xsk_queue.h 10.1 KB
Newer Older
B
Björn Töpel 已提交
1 2
/* SPDX-License-Identifier: GPL-2.0 */
/* XDP user-space ring structure
3 4 5 6 7 8 9 10
 * Copyright(c) 2018 Intel Corporation.
 */

#ifndef _LINUX_XSK_QUEUE_H
#define _LINUX_XSK_QUEUE_H

#include <linux/types.h>
#include <linux/if_xdp.h>
11
#include <net/xdp_sock.h>
12

13 14
#include "xsk.h"

15 16 17
struct xdp_ring {
	u32 producer ____cacheline_aligned_in_smp;
	u32 consumer ____cacheline_aligned_in_smp;
18
	u32 flags;
19 20 21 22 23
};

/* Used for the RX and TX queues for packets */
struct xdp_rxtx_ring {
	struct xdp_ring ptrs;
24
	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
25 26 27 28 29
};

/* Used for the fill and completion queues for buffers */
struct xdp_umem_ring {
	struct xdp_ring ptrs;
30
	u64 desc[] ____cacheline_aligned_in_smp;
31 32
};

33
struct xsk_queue {
34
	u64 chunk_mask;
35
	u64 umem_size;
36 37
	u32 ring_mask;
	u32 nentries;
38
	u32 cached_prod;
39
	u32 cached_cons;
40 41 42 43
	struct xdp_ring *ring;
	u64 invalid_descs;
};

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/* The structure of the shared state of the rings are the same as the
 * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
 * ring, the kernel is the producer and user space is the consumer. For
 * the Tx and fill rings, the kernel is the consumer and user space is
 * the producer.
 *
 * producer                         consumer
 *
 * if (LOAD ->consumer) {           LOAD ->producer
 *                    (A)           smp_rmb()       (C)
 *    STORE $data                   LOAD $data
 *    smp_wmb()       (B)           smp_mb()        (D)
 *    STORE ->producer              STORE ->consumer
 * }
 *
 * (A) pairs with (D), and (B) pairs with (C).
 *
 * Starting with (B), it protects the data from being written after
 * the producer pointer. If this barrier was missing, the consumer
 * could observe the producer pointer being set and thus load the data
 * before the producer has written the new data. The consumer would in
 * this case load the old data.
 *
 * (C) protects the consumer from speculatively loading the data before
 * the producer pointer actually has been read. If we do not have this
 * barrier, some architectures could load old data as speculative loads
 * are not discarded as the CPU does not know there is a dependency
 * between ->producer and data.
 *
 * (A) is a control dependency that separates the load of ->consumer
 * from the stores of $data. In case ->consumer indicates there is no
 * room in the buffer to store $data we do not. So no barrier is needed.
 *
 * (D) protects the load of the data to be observed to happen after the
 * store of the consumer pointer. If we did not have this memory
 * barrier, the producer could observe the consumer pointer being set
 * and overwrite the data with a new value before the consumer got the
 * chance to read the old value. The consumer would thus miss reading
 * the old entry and very likely read the new entry twice, once right
 * now and again after circling through the ring.
 */

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/* The operations on the rings are the following:
 *
 * producer                           consumer
 *
 * RESERVE entries                    PEEK in the ring for entries
 * WRITE data into the ring           READ data from the ring
 * SUBMIT entries                     RELEASE entries
 *
 * The producer reserves one or more entries in the ring. It can then
 * fill in these entries and finally submit them so that they can be
 * seen and read by the consumer.
 *
 * The consumer peeks into the ring to see if the producer has written
 * any new entries. If so, the producer can then read these entries
 * and when it is done reading them release them back to the producer
 * so that the producer can use these slots to fill in new entries.
 *
 * The function names below reflect these operations.
 */
105

106
/* Functions that read and validate content from consumer rings. */
107

108 109 110
static inline bool xskq_cons_crosses_non_contig_pg(struct xdp_umem *umem,
						   u64 addr,
						   u64 length)
111 112 113 114 115 116 117 118 119
{
	bool cross_pg = (addr & (PAGE_SIZE - 1)) + length > PAGE_SIZE;
	bool next_pg_contig =
		(unsigned long)umem->pages[(addr >> PAGE_SHIFT)].addr &
			XSK_NEXT_PG_CONTIG_MASK;

	return cross_pg && !next_pg_contig;
}

120 121
static inline bool xskq_cons_is_valid_unaligned(struct xsk_queue *q,
						u64 addr,
122 123 124 125 126 127
						u64 length,
						struct xdp_umem *umem)
{
	u64 base_addr = xsk_umem_extract_addr(addr);

	addr = xsk_umem_add_offset_to_addr(addr);
128
	if (base_addr >= q->umem_size || addr >= q->umem_size ||
129
	    xskq_cons_crosses_non_contig_pg(umem, addr, length)) {
130 131 132 133 134 135 136
		q->invalid_descs++;
		return false;
	}

	return true;
}

137 138
static inline bool xskq_cons_is_valid_addr(struct xsk_queue *q, u64 addr)
{
139
	if (addr >= q->umem_size) {
140 141 142 143 144 145 146
		q->invalid_descs++;
		return false;
	}

	return true;
}

147 148
static inline bool xskq_cons_read_addr(struct xsk_queue *q, u64 *addr,
				       struct xdp_umem *umem)
149
{
150 151 152 153
	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;

	while (q->cached_cons != q->cached_prod) {
		u32 idx = q->cached_cons & q->ring_mask;
154

155
		*addr = ring->desc[idx] & q->chunk_mask;
156 157

		if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
158
			if (xskq_cons_is_valid_unaligned(q, *addr,
159 160
							 umem->chunk_size_nohr,
							 umem))
161
				return true;
162 163 164
			goto out;
		}

165 166
		if (xskq_cons_is_valid_addr(q, *addr))
			return true;
167

168
out:
169
		q->cached_cons++;
170 171
	}

172
	return false;
173 174
}

175 176 177
static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
					   struct xdp_desc *d,
					   struct xdp_umem *umem)
M
Magnus Karlsson 已提交
178
{
179
	if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
180
		if (!xskq_cons_is_valid_unaligned(q, d->addr, d->len, umem))
181 182 183 184 185 186 187 188 189 190
			return false;

		if (d->len > umem->chunk_size_nohr || d->options) {
			q->invalid_descs++;
			return false;
		}

		return true;
	}

191
	if (!xskq_cons_is_valid_addr(q, d->addr))
M
Magnus Karlsson 已提交
192 193
		return false;

194 195
	if (((d->addr + d->len) & q->chunk_mask) != (d->addr & q->chunk_mask) ||
	    d->options) {
M
Magnus Karlsson 已提交
196 197 198 199 200 201 202
		q->invalid_descs++;
		return false;
	}

	return true;
}

203 204 205
static inline bool xskq_cons_read_desc(struct xsk_queue *q,
				       struct xdp_desc *desc,
				       struct xdp_umem *umem)
M
Magnus Karlsson 已提交
206
{
207
	while (q->cached_cons != q->cached_prod) {
M
Magnus Karlsson 已提交
208
		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
209
		u32 idx = q->cached_cons & q->ring_mask;
M
Magnus Karlsson 已提交
210

211
		*desc = ring->desc[idx];
212 213
		if (xskq_cons_is_valid_desc(q, desc, umem))
			return true;
M
Magnus Karlsson 已提交
214

215
		q->cached_cons++;
M
Magnus Karlsson 已提交
216 217
	}

218
	return false;
M
Magnus Karlsson 已提交
219 220
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/* Functions for consumers */

static inline void __xskq_cons_release(struct xsk_queue *q)
{
	smp_mb(); /* D, matches A */
	WRITE_ONCE(q->ring->consumer, q->cached_cons);
}

static inline void __xskq_cons_peek(struct xsk_queue *q)
{
	/* Refresh the local pointer */
	q->cached_prod = READ_ONCE(q->ring->producer);
	smp_rmb(); /* C, matches B */
}

static inline void xskq_cons_get_entries(struct xsk_queue *q)
{
	__xskq_cons_release(q);
	__xskq_cons_peek(q);
}

static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
{
	u32 entries = q->cached_prod - q->cached_cons;

	if (entries >= cnt)
		return true;

	__xskq_cons_peek(q);
	entries = q->cached_prod - q->cached_cons;

	return entries >= cnt;
}

static inline bool xskq_cons_peek_addr(struct xsk_queue *q, u64 *addr,
				       struct xdp_umem *umem)
{
	if (q->cached_prod == q->cached_cons)
		xskq_cons_get_entries(q);
	return xskq_cons_read_addr(q, addr, umem);
}

263 264 265
static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
				       struct xdp_desc *desc,
				       struct xdp_umem *umem)
M
Magnus Karlsson 已提交
266
{
267 268
	if (q->cached_prod == q->cached_cons)
		xskq_cons_get_entries(q);
269
	return xskq_cons_read_desc(q, desc, umem);
M
Magnus Karlsson 已提交
270 271
}

272 273 274 275
static inline void xskq_cons_release(struct xsk_queue *q)
{
	/* To improve performance, only update local state here.
	 * Reflect this to global state when we get new entries
276 277
	 * from the ring in xskq_cons_get_entries() and whenever
	 * Rx or Tx processing are completed in the NAPI loop.
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	 */
	q->cached_cons++;
}

static inline bool xskq_cons_is_full(struct xsk_queue *q)
{
	/* No barriers needed since data is not accessed */
	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
		q->nentries;
}

/* Functions for producers */

static inline bool xskq_prod_is_full(struct xsk_queue *q)
{
	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);

	if (free_entries)
		return false;

	/* Refresh the local tail pointer */
	q->cached_cons = READ_ONCE(q->ring->consumer);
	free_entries = q->nentries - (q->cached_prod - q->cached_cons);

	return !free_entries;
}

static inline int xskq_prod_reserve(struct xsk_queue *q)
{
	if (xskq_prod_is_full(q))
		return -ENOSPC;

	/* A, matches D */
	q->cached_prod++;
	return 0;
}

static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
{
	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;

	if (xskq_prod_is_full(q))
		return -ENOSPC;

	/* A, matches D */
	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
	return 0;
}

327 328
static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
					 u64 addr, u32 len)
329 330
{
	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
331
	u32 idx;
332

333
	if (xskq_prod_is_full(q))
334 335
		return -ENOSPC;

336
	/* A, matches D */
337
	idx = q->cached_prod++ & q->ring_mask;
338
	ring->desc[idx].addr = addr;
339 340 341 342 343
	ring->desc[idx].len = len;

	return 0;
}

344
static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
M
Magnus Karlsson 已提交
345
{
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	smp_wmb(); /* B, matches C */

	WRITE_ONCE(q->ring->producer, idx);
}

static inline void xskq_prod_submit(struct xsk_queue *q)
{
	__xskq_prod_submit(q, q->cached_prod);
}

static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
{
	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
	u32 idx = q->ring->producer;

	ring->desc[idx++ & q->ring_mask] = addr;

	__xskq_prod_submit(q, idx);
}

static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
{
	__xskq_prod_submit(q, q->ring->producer + nb_entries);
M
Magnus Karlsson 已提交
369 370
}

371
static inline bool xskq_prod_is_empty(struct xsk_queue *q)
372
{
373 374
	/* No barriers needed since data is not accessed */
	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
375 376
}

377 378 379 380 381 382 383
/* For both producers and consumers */

static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
{
	return q ? q->invalid_descs : 0;
}

384
void xskq_set_umem(struct xsk_queue *q, u64 umem_size, u64 chunk_mask);
385
struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
386
void xskq_destroy(struct xsk_queue *q_ops);
387

388 389 390
/* Executed by the core when the entire UMEM gets freed */
void xsk_reuseq_destroy(struct xdp_umem *umem);

391
#endif /* _LINUX_XSK_QUEUE_H */