sec_crypto.c 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */

#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/des.h>
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>

#include "sec.h"
#include "sec_crypto.h"

#define SEC_PRIORITY		4001
#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)

/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET		1
#define SEC_CIPHER_OFFSET	4
#define SEC_SCENE_OFFSET	3
#define SEC_DST_SGL_OFFSET	2
#define SEC_SRC_SGL_OFFSET	7
#define SEC_CKEY_OFFSET		9
#define SEC_CMODE_OFFSET	12
#define SEC_FLAG_OFFSET		7
#define SEC_FLAG_MASK		0x0780
#define SEC_TYPE_MASK		0x0F
#define SEC_DONE_MASK		0x0001

#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR		128
#define SEC_CTX_DEV(ctx)	(&(ctx)->sec->qm.pdev->dev)

static DEFINE_MUTEX(sec_algs_lock);
static unsigned int sec_active_devs;

/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
static inline int sec_get_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
	if (req->c_req.encrypt)
		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
				 ctx->hlf_q_num;

	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
				 ctx->hlf_q_num;
}

static inline void sec_put_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
	if (req->c_req.encrypt)
		atomic_dec(&ctx->enc_qcyclic);
	else
		atomic_dec(&ctx->dec_qcyclic);
}

static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	int req_id;

	mutex_lock(&qp_ctx->req_lock);

	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
				  0, QM_Q_DEPTH, GFP_ATOMIC);
	mutex_unlock(&qp_ctx->req_lock);
	if (req_id < 0) {
		dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
		return req_id;
	}

	req->qp_ctx = qp_ctx;
	qp_ctx->req_list[req_id] = req;
	return req_id;
}

static void sec_free_req_id(struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int req_id = req->req_id;

	if (req_id < 0 || req_id >= QM_Q_DEPTH) {
		dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
		return;
	}

	qp_ctx->req_list[req_id] = NULL;
	req->qp_ctx = NULL;

	mutex_lock(&qp_ctx->req_lock);
	idr_remove(&qp_ctx->req_idr, req_id);
	mutex_unlock(&qp_ctx->req_lock);
}

static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
	struct sec_sqe *bd = resp;
	u16 done, flag;
	u8 type;
	struct sec_req *req;

	type = bd->type_cipher_auth & SEC_TYPE_MASK;
	if (type == SEC_BD_TYPE2) {
		req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
		req->err_type = bd->type2.error_type;

		done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
		flag = (le16_to_cpu(bd->type2.done_flag) &
				   SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
		if (req->err_type || done != 0x1 || flag != 0x2)
			dev_err(SEC_CTX_DEV(req->ctx),
				"err_type[%d],done[%d],flag[%d]\n",
				req->err_type, done, flag);
	} else {
		pr_err("err bd type [%d]\n", type);
		return;
	}

123 124
	__sync_add_and_fetch(&req->ctx->sec->debug.dfx.recv_cnt, 1);

125 126 127 128 129 130 131 132 133 134 135 136 137
	req->ctx->req_op->buf_unmap(req->ctx, req);

	req->ctx->req_op->callback(req->ctx, req);
}

static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int ret;

	mutex_lock(&qp_ctx->req_lock);
	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
	mutex_unlock(&qp_ctx->req_lock);
138
	__sync_add_and_fetch(&ctx->sec->debug.dfx.send_cnt, 1);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

	if (ret == -EBUSY)
		return -ENOBUFS;

	if (!ret) {
		if (req->fake_busy)
			ret = -EBUSY;
		else
			ret = -EINPROGRESS;
	}

	return ret;
}

static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
			     int qp_ctx_id, int alg_type)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_qp_ctx *qp_ctx;
	struct hisi_qp *qp;
	int ret = -ENOMEM;

	qp = hisi_qm_create_qp(qm, alg_type);
	if (IS_ERR(qp))
		return PTR_ERR(qp);

	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
	qp->req_type = 0;
	qp->qp_ctx = qp_ctx;
	qp->req_cb = sec_req_cb;
	qp_ctx->qp = qp;
	qp_ctx->ctx = ctx;

	mutex_init(&qp_ctx->req_lock);
	atomic_set(&qp_ctx->pending_reqs, 0);
	idr_init(&qp_ctx->req_idr);

	qp_ctx->req_list = kcalloc(QM_Q_DEPTH, sizeof(void *), GFP_ATOMIC);
	if (!qp_ctx->req_list)
		goto err_destroy_idr;

	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						     SEC_SGL_SGE_NR);
182
	if (IS_ERR(qp_ctx->c_in_pool)) {
183 184 185 186 187 188
		dev_err(dev, "fail to create sgl pool for input!\n");
		goto err_free_req_list;
	}

	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						      SEC_SGL_SGE_NR);
189
	if (IS_ERR(qp_ctx->c_out_pool)) {
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
		dev_err(dev, "fail to create sgl pool for output!\n");
		goto err_free_c_in_pool;
	}

	ret = ctx->req_op->resource_alloc(ctx, qp_ctx);
	if (ret)
		goto err_free_c_out_pool;

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0)
		goto err_queue_free;

	return 0;

err_queue_free:
	ctx->req_op->resource_free(ctx, qp_ctx);
err_free_c_out_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_free_req_list:
	kfree(qp_ctx->req_list);
err_destroy_idr:
	idr_destroy(&qp_ctx->req_idr);
	hisi_qm_release_qp(qp);

	return ret;
}

static void sec_release_qp_ctx(struct sec_ctx *ctx,
			       struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);

	hisi_qm_stop_qp(qp_ctx->qp);
	ctx->req_op->resource_free(ctx, qp_ctx);

	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);

	idr_destroy(&qp_ctx->req_idr);
	kfree(qp_ctx->req_list);
	hisi_qm_release_qp(qp_ctx->qp);
}

static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx;
	struct sec_dev *sec;
	struct device *dev;
	struct hisi_qm *qm;
	int i, ret;

	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));

	sec = sec_find_device(cpu_to_node(smp_processor_id()));
	if (!sec) {
		pr_err("find no Hisilicon SEC device!\n");
		return -ENODEV;
	}
	ctx->sec = sec;
	qm = &sec->qm;
	dev = &qm->pdev->dev;
	ctx->hlf_q_num = sec->ctx_q_num >> 0x1;

	/* Half of queue depth is taken as fake requests limit in the queue. */
	ctx->fake_req_limit = QM_Q_DEPTH >> 0x1;
	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
			      GFP_KERNEL);
	if (!ctx->qp_ctx)
		return -ENOMEM;

	for (i = 0; i < sec->ctx_q_num; i++) {
		ret = sec_create_qp_ctx(qm, ctx, i, 0);
		if (ret)
			goto err_sec_release_qp_ctx;
	}

	c_ctx = &ctx->c_ctx;
	c_ctx->ivsize = crypto_skcipher_ivsize(tfm);
	if (c_ctx->ivsize > SEC_IV_SIZE) {
		dev_err(dev, "get error iv size!\n");
		ret = -EINVAL;
		goto err_sec_release_qp_ctx;
	}
	c_ctx->c_key = dma_alloc_coherent(dev, SEC_MAX_KEY_SIZE,
					  &c_ctx->c_key_dma, GFP_KERNEL);
	if (!c_ctx->c_key) {
		ret = -ENOMEM;
		goto err_sec_release_qp_ctx;
	}

	return 0;

err_sec_release_qp_ctx:
	for (i = i - 1; i >= 0; i--)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

	kfree(ctx->qp_ctx);
	return ret;
}

static void sec_skcipher_exit(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int i = 0;

	if (c_ctx->c_key) {
		dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
				  c_ctx->c_key, c_ctx->c_key_dma);
		c_ctx->c_key = NULL;
	}

	for (i = 0; i < ctx->sec->ctx_q_num; i++)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

	kfree(ctx->qp_ctx);
}

static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
				    const u32 keylen,
				    const enum sec_cmode c_mode)
{
	switch (keylen) {
	case SEC_DES3_2KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
		break;
	case SEC_DES3_3KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
				       const u32 keylen,
				       const enum sec_cmode c_mode)
{
	if (c_mode == SEC_CMODE_XTS) {
		switch (keylen) {
		case SEC_XTS_MIN_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
		case SEC_XTS_MAX_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: xts mode key error!\n");
			return -EINVAL;
		}
	} else {
		switch (keylen) {
		case AES_KEYSIZE_128:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
		case AES_KEYSIZE_192:
			c_ctx->c_key_len = SEC_CKEY_192BIT;
			break;
		case AES_KEYSIZE_256:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: aes key error!\n");
			return -EINVAL;
		}
	}

	return 0;
}

static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			       const u32 keylen, const enum sec_calg c_alg,
			       const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int ret;

	if (c_mode == SEC_CMODE_XTS) {
		ret = xts_verify_key(tfm, key, keylen);
		if (ret) {
			dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
			return ret;
		}
	}

	c_ctx->c_alg  = c_alg;
	c_ctx->c_mode = c_mode;

	switch (c_alg) {
	case SEC_CALG_3DES:
		ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
		break;
	case SEC_CALG_AES:
	case SEC_CALG_SM4:
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		break;
	default:
		return -EINVAL;
	}

	if (ret) {
		dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
		return ret;
	}

	memcpy(c_ctx->c_key, key, keylen);

	return 0;
}

#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
	u32 keylen)							\
{									\
	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
}

GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)

GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)

GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)

static int sec_skcipher_get_res(struct sec_ctx *ctx,
				struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	struct sec_cipher_res *c_res = qp_ctx->alg_meta_data;
	struct sec_cipher_req *c_req = &req->c_req;
	int req_id = req->req_id;

	c_req->c_ivin = c_res[req_id].c_ivin;
	c_req->c_ivin_dma = c_res[req_id].c_ivin_dma;

	return 0;
}

static int sec_skcipher_resource_alloc(struct sec_ctx *ctx,
				       struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_cipher_res *res;
	int i;

	res = kcalloc(QM_Q_DEPTH, sizeof(struct sec_cipher_res), GFP_KERNEL);
	if (!res)
		return -ENOMEM;

	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					   &res->c_ivin_dma, GFP_KERNEL);
	if (!res->c_ivin) {
		kfree(res);
		return -ENOMEM;
	}

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
	}
	qp_ctx->alg_meta_data = res;

	return 0;
}

static void sec_skcipher_resource_free(struct sec_ctx *ctx,
				      struct sec_qp_ctx *qp_ctx)
{
	struct sec_cipher_res *res = qp_ctx->alg_meta_data;
	struct device *dev = SEC_CTX_DEV(ctx);

	if (!res)
		return;

	dma_free_coherent(dev, SEC_TOTAL_IV_SZ, res->c_ivin, res->c_ivin_dma);
	kfree(res);
}

static int sec_skcipher_map(struct device *dev, struct sec_req *req,
			    struct scatterlist *src, struct scatterlist *dst)
{
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
						    qp_ctx->c_in_pool,
						    req->req_id,
						    &c_req->c_in_dma);

	if (IS_ERR(c_req->c_in)) {
		dev_err(dev, "fail to dma map input sgl buffers!\n");
		return PTR_ERR(c_req->c_in);
	}

	if (dst == src) {
		c_req->c_out = c_req->c_in;
		c_req->c_out_dma = c_req->c_in_dma;
	} else {
		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
							     qp_ctx->c_out_pool,
							     req->req_id,
							     &c_req->c_out_dma);

		if (IS_ERR(c_req->c_out)) {
			dev_err(dev, "fail to dma map output sgl buffers!\n");
			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
			return PTR_ERR(c_req->c_out);
		}
	}

	return 0;
}

static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_req *c_req = &req->c_req;

	return sec_skcipher_map(SEC_CTX_DEV(ctx), req,
				c_req->sk_req->src, c_req->sk_req->dst);
}

static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_cipher_req *c_req = &req->c_req;
	struct skcipher_request *sk_req = c_req->sk_req;

	if (sk_req->dst != sk_req->src)
		hisi_acc_sg_buf_unmap(dev, sk_req->src, c_req->c_in);

	hisi_acc_sg_buf_unmap(dev, sk_req->dst, c_req->c_out);
}

static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = ctx->req_op->buf_map(ctx, req);
	if (ret)
		return ret;

	ctx->req_op->do_transfer(ctx, req);

	ret = ctx->req_op->bd_fill(ctx, req);
	if (ret)
		goto unmap_req_buf;

	return ret;

unmap_req_buf:
	ctx->req_op->buf_unmap(ctx, req);

	return ret;
}

static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
	ctx->req_op->buf_unmap(ctx, req);
}

static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_cipher_req *c_req = &req->c_req;

	c_req->c_len = sk_req->cryptlen;
	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
}

static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	u8 de = 0;
	u8 scene, sa_type, da_type;
	u8 bd_type, cipher;

	memset(sec_sqe, 0, sizeof(struct sec_sqe));

	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
	sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
						SEC_CMODE_OFFSET);
	sec_sqe->type2.c_alg = c_ctx->c_alg;
	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET);

	bd_type = SEC_BD_TYPE2;
	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
	else
		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
	sec_sqe->type_cipher_auth = bd_type | cipher;

	sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
	if (c_req->c_in_dma != c_req->c_out_dma)
		de = 0x1 << SEC_DE_OFFSET;

	sec_sqe->sds_sa_type = (de | scene | sa_type);

	/* Just set DST address type */
	da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
	sec_sqe->sdm_addr_type |= da_type;

	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);

	return 0;
}

static void sec_update_iv(struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	u32 iv_size = req->ctx->c_ctx.ivsize;
	struct scatterlist *sgl;
	size_t sz;

	if (req->c_req.encrypt)
		sgl = sk_req->dst;
	else
		sgl = sk_req->src;

	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), sk_req->iv,
				iv_size, sk_req->cryptlen - iv_size);
	if (sz != iv_size)
		dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
}

static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	atomic_dec(&qp_ctx->pending_reqs);
	sec_free_req_id(req);

	/* IV output at encrypto of CBC mode */
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
		sec_update_iv(req);

	if (__sync_bool_compare_and_swap(&req->fake_busy, 1, 0))
		sk_req->base.complete(&sk_req->base, -EINPROGRESS);

	sk_req->base.complete(&sk_req->base, req->err_type);
}

static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	atomic_dec(&qp_ctx->pending_reqs);
	sec_free_req_id(req);
	sec_put_queue_id(ctx, req);
}

static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx;
	int issue_id, ret;

	/* To load balance */
	issue_id = sec_get_queue_id(ctx, req);
	qp_ctx = &ctx->qp_ctx[issue_id];

	req->req_id = sec_alloc_req_id(req, qp_ctx);
	if (req->req_id < 0) {
		sec_put_queue_id(ctx, req);
		return req->req_id;
	}

	if (ctx->fake_req_limit <= atomic_inc_return(&qp_ctx->pending_reqs))
		req->fake_busy = 1;
	else
		req->fake_busy = 0;

	ret = ctx->req_op->get_res(ctx, req);
	if (ret) {
		atomic_dec(&qp_ctx->pending_reqs);
		sec_request_uninit(ctx, req);
		dev_err(SEC_CTX_DEV(ctx), "get resources failed!\n");
	}

	return ret;
}

static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = sec_request_init(ctx, req);
	if (ret)
		return ret;

	ret = sec_request_transfer(ctx, req);
	if (ret)
		goto err_uninit_req;

	/* Output IV as decrypto */
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
		sec_update_iv(req);

	ret = ctx->req_op->bd_send(ctx, req);
	if (ret != -EBUSY && ret != -EINPROGRESS) {
		dev_err(SEC_CTX_DEV(ctx), "send sec request failed!\n");
		goto err_send_req;
	}

	return ret;

err_send_req:
	/* As failing, restore the IV from user */
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
		memcpy(req->c_req.sk_req->iv, req->c_req.c_ivin,
		       ctx->c_ctx.ivsize);

	sec_request_untransfer(ctx, req);
err_uninit_req:
	sec_request_uninit(ctx, req);

	return ret;
}

static struct sec_req_op sec_req_ops_tbl = {
	.get_res	= sec_skcipher_get_res,
	.resource_alloc	= sec_skcipher_resource_alloc,
	.resource_free	= sec_skcipher_resource_free,
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

	ctx->req_op = &sec_req_ops_tbl;

	return sec_skcipher_init(tfm);
}

static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
	sec_skcipher_exit(tfm);
}

static int sec_skcipher_param_check(struct sec_ctx *ctx,
				    struct skcipher_request *sk_req)
{
	u8 c_alg = ctx->c_ctx.c_alg;
	struct device *dev = SEC_CTX_DEV(ctx);

	if (!sk_req->src || !sk_req->dst) {
		dev_err(dev, "skcipher input param error!\n");
		return -EINVAL;
	}

	if (c_alg == SEC_CALG_3DES) {
		if (sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1)) {
			dev_err(dev, "skcipher 3des input length error!\n");
			return -EINVAL;
		}
		return 0;
	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
		if (sk_req->cryptlen & (AES_BLOCK_SIZE - 1)) {
			dev_err(dev, "skcipher aes input length error!\n");
			return -EINVAL;
		}
		return 0;
	}

	dev_err(dev, "skcipher algorithm error!\n");
	return -EINVAL;
}

static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
	struct sec_req *req = skcipher_request_ctx(sk_req);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

	if (!sk_req->cryptlen)
		return 0;

	ret = sec_skcipher_param_check(ctx, sk_req);
	if (ret)
		return ret;

	req->c_req.sk_req = sk_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

	return ctx->req_op->process(ctx, req);
}

static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, true);
}

static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, false);
}

#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
		.cra_flags = CRYPTO_ALG_ASYNC,\
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_skcipher_decrypt,\
	.encrypt = sec_skcipher_encrypt,\
	.min_keysize = sec_min_key_size,\
	.max_keysize = sec_max_key_size,\
	.ivsize = iv_size,\
},

#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
	max_key_size, blk_size, iv_size) \
	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)

static struct skcipher_alg sec_algs[] = {
	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};

int sec_register_to_crypto(void)
{
	int ret = 0;

	/* To avoid repeat register */
	mutex_lock(&sec_algs_lock);
	if (++sec_active_devs == 1)
		ret = crypto_register_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
	mutex_unlock(&sec_algs_lock);

	return ret;
}

void sec_unregister_from_crypto(void)
{
	mutex_lock(&sec_algs_lock);
	if (--sec_active_devs == 0)
		crypto_unregister_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
	mutex_unlock(&sec_algs_lock);
}