writeback.c 27.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
K
Kent Overstreet 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 * background writeback - scan btree for dirty data and write it to the backing
 * device
 *
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
13
#include "writeback.h"
K
Kent Overstreet 已提交
14

15 16
#include <linux/delay.h>
#include <linux/kthread.h>
17
#include <linux/sched/clock.h>
K
Kent Overstreet 已提交
18 19
#include <trace/events/bcache.h>

20 21 22 23 24 25 26 27 28
static void update_gc_after_writeback(struct cache_set *c)
{
	if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
	    c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
		return;

	c->gc_after_writeback |= BCH_DO_AUTO_GC;
}

K
Kent Overstreet 已提交
29
/* Rate limiting */
30
static uint64_t __calc_target_rate(struct cached_dev *dc)
K
Kent Overstreet 已提交
31 32
{
	struct cache_set *c = dc->disk.c;
33 34 35 36 37

	/*
	 * This is the size of the cache, minus the amount used for
	 * flash-only devices
	 */
38
	uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39
				atomic_long_read(&c->flash_dev_dirty_sectors);
40 41 42 43 44 45 46 47

	/*
	 * Unfortunately there is no control of global dirty data.  If the
	 * user states that they want 10% dirty data in the cache, and has,
	 * e.g., 5 backing volumes of equal size, we try and ensure each
	 * backing volume uses about 2% of the cache for dirty data.
	 */
	uint32_t bdev_share =
C
Christoph Hellwig 已提交
48
		div64_u64(bdev_nr_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 50
				c->cached_dev_sectors);

K
Kent Overstreet 已提交
51 52 53
	uint64_t cache_dirty_target =
		div_u64(cache_sectors * dc->writeback_percent, 100);

54 55 56 57 58 59 60 61 62
	/* Ensure each backing dev gets at least one dirty share */
	if (bdev_share < 1)
		bdev_share = 1;

	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
}

static void __update_writeback_rate(struct cached_dev *dc)
{
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
	/*
	 * PI controller:
	 * Figures out the amount that should be written per second.
	 *
	 * First, the error (number of sectors that are dirty beyond our
	 * target) is calculated.  The error is accumulated (numerically
	 * integrated).
	 *
	 * Then, the proportional value and integral value are scaled
	 * based on configured values.  These are stored as inverses to
	 * avoid fixed point math and to make configuration easy-- e.g.
	 * the default value of 40 for writeback_rate_p_term_inverse
	 * attempts to write at a rate that would retire all the dirty
	 * blocks in 40 seconds.
	 *
	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
	 * of the error is accumulated in the integral term per second.
	 * This acts as a slow, long-term average that is not subject to
	 * variations in usage like the p term.
	 */
83
	int64_t target = __calc_target_rate(dc);
84
	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 86 87
	int64_t error = dirty - target;
	int64_t proportional_scaled =
		div_s64(error, dc->writeback_rate_p_term_inverse);
88 89
	int64_t integral_scaled;
	uint32_t new_rate;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	/*
	 * We need to consider the number of dirty buckets as well
	 * when calculating the proportional_scaled, Otherwise we might
	 * have an unreasonable small writeback rate at a highly fragmented situation
	 * when very few dirty sectors consumed a lot dirty buckets, the
	 * worst case is when dirty buckets reached cutoff_writeback_sync and
	 * dirty data is still not even reached to writeback percent, so the rate
	 * still will be at the minimum value, which will cause the write
	 * stuck at a non-writeback mode.
	 */
	struct cache_set *c = dc->disk.c;

	int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;

	if (dc->writeback_consider_fragment &&
		c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
		int64_t fragment =
			div_s64((dirty_buckets *  c->cache->sb.bucket_size), dirty);
		int64_t fp_term;
		int64_t fps;

		if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
113
			fp_term = (int64_t)dc->writeback_rate_fp_term_low *
114 115
			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
		} else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
116
			fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
117 118
			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
		} else {
119
			fp_term = (int64_t)dc->writeback_rate_fp_term_high *
120 121 122 123 124 125 126 127 128
			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
		}
		fps = div_s64(dirty, dirty_buckets) * fp_term;
		if (fragment > 3 && fps > proportional_scaled) {
			/* Only overrite the p when fragment > 3 */
			proportional_scaled = fps;
		}
	}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	if ((error < 0 && dc->writeback_rate_integral > 0) ||
	    (error > 0 && time_before64(local_clock(),
			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
		/*
		 * Only decrease the integral term if it's more than
		 * zero.  Only increase the integral term if the device
		 * is keeping up.  (Don't wind up the integral
		 * ineffectively in either case).
		 *
		 * It's necessary to scale this by
		 * writeback_rate_update_seconds to keep the integral
		 * term dimensioned properly.
		 */
		dc->writeback_rate_integral += error *
			dc->writeback_rate_update_seconds;
	}
K
Kent Overstreet 已提交
145

146 147
	integral_scaled = div_s64(dc->writeback_rate_integral,
			dc->writeback_rate_i_term_inverse);
K
Kent Overstreet 已提交
148

149 150
	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
			dc->writeback_rate_minimum, NSEC_PER_SEC);
151

152 153
	dc->writeback_rate_proportional = proportional_scaled;
	dc->writeback_rate_integral_scaled = integral_scaled;
154 155 156
	dc->writeback_rate_change = new_rate -
			atomic_long_read(&dc->writeback_rate.rate);
	atomic_long_set(&dc->writeback_rate.rate, new_rate);
K
Kent Overstreet 已提交
157 158 159
	dc->writeback_rate_target = target;
}

160 161 162
static bool set_at_max_writeback_rate(struct cache_set *c,
				       struct cached_dev *dc)
{
163 164 165 166
	/* Don't sst max writeback rate if it is disabled */
	if (!c->idle_max_writeback_rate_enabled)
		return false;

167 168 169
	/* Don't set max writeback rate if gc is running */
	if (!c->gc_mark_valid)
		return false;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	/*
	 * Idle_counter is increased everytime when update_writeback_rate() is
	 * called. If all backing devices attached to the same cache set have
	 * identical dc->writeback_rate_update_seconds values, it is about 6
	 * rounds of update_writeback_rate() on each backing device before
	 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
	 * to each dc->writeback_rate.rate.
	 * In order to avoid extra locking cost for counting exact dirty cached
	 * devices number, c->attached_dev_nr is used to calculate the idle
	 * throushold. It might be bigger if not all cached device are in write-
	 * back mode, but it still works well with limited extra rounds of
	 * update_writeback_rate().
	 */
	if (atomic_inc_return(&c->idle_counter) <
	    atomic_read(&c->attached_dev_nr) * 6)
		return false;

	if (atomic_read(&c->at_max_writeback_rate) != 1)
		atomic_set(&c->at_max_writeback_rate, 1);

	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);

	/* keep writeback_rate_target as existing value */
	dc->writeback_rate_proportional = 0;
	dc->writeback_rate_integral_scaled = 0;
	dc->writeback_rate_change = 0;

	/*
	 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
	 * new I/O arrives during before set_at_max_writeback_rate() returns.
	 * Then the writeback rate is set to 1, and its new value should be
	 * decided via __update_writeback_rate().
	 */
	if ((atomic_read(&c->idle_counter) <
	     atomic_read(&c->attached_dev_nr) * 6) ||
	    !atomic_read(&c->at_max_writeback_rate))
		return false;

	return true;
}

K
Kent Overstreet 已提交
211 212 213 214 215
static void update_writeback_rate(struct work_struct *work)
{
	struct cached_dev *dc = container_of(to_delayed_work(work),
					     struct cached_dev,
					     writeback_rate_update);
216
	struct cache_set *c = dc->disk.c;
K
Kent Overstreet 已提交
217

218 219 220 221 222 223
	/*
	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
	 * cancel_delayed_work_sync().
	 */
	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
224
	smp_mb__after_atomic();
225

226 227 228 229 230 231
	/*
	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
	 * check it here too.
	 */
	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
232 233
		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
234
		smp_mb__after_atomic();
235 236 237
		return;
	}

238 239 240 241 242 243 244 245 246 247
	if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
		/*
		 * If the whole cache set is idle, set_at_max_writeback_rate()
		 * will set writeback rate to a max number. Then it is
		 * unncessary to update writeback rate for an idle cache set
		 * in maximum writeback rate number(s).
		 */
		if (!set_at_max_writeback_rate(c, dc)) {
			down_read(&dc->writeback_lock);
			__update_writeback_rate(dc);
248
			update_gc_after_writeback(c);
249 250 251
			up_read(&dc->writeback_lock);
		}
	}
K
Kent Overstreet 已提交
252

253

254 255 256 257 258 259
	/*
	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
	 * check it here too.
	 */
	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
260
		schedule_delayed_work(&dc->writeback_rate_update,
261
			      dc->writeback_rate_update_seconds * HZ);
262 263 264 265 266 267 268 269
	}

	/*
	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
	 * cancel_delayed_work_sync().
	 */
	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
270
	smp_mb__after_atomic();
K
Kent Overstreet 已提交
271 272
}

273 274
static unsigned int writeback_delay(struct cached_dev *dc,
				    unsigned int sectors)
K
Kent Overstreet 已提交
275
{
276
	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
K
Kent Overstreet 已提交
277 278 279
	    !dc->writeback_percent)
		return 0;

280
	return bch_next_delay(&dc->writeback_rate, sectors);
K
Kent Overstreet 已提交
281 282
}

283 284 285
struct dirty_io {
	struct closure		cl;
	struct cached_dev	*dc;
286
	uint16_t		sequence;
287 288
	struct bio		bio;
};
K
Kent Overstreet 已提交
289

K
Kent Overstreet 已提交
290 291 292 293 294
static void dirty_init(struct keybuf_key *w)
{
	struct dirty_io *io = w->private;
	struct bio *bio = &io->bio;

295 296
	bio_init(bio, NULL, bio->bi_inline_vecs,
		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 0);
K
Kent Overstreet 已提交
297 298 299
	if (!io->dc->writeback_percent)
		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));

300
	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
K
Kent Overstreet 已提交
301
	bio->bi_private		= w;
302
	bch_bio_map(bio, NULL);
K
Kent Overstreet 已提交
303 304 305 306 307
}

static void dirty_io_destructor(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
308

K
Kent Overstreet 已提交
309 310 311 312 313 314 315 316 317
	kfree(io);
}

static void write_dirty_finish(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
	struct cached_dev *dc = io->dc;

318
	bio_free_pages(&io->bio);
K
Kent Overstreet 已提交
319 320 321

	/* This is kind of a dumb way of signalling errors. */
	if (KEY_DIRTY(&w->key)) {
322
		int ret;
323
		unsigned int i;
324 325 326
		struct keylist keys;

		bch_keylist_init(&keys);
K
Kent Overstreet 已提交
327

K
Kent Overstreet 已提交
328 329 330
		bkey_copy(keys.top, &w->key);
		SET_KEY_DIRTY(keys.top, false);
		bch_keylist_push(&keys);
K
Kent Overstreet 已提交
331 332 333 334

		for (i = 0; i < KEY_PTRS(&w->key); i++)
			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);

335
		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
K
Kent Overstreet 已提交
336

337
		if (ret)
K
Kent Overstreet 已提交
338 339
			trace_bcache_writeback_collision(&w->key);

340
		atomic_long_inc(ret
K
Kent Overstreet 已提交
341 342 343 344 345
				? &dc->disk.c->writeback_keys_failed
				: &dc->disk.c->writeback_keys_done);
	}

	bch_keybuf_del(&dc->writeback_keys, w);
346
	up(&dc->in_flight);
K
Kent Overstreet 已提交
347 348 349 350

	closure_return_with_destructor(cl, dirty_io_destructor);
}

351
static void dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
352 353 354 355
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

356
	if (bio->bi_status) {
K
Kent Overstreet 已提交
357
		SET_KEY_DIRTY(&w->key, false);
358 359
		bch_count_backing_io_errors(io->dc, bio);
	}
K
Kent Overstreet 已提交
360 361 362 363 364 365 366 367

	closure_put(&io->cl);
}

static void write_dirty(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct cached_dev *dc = io->dc;

	uint16_t next_sequence;

	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
		/* Not our turn to write; wait for a write to complete */
		closure_wait(&dc->writeback_ordering_wait, cl);

		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
			/*
			 * Edge case-- it happened in indeterminate order
			 * relative to when we were added to wait list..
			 */
			closure_wake_up(&dc->writeback_ordering_wait);
		}

		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
		return;
	}

	next_sequence = io->sequence + 1;
K
Kent Overstreet 已提交
389

390 391 392 393 394 395 396 397 398 399 400 401
	/*
	 * IO errors are signalled using the dirty bit on the key.
	 * If we failed to read, we should not attempt to write to the
	 * backing device.  Instead, immediately go to write_dirty_finish
	 * to clean up.
	 */
	if (KEY_DIRTY(&w->key)) {
		dirty_init(w);
		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
		bio_set_dev(&io->bio, io->dc->bdev);
		io->bio.bi_end_io	= dirty_endio;
K
Kent Overstreet 已提交
402

403
		/* I/O request sent to backing device */
404
		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
405
	}
K
Kent Overstreet 已提交
406

407 408 409
	atomic_set(&dc->writeback_sequence_next, next_sequence);
	closure_wake_up(&dc->writeback_ordering_wait);

410
	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
411 412
}

413
static void read_dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
414 415 416 417
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

418
	/* is_read = 1 */
C
Christoph Hellwig 已提交
419
	bch_count_io_errors(io->dc->disk.c->cache,
420 421
			    bio->bi_status, 1,
			    "reading dirty data from cache");
K
Kent Overstreet 已提交
422

423
	dirty_endio(bio);
K
Kent Overstreet 已提交
424 425 426 427 428 429
}

static void read_dirty_submit(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);

430
	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
K
Kent Overstreet 已提交
431

432
	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
433 434
}

435
static void read_dirty(struct cached_dev *dc)
K
Kent Overstreet 已提交
436
{
437
	unsigned int delay = 0;
438 439 440
	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
	size_t size;
	int nk, i;
K
Kent Overstreet 已提交
441
	struct dirty_io *io;
442
	struct closure cl;
443
	uint16_t sequence = 0;
444

445 446
	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
	atomic_set(&dc->writeback_sequence_next, sequence);
447
	closure_init_stack(&cl);
K
Kent Overstreet 已提交
448 449 450 451 452 453

	/*
	 * XXX: if we error, background writeback just spins. Should use some
	 * mempools.
	 */

454 455
	next = bch_keybuf_next(&dc->writeback_keys);

456 457 458
	while (!kthread_should_stop() &&
	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
	       next) {
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		size = 0;
		nk = 0;

		do {
			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));

			/*
			 * Don't combine too many operations, even if they
			 * are all small.
			 */
			if (nk >= MAX_WRITEBACKS_IN_PASS)
				break;

			/*
			 * If the current operation is very large, don't
			 * further combine operations.
			 */
			if (size >= MAX_WRITESIZE_IN_PASS)
				break;

			/*
			 * Operations are only eligible to be combined
			 * if they are contiguous.
			 *
			 * TODO: add a heuristic willing to fire a
			 * certain amount of non-contiguous IO per pass,
			 * so that we can benefit from backing device
			 * command queueing.
			 */
			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
						&START_KEY(&next->key)))
				break;

			size += KEY_SIZE(&next->key);
			keys[nk++] = next;
		} while ((next = bch_keybuf_next(&dc->writeback_keys)));

		/* Now we have gathered a set of 1..5 keys to write back. */
		for (i = 0; i < nk; i++) {
			w = keys[i];

500 501
			io = kzalloc(struct_size(io, bio.bi_inline_vecs,
						DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
502 503 504 505 506 507
				     GFP_KERNEL);
			if (!io)
				goto err;

			w->private	= io;
			io->dc		= dc;
508
			io->sequence    = sequence++;
509 510 511 512

			dirty_init(w);
			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
C
Christoph Hellwig 已提交
513
			bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
514 515 516 517 518 519 520 521 522
			io->bio.bi_end_io	= read_dirty_endio;

			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
				goto err_free;

			trace_bcache_writeback(&w->key);

			down(&dc->in_flight);

C
Coly Li 已提交
523 524
			/*
			 * We've acquired a semaphore for the maximum
525 526 527 528 529 530 531 532
			 * simultaneous number of writebacks; from here
			 * everything happens asynchronously.
			 */
			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
		}

		delay = writeback_delay(dc, size);

533 534 535
		while (!kthread_should_stop() &&
		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
		       delay) {
536 537 538
			schedule_timeout_interruptible(delay);
			delay = writeback_delay(dc, 0);
		}
K
Kent Overstreet 已提交
539 540 541 542 543 544 545 546 547
	}

	if (0) {
err_free:
		kfree(w->private);
err:
		bch_keybuf_del(&dc->writeback_keys, w);
	}

548 549 550 551
	/*
	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
	 * freed) before refilling again
	 */
552 553 554 555 556
	closure_sync(&cl);
}

/* Scan for dirty data */

557
void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
558 559 560
				  uint64_t offset, int nr_sectors)
{
	struct bcache_device *d = c->devices[inode];
561 562
	unsigned int stripe_offset, sectors_dirty;
	int stripe;
563 564 565 566

	if (!d)
		return;

567 568 569 570
	stripe = offset_to_stripe(d, offset);
	if (stripe < 0)
		return;

571 572 573
	if (UUID_FLASH_ONLY(&c->uuids[inode]))
		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);

574 575 576
	stripe_offset = offset & (d->stripe_size - 1);

	while (nr_sectors) {
577
		int s = min_t(unsigned int, abs(nr_sectors),
578 579 580 581 582
			      d->stripe_size - stripe_offset);

		if (nr_sectors < 0)
			s = -s;

583 584 585 586 587
		if (stripe >= d->nr_stripes)
			return;

		sectors_dirty = atomic_add_return(s,
					d->stripe_sectors_dirty + stripe);
588 589 590 591 592 593 594
		if (sectors_dirty == d->stripe_size) {
			if (!test_bit(stripe, d->full_dirty_stripes))
				set_bit(stripe, d->full_dirty_stripes);
		} else {
			if (test_bit(stripe, d->full_dirty_stripes))
				clear_bit(stripe, d->full_dirty_stripes);
		}
595

596 597 598 599 600 601 602 603
		nr_sectors -= s;
		stripe_offset = 0;
		stripe++;
	}
}

static bool dirty_pred(struct keybuf *buf, struct bkey *k)
{
604 605 606
	struct cached_dev *dc = container_of(buf,
					     struct cached_dev,
					     writeback_keys);
607 608 609

	BUG_ON(KEY_INODE(k) != dc->disk.id);

610 611 612
	return KEY_DIRTY(k);
}

613
static void refill_full_stripes(struct cached_dev *dc)
614
{
615
	struct keybuf *buf = &dc->writeback_keys;
616 617
	unsigned int start_stripe, next_stripe;
	int stripe;
618 619 620
	bool wrapped = false;

	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
621
	if (stripe < 0)
622
		stripe = 0;
623

624
	start_stripe = stripe;
625 626

	while (1) {
627 628
		stripe = find_next_bit(dc->disk.full_dirty_stripes,
				       dc->disk.nr_stripes, stripe);
629

630 631
		if (stripe == dc->disk.nr_stripes)
			goto next;
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
						 dc->disk.nr_stripes, stripe);

		buf->last_scanned = KEY(dc->disk.id,
					stripe * dc->disk.stripe_size, 0);

		bch_refill_keybuf(dc->disk.c, buf,
				  &KEY(dc->disk.id,
				       next_stripe * dc->disk.stripe_size, 0),
				  dirty_pred);

		if (array_freelist_empty(&buf->freelist))
			return;

		stripe = next_stripe;
next:
		if (wrapped && stripe > start_stripe)
			return;

		if (stripe == dc->disk.nr_stripes) {
			stripe = 0;
			wrapped = true;
		}
656 657 658
	}
}

659 660 661
/*
 * Returns true if we scanned the entire disk
 */
662 663 664
static bool refill_dirty(struct cached_dev *dc)
{
	struct keybuf *buf = &dc->writeback_keys;
665
	struct bkey start = KEY(dc->disk.id, 0, 0);
666
	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
667 668 669 670 671 672 673 674 675 676
	struct bkey start_pos;

	/*
	 * make sure keybuf pos is inside the range for this disk - at bringup
	 * we might not be attached yet so this disk's inode nr isn't
	 * initialized then
	 */
	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
	    bkey_cmp(&buf->last_scanned, &end) > 0)
		buf->last_scanned = start;
677 678 679 680 681 682

	if (dc->partial_stripes_expensive) {
		refill_full_stripes(dc);
		if (array_freelist_empty(&buf->freelist))
			return false;
	}
683

684
	start_pos = buf->last_scanned;
685
	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
686

687 688 689 690 691 692 693 694 695 696 697
	if (bkey_cmp(&buf->last_scanned, &end) < 0)
		return false;

	/*
	 * If we get to the end start scanning again from the beginning, and
	 * only scan up to where we initially started scanning from:
	 */
	buf->last_scanned = start;
	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);

	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
698 699 700 701 702
}

static int bch_writeback_thread(void *arg)
{
	struct cached_dev *dc = arg;
703
	struct cache_set *c = dc->disk.c;
704 705
	bool searched_full_index;

706 707
	bch_ratelimit_reset(&dc->writeback_rate);

708 709
	while (!kthread_should_stop() &&
	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
710
		down_write(&dc->writeback_lock);
711
		set_current_state(TASK_INTERRUPTIBLE);
712 713 714 715 716 717 718 719 720
		/*
		 * If the bache device is detaching, skip here and continue
		 * to perform writeback. Otherwise, if no dirty data on cache,
		 * or there is dirty data on cache but writeback is disabled,
		 * the writeback thread should sleep here and wait for others
		 * to wake up it.
		 */
		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
721 722
			up_write(&dc->writeback_lock);

723 724
			if (kthread_should_stop() ||
			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
725
				set_current_state(TASK_RUNNING);
726
				break;
727
			}
728 729 730 731

			schedule();
			continue;
		}
732
		set_current_state(TASK_RUNNING);
733 734 735 736 737 738 739 740

		searched_full_index = refill_dirty(dc);

		if (searched_full_index &&
		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
			atomic_set(&dc->has_dirty, 0);
			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
			bch_write_bdev_super(dc, NULL);
741 742 743 744 745 746
			/*
			 * If bcache device is detaching via sysfs interface,
			 * writeback thread should stop after there is no dirty
			 * data on cache. BCACHE_DEV_DETACHING flag is set in
			 * bch_cached_dev_detach().
			 */
747
			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
748 749 750 751 752 753 754 755 756
				struct closure cl;

				closure_init_stack(&cl);
				memset(&dc->sb.set_uuid, 0, 16);
				SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);

				bch_write_bdev_super(dc, &cl);
				closure_sync(&cl);

757
				up_write(&dc->writeback_lock);
758
				break;
759
			}
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

			/*
			 * When dirty data rate is high (e.g. 50%+), there might
			 * be heavy buckets fragmentation after writeback
			 * finished, which hurts following write performance.
			 * If users really care about write performance they
			 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
			 * BCH_DO_AUTO_GC is set, garbage collection thread
			 * will be wake up here. After moving gc, the shrunk
			 * btree and discarded free buckets SSD space may be
			 * helpful for following write requests.
			 */
			if (c->gc_after_writeback ==
			    (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
				c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
				force_wake_up_gc(c);
			}
777 778 779 780 781 782 783
		}

		up_write(&dc->writeback_lock);

		read_dirty(dc);

		if (searched_full_index) {
784
			unsigned int delay = dc->writeback_delay * HZ;
785 786 787

			while (delay &&
			       !kthread_should_stop() &&
788
			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
789
			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
790
				delay = schedule_timeout_interruptible(delay);
791 792

			bch_ratelimit_reset(&dc->writeback_rate);
793 794 795
		}
	}

796 797 798 799
	if (dc->writeback_write_wq) {
		flush_workqueue(dc->writeback_write_wq);
		destroy_workqueue(dc->writeback_write_wq);
	}
800
	cached_dev_put(dc);
801
	wait_for_kthread_stop();
802

803
	return 0;
K
Kent Overstreet 已提交
804 805
}

806
/* Init */
807 808
#define INIT_KEYS_EACH_TIME	500000
#define INIT_KEYS_SLEEP_MS	100
809

K
Kent Overstreet 已提交
810 811
struct sectors_dirty_init {
	struct btree_op	op;
812
	unsigned int	inode;
813 814
	size_t		count;
	struct bkey	start;
K
Kent Overstreet 已提交
815 816 817
};

static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
818
				 struct bkey *k)
819
{
K
Kent Overstreet 已提交
820 821
	struct sectors_dirty_init *op = container_of(_op,
						struct sectors_dirty_init, op);
822 823
	if (KEY_INODE(k) > op->inode)
		return MAP_DONE;
824

825 826 827 828
	if (KEY_DIRTY(k))
		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
					     KEY_START(k), KEY_SIZE(k));

829 830 831 832 833 834 835
	op->count++;
	if (atomic_read(&b->c->search_inflight) &&
	    !(op->count % INIT_KEYS_EACH_TIME)) {
		bkey_copy_key(&op->start, k);
		return -EAGAIN;
	}

836
	return MAP_CONTINUE;
837 838
}

839 840 841
static int bch_root_node_dirty_init(struct cache_set *c,
				     struct bcache_device *d,
				     struct bkey *k)
842
{
K
Kent Overstreet 已提交
843
	struct sectors_dirty_init op;
844
	int ret;
845

K
Kent Overstreet 已提交
846
	bch_btree_op_init(&op.op, -1);
847
	op.inode = d->id;
848 849 850 851
	op.count = 0;
	op.start = KEY(op.inode, 0, 0);

	do {
852 853 854 855 856 857 858
		ret = bcache_btree(map_keys_recurse,
				   k,
				   c->root,
				   &op.op,
				   &op.start,
				   sectors_dirty_init_fn,
				   0);
859 860 861 862
		if (ret == -EAGAIN)
			schedule_timeout_interruptible(
				msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
		else if (ret < 0) {
863
			pr_warn("sectors dirty init failed, ret=%d!\n", ret);
864 865 866
			break;
		}
	} while (ret == -EAGAIN);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

	return ret;
}

static int bch_dirty_init_thread(void *arg)
{
	struct dirty_init_thrd_info *info = arg;
	struct bch_dirty_init_state *state = info->state;
	struct cache_set *c = state->c;
	struct btree_iter iter;
	struct bkey *k, *p;
	int cur_idx, prev_idx, skip_nr;

	k = p = NULL;
	cur_idx = prev_idx = 0;

	bch_btree_iter_init(&c->root->keys, &iter, NULL);
	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
	BUG_ON(!k);

	p = k;

	while (k) {
		spin_lock(&state->idx_lock);
		cur_idx = state->key_idx;
		state->key_idx++;
		spin_unlock(&state->idx_lock);

		skip_nr = cur_idx - prev_idx;

		while (skip_nr) {
			k = bch_btree_iter_next_filter(&iter,
						       &c->root->keys,
						       bch_ptr_bad);
			if (k)
				p = k;
			else {
				atomic_set(&state->enough, 1);
				/* Update state->enough earlier */
906
				smp_mb__after_atomic();
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
				goto out;
			}
			skip_nr--;
			cond_resched();
		}

		if (p) {
			if (bch_root_node_dirty_init(c, state->d, p) < 0)
				goto out;
		}

		p = NULL;
		prev_idx = cur_idx;
		cond_resched();
	}

out:
	/* In order to wake up state->wait in time */
925
	smp_mb__before_atomic();
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	if (atomic_dec_and_test(&state->started))
		wake_up(&state->wait);

	return 0;
}

static int bch_btre_dirty_init_thread_nr(void)
{
	int n = num_online_cpus()/2;

	if (n == 0)
		n = 1;
	else if (n > BCH_DIRTY_INIT_THRD_MAX)
		n = BCH_DIRTY_INIT_THRD_MAX;

	return n;
}

void bch_sectors_dirty_init(struct bcache_device *d)
{
	int i;
	struct bkey *k = NULL;
	struct btree_iter iter;
	struct sectors_dirty_init op;
	struct cache_set *c = d->c;
	struct bch_dirty_init_state *state;
	char name[32];

	/* Just count root keys if no leaf node */
	if (c->root->level == 0) {
		bch_btree_op_init(&op.op, -1);
		op.inode = d->id;
		op.count = 0;
		op.start = KEY(op.inode, 0, 0);

		for_each_key_filter(&c->root->keys,
				    k, &iter, bch_ptr_invalid)
			sectors_dirty_init_fn(&op.op, c->root, k);
		return;
	}

	state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL);
	if (!state) {
969
		pr_warn("sectors dirty init failed: cannot allocate memory\n");
970 971 972 973 974 975 976 977 978 979 980 981 982 983
		return;
	}

	state->c = c;
	state->d = d;
	state->total_threads = bch_btre_dirty_init_thread_nr();
	state->key_idx = 0;
	spin_lock_init(&state->idx_lock);
	atomic_set(&state->started, 0);
	atomic_set(&state->enough, 0);
	init_waitqueue_head(&state->wait);

	for (i = 0; i < state->total_threads; i++) {
		/* Fetch latest state->enough earlier */
984
		smp_mb__before_atomic();
985 986 987 988 989 990 991 992 993 994 995 996
		if (atomic_read(&state->enough))
			break;

		state->infos[i].state = state;
		atomic_inc(&state->started);
		snprintf(name, sizeof(name), "bch_dirty_init[%d]", i);

		state->infos[i].thread =
			kthread_run(bch_dirty_init_thread,
				    &state->infos[i],
				    name);
		if (IS_ERR(state->infos[i].thread)) {
997
			pr_err("fails to run thread bch_dirty_init[%d]\n", i);
998 999 1000 1001 1002 1003
			for (--i; i >= 0; i--)
				kthread_stop(state->infos[i].thread);
			goto out;
		}
	}

1004 1005 1006
	/*
	 * Must wait for all threads to stop.
	 */
1007
	wait_event_interruptible(state->wait,
1008
		 atomic_read(&state->started) == 0);
1009 1010 1011

out:
	kfree(state);
1012 1013
}

1014
void bch_cached_dev_writeback_init(struct cached_dev *dc)
K
Kent Overstreet 已提交
1015
{
1016
	sema_init(&dc->in_flight, 64);
K
Kent Overstreet 已提交
1017
	init_rwsem(&dc->writeback_lock);
K
Kent Overstreet 已提交
1018
	bch_keybuf_init(&dc->writeback_keys);
K
Kent Overstreet 已提交
1019 1020

	dc->writeback_metadata		= true;
1021
	dc->writeback_running		= false;
1022
	dc->writeback_consider_fragment = true;
K
Kent Overstreet 已提交
1023 1024
	dc->writeback_percent		= 10;
	dc->writeback_delay		= 30;
1025
	atomic_long_set(&dc->writeback_rate.rate, 1024);
1026
	dc->writeback_rate_minimum	= 8;
K
Kent Overstreet 已提交
1027

1028
	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1029
	dc->writeback_rate_p_term_inverse = 40;
1030 1031 1032
	dc->writeback_rate_fp_term_low = 1;
	dc->writeback_rate_fp_term_mid = 10;
	dc->writeback_rate_fp_term_high = 1000;
1033
	dc->writeback_rate_i_term_inverse = 10000;
K
Kent Overstreet 已提交
1034

1035
	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1036 1037 1038 1039 1040
	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
}

int bch_cached_dev_writeback_start(struct cached_dev *dc)
{
1041 1042 1043 1044 1045
	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
						WQ_MEM_RECLAIM, 0);
	if (!dc->writeback_write_wq)
		return -ENOMEM;

1046
	cached_dev_get(dc);
1047 1048
	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
					      "bcache_writeback");
1049 1050
	if (IS_ERR(dc->writeback_thread)) {
		cached_dev_put(dc);
1051
		destroy_workqueue(dc->writeback_write_wq);
1052
		return PTR_ERR(dc->writeback_thread);
1053
	}
1054
	dc->writeback_running = true;
1055

1056
	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
K
Kent Overstreet 已提交
1057 1058 1059
	schedule_delayed_work(&dc->writeback_rate_update,
			      dc->writeback_rate_update_seconds * HZ);

1060 1061
	bch_writeback_queue(dc);

K
Kent Overstreet 已提交
1062 1063
	return 0;
}