xsk_queue.h 10.0 KB
Newer Older
B
Björn Töpel 已提交
1 2
/* SPDX-License-Identifier: GPL-2.0 */
/* XDP user-space ring structure
3 4 5 6 7 8 9 10
 * Copyright(c) 2018 Intel Corporation.
 */

#ifndef _LINUX_XSK_QUEUE_H
#define _LINUX_XSK_QUEUE_H

#include <linux/types.h>
#include <linux/if_xdp.h>
11
#include <net/xdp_sock.h>
12

13 14 15
struct xdp_ring {
	u32 producer ____cacheline_aligned_in_smp;
	u32 consumer ____cacheline_aligned_in_smp;
16
	u32 flags;
17 18 19 20 21 22 23 24 25 26 27
};

/* Used for the RX and TX queues for packets */
struct xdp_rxtx_ring {
	struct xdp_ring ptrs;
	struct xdp_desc desc[0] ____cacheline_aligned_in_smp;
};

/* Used for the fill and completion queues for buffers */
struct xdp_umem_ring {
	struct xdp_ring ptrs;
28
	u64 desc[0] ____cacheline_aligned_in_smp;
29 30
};

31
struct xsk_queue {
32 33
	u64 chunk_mask;
	u64 size;
34 35
	u32 ring_mask;
	u32 nentries;
36
	u32 cached_prod;
37
	u32 cached_cons;
38 39 40 41
	struct xdp_ring *ring;
	u64 invalid_descs;
};

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* The structure of the shared state of the rings are the same as the
 * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
 * ring, the kernel is the producer and user space is the consumer. For
 * the Tx and fill rings, the kernel is the consumer and user space is
 * the producer.
 *
 * producer                         consumer
 *
 * if (LOAD ->consumer) {           LOAD ->producer
 *                    (A)           smp_rmb()       (C)
 *    STORE $data                   LOAD $data
 *    smp_wmb()       (B)           smp_mb()        (D)
 *    STORE ->producer              STORE ->consumer
 * }
 *
 * (A) pairs with (D), and (B) pairs with (C).
 *
 * Starting with (B), it protects the data from being written after
 * the producer pointer. If this barrier was missing, the consumer
 * could observe the producer pointer being set and thus load the data
 * before the producer has written the new data. The consumer would in
 * this case load the old data.
 *
 * (C) protects the consumer from speculatively loading the data before
 * the producer pointer actually has been read. If we do not have this
 * barrier, some architectures could load old data as speculative loads
 * are not discarded as the CPU does not know there is a dependency
 * between ->producer and data.
 *
 * (A) is a control dependency that separates the load of ->consumer
 * from the stores of $data. In case ->consumer indicates there is no
 * room in the buffer to store $data we do not. So no barrier is needed.
 *
 * (D) protects the load of the data to be observed to happen after the
 * store of the consumer pointer. If we did not have this memory
 * barrier, the producer could observe the consumer pointer being set
 * and overwrite the data with a new value before the consumer got the
 * chance to read the old value. The consumer would thus miss reading
 * the old entry and very likely read the new entry twice, once right
 * now and again after circling through the ring.
 */

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/* The operations on the rings are the following:
 *
 * producer                           consumer
 *
 * RESERVE entries                    PEEK in the ring for entries
 * WRITE data into the ring           READ data from the ring
 * SUBMIT entries                     RELEASE entries
 *
 * The producer reserves one or more entries in the ring. It can then
 * fill in these entries and finally submit them so that they can be
 * seen and read by the consumer.
 *
 * The consumer peeks into the ring to see if the producer has written
 * any new entries. If so, the producer can then read these entries
 * and when it is done reading them release them back to the producer
 * so that the producer can use these slots to fill in new entries.
 *
 * The function names below reflect these operations.
 */
103

104
/* Functions that read and validate content from consumer rings. */
105

106 107 108
static inline bool xskq_cons_crosses_non_contig_pg(struct xdp_umem *umem,
						   u64 addr,
						   u64 length)
109 110 111 112 113 114 115 116 117
{
	bool cross_pg = (addr & (PAGE_SIZE - 1)) + length > PAGE_SIZE;
	bool next_pg_contig =
		(unsigned long)umem->pages[(addr >> PAGE_SHIFT)].addr &
			XSK_NEXT_PG_CONTIG_MASK;

	return cross_pg && !next_pg_contig;
}

118 119
static inline bool xskq_cons_is_valid_unaligned(struct xsk_queue *q,
						u64 addr,
120 121 122 123 124 125 126
						u64 length,
						struct xdp_umem *umem)
{
	u64 base_addr = xsk_umem_extract_addr(addr);

	addr = xsk_umem_add_offset_to_addr(addr);
	if (base_addr >= q->size || addr >= q->size ||
127
	    xskq_cons_crosses_non_contig_pg(umem, addr, length)) {
128 129 130 131 132 133 134
		q->invalid_descs++;
		return false;
	}

	return true;
}

135 136 137 138 139 140 141 142 143 144
static inline bool xskq_cons_is_valid_addr(struct xsk_queue *q, u64 addr)
{
	if (addr >= q->size) {
		q->invalid_descs++;
		return false;
	}

	return true;
}

145 146
static inline bool xskq_cons_read_addr(struct xsk_queue *q, u64 *addr,
				       struct xdp_umem *umem)
147
{
148 149 150 151
	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;

	while (q->cached_cons != q->cached_prod) {
		u32 idx = q->cached_cons & q->ring_mask;
152

153
		*addr = ring->desc[idx] & q->chunk_mask;
154 155

		if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
156
			if (xskq_cons_is_valid_unaligned(q, *addr,
157 158
							 umem->chunk_size_nohr,
							 umem))
159
				return true;
160 161 162
			goto out;
		}

163 164
		if (xskq_cons_is_valid_addr(q, *addr))
			return true;
165

166
out:
167
		q->cached_cons++;
168 169
	}

170
	return false;
171 172
}

173 174 175
static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
					   struct xdp_desc *d,
					   struct xdp_umem *umem)
M
Magnus Karlsson 已提交
176
{
177
	if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
178
		if (!xskq_cons_is_valid_unaligned(q, d->addr, d->len, umem))
179 180 181 182 183 184 185 186 187 188
			return false;

		if (d->len > umem->chunk_size_nohr || d->options) {
			q->invalid_descs++;
			return false;
		}

		return true;
	}

189
	if (!xskq_cons_is_valid_addr(q, d->addr))
M
Magnus Karlsson 已提交
190 191
		return false;

192 193
	if (((d->addr + d->len) & q->chunk_mask) != (d->addr & q->chunk_mask) ||
	    d->options) {
M
Magnus Karlsson 已提交
194 195 196 197 198 199 200
		q->invalid_descs++;
		return false;
	}

	return true;
}

201 202 203
static inline bool xskq_cons_read_desc(struct xsk_queue *q,
				       struct xdp_desc *desc,
				       struct xdp_umem *umem)
M
Magnus Karlsson 已提交
204
{
205
	while (q->cached_cons != q->cached_prod) {
M
Magnus Karlsson 已提交
206
		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
207
		u32 idx = q->cached_cons & q->ring_mask;
M
Magnus Karlsson 已提交
208

209
		*desc = ring->desc[idx];
210 211
		if (xskq_cons_is_valid_desc(q, desc, umem))
			return true;
M
Magnus Karlsson 已提交
212

213
		q->cached_cons++;
M
Magnus Karlsson 已提交
214 215
	}

216
	return false;
M
Magnus Karlsson 已提交
217 218
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
/* Functions for consumers */

static inline void __xskq_cons_release(struct xsk_queue *q)
{
	smp_mb(); /* D, matches A */
	WRITE_ONCE(q->ring->consumer, q->cached_cons);
}

static inline void __xskq_cons_peek(struct xsk_queue *q)
{
	/* Refresh the local pointer */
	q->cached_prod = READ_ONCE(q->ring->producer);
	smp_rmb(); /* C, matches B */
}

static inline void xskq_cons_get_entries(struct xsk_queue *q)
{
	__xskq_cons_release(q);
	__xskq_cons_peek(q);
}

static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
{
	u32 entries = q->cached_prod - q->cached_cons;

	if (entries >= cnt)
		return true;

	__xskq_cons_peek(q);
	entries = q->cached_prod - q->cached_cons;

	return entries >= cnt;
}

static inline bool xskq_cons_peek_addr(struct xsk_queue *q, u64 *addr,
				       struct xdp_umem *umem)
{
	if (q->cached_prod == q->cached_cons)
		xskq_cons_get_entries(q);
	return xskq_cons_read_addr(q, addr, umem);
}

261 262 263
static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
				       struct xdp_desc *desc,
				       struct xdp_umem *umem)
M
Magnus Karlsson 已提交
264
{
265 266
	if (q->cached_prod == q->cached_cons)
		xskq_cons_get_entries(q);
267
	return xskq_cons_read_desc(q, desc, umem);
M
Magnus Karlsson 已提交
268 269
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static inline void xskq_cons_release(struct xsk_queue *q)
{
	/* To improve performance, only update local state here.
	 * Reflect this to global state when we get new entries
	 * from the ring in xskq_cons_get_entries().
	 */
	q->cached_cons++;
}

static inline bool xskq_cons_is_full(struct xsk_queue *q)
{
	/* No barriers needed since data is not accessed */
	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
		q->nentries;
}

/* Functions for producers */

static inline bool xskq_prod_is_full(struct xsk_queue *q)
{
	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);

	if (free_entries)
		return false;

	/* Refresh the local tail pointer */
	q->cached_cons = READ_ONCE(q->ring->consumer);
	free_entries = q->nentries - (q->cached_prod - q->cached_cons);

	return !free_entries;
}

static inline int xskq_prod_reserve(struct xsk_queue *q)
{
	if (xskq_prod_is_full(q))
		return -ENOSPC;

	/* A, matches D */
	q->cached_prod++;
	return 0;
}

static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
{
	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;

	if (xskq_prod_is_full(q))
		return -ENOSPC;

	/* A, matches D */
	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
	return 0;
}

324 325
static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
					 u64 addr, u32 len)
326 327
{
	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
328
	u32 idx;
329

330
	if (xskq_prod_is_full(q))
331 332
		return -ENOSPC;

333
	/* A, matches D */
334
	idx = q->cached_prod++ & q->ring_mask;
335
	ring->desc[idx].addr = addr;
336 337 338 339 340
	ring->desc[idx].len = len;

	return 0;
}

341
static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
M
Magnus Karlsson 已提交
342
{
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	smp_wmb(); /* B, matches C */

	WRITE_ONCE(q->ring->producer, idx);
}

static inline void xskq_prod_submit(struct xsk_queue *q)
{
	__xskq_prod_submit(q, q->cached_prod);
}

static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
{
	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
	u32 idx = q->ring->producer;

	ring->desc[idx++ & q->ring_mask] = addr;

	__xskq_prod_submit(q, idx);
}

static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
{
	__xskq_prod_submit(q, q->ring->producer + nb_entries);
M
Magnus Karlsson 已提交
366 367
}

368
static inline bool xskq_prod_is_empty(struct xsk_queue *q)
369
{
370 371
	/* No barriers needed since data is not accessed */
	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
372 373
}

374 375 376 377 378 379 380
/* For both producers and consumers */

static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
{
	return q ? q->invalid_descs : 0;
}

381
void xskq_set_umem(struct xsk_queue *q, u64 size, u64 chunk_mask);
382
struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
383
void xskq_destroy(struct xsk_queue *q_ops);
384

385 386 387
/* Executed by the core when the entire UMEM gets freed */
void xsk_reuseq_destroy(struct xdp_umem *umem);

388
#endif /* _LINUX_XSK_QUEUE_H */