_msiof_spi_read_fifo_8;
	} else if (bits <= 16) {
		bytes_per_word = 2;
987
		if ((unsigned long)tx_buf & 0x01)
988 989 990 991
			tx_fifo = sh_msiof_spi_write_fifo_16u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_16;

992
		if ((unsigned long)rx_buf & 0x01)
993 994 995
			rx_fifo = sh_msiof_spi_read_fifo_16u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_16;
996 997
	} else if (swab) {
		bytes_per_word = 4;
998
		if ((unsigned long)tx_buf & 0x03)
999 1000 1001 1002
			tx_fifo = sh_msiof_spi_write_fifo_s32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_s32;

1003
		if ((unsigned long)rx_buf & 0x03)
1004 1005 1006
			rx_fifo = sh_msiof_spi_read_fifo_s32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_s32;
1007 1008
	} else {
		bytes_per_word = 4;
1009
		if ((unsigned long)tx_buf & 0x03)
1010 1011 1012 1013
			tx_fifo = sh_msiof_spi_write_fifo_32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_32;

1014
		if ((unsigned long)rx_buf & 0x03)
1015 1016 1017 1018 1019 1020
			rx_fifo = sh_msiof_spi_read_fifo_32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_32;
	}

	/* transfer in fifo sized chunks */
1021 1022 1023 1024
	words = len / bytes_per_word;

	while (words > 0) {
		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1025 1026
					   words, bits);
		if (n < 0)
1027
			return n;
1028

1029 1030 1031 1032
		if (tx_buf)
			tx_buf += n * bytes_per_word;
		if (rx_buf)
			rx_buf += n * bytes_per_word;
1033 1034 1035 1036 1037 1038
		words -= n;
	}

	return 0;
}

1039 1040 1041
static const struct sh_msiof_chipdata sh_data = {
	.tx_fifo_size = 64,
	.rx_fifo_size = 64,
1042
	.master_flags = 0,
1043 1044 1045 1046 1047 1048 1049 1050
	.min_div = 1,
};

static const struct sh_msiof_chipdata rcar_gen2_data = {
	.tx_fifo_size = 64,
	.rx_fifo_size = 64,
	.master_flags = SPI_MASTER_MUST_TX,
	.min_div = 1,
1051 1052
};

1053
static const struct sh_msiof_chipdata rcar_gen3_data = {
1054
	.tx_fifo_size = 64,
1055
	.rx_fifo_size = 64,
1056
	.master_flags = SPI_MASTER_MUST_TX,
1057
	.min_div = 2,
1058 1059 1060 1061
};

static const struct of_device_id sh_msiof_match[] = {
	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1062 1063
	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1064 1065 1066 1067 1068 1069 1070 1071
	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1072
	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1073 1074 1075 1076
	{},
};
MODULE_DEVICE_TABLE(of, sh_msiof_match);

1077 1078 1079 1080 1081
#ifdef CONFIG_OF
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
	struct sh_msiof_spi_info *info;
	struct device_node *np = dev->of_node;
1082
	u32 num_cs = 1;
1083 1084

	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1085
	if (!info)
1086 1087
		return NULL;

1088 1089 1090
	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
							    : MSIOF_SPI_MASTER;

1091
	/* Parse the MSIOF properties */
1092 1093
	if (info->mode == MSIOF_SPI_MASTER)
		of_property_read_u32(np, "num-cs", &num_cs);
1094 1095 1096 1097
	of_property_read_u32(np, "renesas,tx-fifo-size",
					&info->tx_fifo_override);
	of_property_read_u32(np, "renesas,rx-fifo-size",
					&info->rx_fifo_override);
1098 1099
	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	info->num_chipselect = num_cs;

	return info;
}
#else
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
	return NULL;
}
#endif

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
{
	struct device *dev = &p->pdev->dev;
	unsigned int used_ss_mask = 0;
	unsigned int cs_gpios = 0;
	unsigned int num_cs, i;
	int ret;

	ret = gpiod_count(dev, "cs");
	if (ret <= 0)
		return 0;

	num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
	for (i = 0; i < num_cs; i++) {
		struct gpio_desc *gpiod;

		gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
		if (!IS_ERR(gpiod)) {
			cs_gpios++;
			continue;
		}

		if (PTR_ERR(gpiod) != -ENOENT)
			return PTR_ERR(gpiod);

		if (i >= MAX_SS) {
			dev_err(dev, "Invalid native chip select %d\n", i);
			return -EINVAL;
		}
		used_ss_mask |= BIT(i);
	}
	p->unused_ss = ffz(used_ss_mask);
	if (cs_gpios && p->unused_ss >= MAX_SS) {
		dev_err(dev, "No unused native chip select available\n");
		return -EINVAL;
	}
	return 0;
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
{
	dma_cap_mask_t mask;
	struct dma_chan *chan;
	struct dma_slave_config cfg;
	int ret;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

1162 1163 1164
	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
				(void *)(unsigned long)id, dev,
				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1165
	if (!chan) {
1166
		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1167 1168 1169 1170 1171
		return NULL;
	}

	memset(&cfg, 0, sizeof(cfg));
	cfg.direction = dir;
1172
	if (dir == DMA_MEM_TO_DEV) {
1173
		cfg.dst_addr = port_addr;
1174 1175
		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	} else {
1176
		cfg.src_addr = port_addr;
1177 1178
		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	}
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

	ret = dmaengine_slave_config(chan, &cfg);
	if (ret) {
		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
		dma_release_channel(chan);
		return NULL;
	}

	return chan;
}

static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
{
	struct platform_device *pdev = p->pdev;
	struct device *dev = &pdev->dev;
	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1195
	unsigned int dma_tx_id, dma_rx_id;
1196 1197
	const struct resource *res;
	struct spi_master *master;
1198
	struct device *tx_dev, *rx_dev;
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	if (dev->of_node) {
		/* In the OF case we will get the slave IDs from the DT */
		dma_tx_id = 0;
		dma_rx_id = 0;
	} else if (info && info->dma_tx_id && info->dma_rx_id) {
		dma_tx_id = info->dma_tx_id;
		dma_rx_id = info->dma_rx_id;
	} else {
		/* The driver assumes no error */
		return 0;
	}
1211 1212 1213 1214 1215 1216 1217 1218

	/* The DMA engine uses the second register set, if present */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res)
		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	master = p->master;
	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1219
						   dma_tx_id,
1220 1221 1222 1223 1224
						   res->start + TFDR);
	if (!master->dma_tx)
		return -ENODEV;

	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1225
						   dma_rx_id,
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
						   res->start + RFDR);
	if (!master->dma_rx)
		goto free_tx_chan;

	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
	if (!p->tx_dma_page)
		goto free_rx_chan;

	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
	if (!p->rx_dma_page)
		goto free_tx_page;

1238 1239
	tx_dev = master->dma_tx->device->dev;
	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1240
					DMA_TO_DEVICE);
1241
	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1242 1243
		goto free_rx_page;

1244 1245
	rx_dev = master->dma_rx->device->dev;
	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1246
					DMA_FROM_DEVICE);
1247
	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1248 1249 1250 1251 1252 1253
		goto unmap_tx_page;

	dev_info(dev, "DMA available");
	return 0;

unmap_tx_page:
1254
	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
free_rx_page:
	free_page((unsigned long)p->rx_dma_page);
free_tx_page:
	free_page((unsigned long)p->tx_dma_page);
free_rx_chan:
	dma_release_channel(master->dma_rx);
free_tx_chan:
	dma_release_channel(master->dma_tx);
	master->dma_tx = NULL;
	return -ENODEV;
}

static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
{
	struct spi_master *master = p->master;

	if (!master->dma_tx)
		return;

1274 1275 1276 1277
	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
			 PAGE_SIZE, DMA_FROM_DEVICE);
	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
			 PAGE_SIZE, DMA_TO_DEVICE);
1278 1279 1280 1281 1282 1283
	free_page((unsigned long)p->rx_dma_page);
	free_page((unsigned long)p->tx_dma_page);
	dma_release_channel(master->dma_rx);
	dma_release_channel(master->dma_tx);
}

1284 1285 1286 1287
static int sh_msiof_spi_probe(struct platform_device *pdev)
{
	struct resource	*r;
	struct spi_master *master;
1288
	const struct sh_msiof_chipdata *chipdata;
1289
	struct sh_msiof_spi_info *info;
1290 1291 1292 1293
	struct sh_msiof_spi_priv *p;
	int i;
	int ret;

1294 1295
	chipdata = of_device_get_match_data(&pdev->dev);
	if (chipdata) {
1296
		info = sh_msiof_spi_parse_dt(&pdev->dev);
1297
	} else {
1298
		chipdata = (const void *)pdev->id_entry->driver_data;
1299
		info = dev_get_platdata(&pdev->dev);
1300
	}
1301

1302
	if (!info) {
1303
		dev_err(&pdev->dev, "failed to obtain device info\n");
1304
		return -ENXIO;
1305 1306
	}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	if (info->mode == MSIOF_SPI_SLAVE)
		master = spi_alloc_slave(&pdev->dev,
					 sizeof(struct sh_msiof_spi_priv));
	else
		master = spi_alloc_master(&pdev->dev,
					  sizeof(struct sh_msiof_spi_priv));
	if (master == NULL)
		return -ENOMEM;

	p = spi_master_get_devdata(master);

	platform_set_drvdata(pdev, p);
	p->master = master;
	p->info = info;
1321
	p->min_div = chipdata->min_div;
1322

1323 1324
	init_completion(&p->done);

1325
	p->clk = devm_clk_get(&pdev->dev, NULL);
1326
	if (IS_ERR(p->clk)) {
1327
		dev_err(&pdev->dev, "cannot get clock\n");
1328 1329 1330 1331 1332
		ret = PTR_ERR(p->clk);
		goto err1;
	}

	i = platform_get_irq(pdev, 0);
1333 1334
	if (i < 0) {
		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1335
		ret = -ENOENT;
1336
		goto err1;
1337
	}
1338 1339 1340 1341 1342 1343

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(p->mapbase)) {
		ret = PTR_ERR(p->mapbase);
		goto err1;
1344 1345
	}

1346 1347
	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
			       dev_name(&pdev->dev), p);
1348 1349
	if (ret) {
		dev_err(&pdev->dev, "unable to request irq\n");
1350
		goto err1;
1351 1352 1353 1354 1355 1356
	}

	p->pdev = pdev;
	pm_runtime_enable(&pdev->dev);

	/* Platform data may override FIFO sizes */
1357 1358
	p->tx_fifo_size = chipdata->tx_fifo_size;
	p->rx_fifo_size = chipdata->rx_fifo_size;
1359 1360 1361 1362 1363
	if (p->info->tx_fifo_override)
		p->tx_fifo_size = p->info->tx_fifo_override;
	if (p->info->rx_fifo_override)
		p->rx_fifo_size = p->info->rx_fifo_override;

1364 1365 1366 1367 1368 1369
	/* Setup GPIO chip selects */
	master->num_chipselect = p->info->num_chipselect;
	ret = sh_msiof_get_cs_gpios(p);
	if (ret)
		goto err1;

1370
	/* init master code */
1371 1372
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1373
	master->flags = chipdata->master_flags;
1374
	master->bus_num = pdev->id;
1375
	master->dev.of_node = pdev->dev.of_node;
1376
	master->setup = sh_msiof_spi_setup;
1377
	master->prepare_message = sh_msiof_prepare_message;
1378
	master->slave_abort = sh_msiof_slave_abort;
1379
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1380
	master->auto_runtime_pm = true;
1381
	master->transfer_one = sh_msiof_transfer_one;
1382

1383 1384 1385 1386
	ret = sh_msiof_request_dma(p);
	if (ret < 0)
		dev_warn(&pdev->dev, "DMA not available, using PIO\n");

1387 1388 1389 1390 1391
	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret < 0) {
		dev_err(&pdev->dev, "spi_register_master error.\n");
		goto err2;
	}
1392

1393
	return 0;
1394

1395
 err2:
1396
	sh_msiof_release_dma(p);
1397 1398 1399 1400 1401 1402 1403 1404
	pm_runtime_disable(&pdev->dev);
 err1:
	spi_master_put(master);
	return ret;
}

static int sh_msiof_spi_remove(struct platform_device *pdev)
{
1405 1406 1407
	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);

	sh_msiof_release_dma(p);
1408 1409
	pm_runtime_disable(&pdev->dev);
	return 0;
1410 1411
}

1412
static const struct platform_device_id spi_driver_ids[] = {
1413
	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1414 1415
	{},
};
1416
MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1417

1418 1419 1420
static struct platform_driver sh_msiof_spi_drv = {
	.probe		= sh_msiof_spi_probe,
	.remove		= sh_msiof_spi_remove,
1421
	.id_table	= spi_driver_ids,
1422 1423
	.driver		= {
		.name		= "spi_sh_msiof",
1424
		.of_match_table = of_match_ptr(sh_msiof_match),
1425 1426
	},
};
1427
module_platform_driver(sh_msiof_spi_drv);
1428 1429 1430 1431 1432

MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
MODULE_AUTHOR("Magnus Damm");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spi_sh_msiof");