writeback.c 22.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
K
Kent Overstreet 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 * background writeback - scan btree for dirty data and write it to the backing
 * device
 *
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
13
#include "writeback.h"
K
Kent Overstreet 已提交
14

15 16
#include <linux/delay.h>
#include <linux/kthread.h>
17
#include <linux/sched/clock.h>
K
Kent Overstreet 已提交
18 19
#include <trace/events/bcache.h>

20 21 22 23 24 25 26 27 28
static void update_gc_after_writeback(struct cache_set *c)
{
	if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
	    c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
		return;

	c->gc_after_writeback |= BCH_DO_AUTO_GC;
}

K
Kent Overstreet 已提交
29
/* Rate limiting */
30
static uint64_t __calc_target_rate(struct cached_dev *dc)
K
Kent Overstreet 已提交
31 32
{
	struct cache_set *c = dc->disk.c;
33 34 35 36 37

	/*
	 * This is the size of the cache, minus the amount used for
	 * flash-only devices
	 */
38
	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
39
				atomic_long_read(&c->flash_dev_dirty_sectors);
40 41 42 43 44 45 46 47 48 49 50

	/*
	 * Unfortunately there is no control of global dirty data.  If the
	 * user states that they want 10% dirty data in the cache, and has,
	 * e.g., 5 backing volumes of equal size, we try and ensure each
	 * backing volume uses about 2% of the cache for dirty data.
	 */
	uint32_t bdev_share =
		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
				c->cached_dev_sectors);

K
Kent Overstreet 已提交
51 52 53
	uint64_t cache_dirty_target =
		div_u64(cache_sectors * dc->writeback_percent, 100);

54 55 56 57 58 59 60 61 62
	/* Ensure each backing dev gets at least one dirty share */
	if (bdev_share < 1)
		bdev_share = 1;

	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
}

static void __update_writeback_rate(struct cached_dev *dc)
{
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
	/*
	 * PI controller:
	 * Figures out the amount that should be written per second.
	 *
	 * First, the error (number of sectors that are dirty beyond our
	 * target) is calculated.  The error is accumulated (numerically
	 * integrated).
	 *
	 * Then, the proportional value and integral value are scaled
	 * based on configured values.  These are stored as inverses to
	 * avoid fixed point math and to make configuration easy-- e.g.
	 * the default value of 40 for writeback_rate_p_term_inverse
	 * attempts to write at a rate that would retire all the dirty
	 * blocks in 40 seconds.
	 *
	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
	 * of the error is accumulated in the integral term per second.
	 * This acts as a slow, long-term average that is not subject to
	 * variations in usage like the p term.
	 */
83
	int64_t target = __calc_target_rate(dc);
84
	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 86 87
	int64_t error = dirty - target;
	int64_t proportional_scaled =
		div_s64(error, dc->writeback_rate_p_term_inverse);
88 89
	int64_t integral_scaled;
	uint32_t new_rate;
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

	if ((error < 0 && dc->writeback_rate_integral > 0) ||
	    (error > 0 && time_before64(local_clock(),
			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
		/*
		 * Only decrease the integral term if it's more than
		 * zero.  Only increase the integral term if the device
		 * is keeping up.  (Don't wind up the integral
		 * ineffectively in either case).
		 *
		 * It's necessary to scale this by
		 * writeback_rate_update_seconds to keep the integral
		 * term dimensioned properly.
		 */
		dc->writeback_rate_integral += error *
			dc->writeback_rate_update_seconds;
	}
K
Kent Overstreet 已提交
107

108 109
	integral_scaled = div_s64(dc->writeback_rate_integral,
			dc->writeback_rate_i_term_inverse);
K
Kent Overstreet 已提交
110

111 112
	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
			dc->writeback_rate_minimum, NSEC_PER_SEC);
113

114 115
	dc->writeback_rate_proportional = proportional_scaled;
	dc->writeback_rate_integral_scaled = integral_scaled;
116 117 118
	dc->writeback_rate_change = new_rate -
			atomic_long_read(&dc->writeback_rate.rate);
	atomic_long_set(&dc->writeback_rate.rate, new_rate);
K
Kent Overstreet 已提交
119 120 121
	dc->writeback_rate_target = target;
}

122 123 124
static bool set_at_max_writeback_rate(struct cache_set *c,
				       struct cached_dev *dc)
{
125 126 127
	/* Don't set max writeback rate if gc is running */
	if (!c->gc_mark_valid)
		return false;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
	/*
	 * Idle_counter is increased everytime when update_writeback_rate() is
	 * called. If all backing devices attached to the same cache set have
	 * identical dc->writeback_rate_update_seconds values, it is about 6
	 * rounds of update_writeback_rate() on each backing device before
	 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
	 * to each dc->writeback_rate.rate.
	 * In order to avoid extra locking cost for counting exact dirty cached
	 * devices number, c->attached_dev_nr is used to calculate the idle
	 * throushold. It might be bigger if not all cached device are in write-
	 * back mode, but it still works well with limited extra rounds of
	 * update_writeback_rate().
	 */
	if (atomic_inc_return(&c->idle_counter) <
	    atomic_read(&c->attached_dev_nr) * 6)
		return false;

	if (atomic_read(&c->at_max_writeback_rate) != 1)
		atomic_set(&c->at_max_writeback_rate, 1);

	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);

	/* keep writeback_rate_target as existing value */
	dc->writeback_rate_proportional = 0;
	dc->writeback_rate_integral_scaled = 0;
	dc->writeback_rate_change = 0;

	/*
	 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
	 * new I/O arrives during before set_at_max_writeback_rate() returns.
	 * Then the writeback rate is set to 1, and its new value should be
	 * decided via __update_writeback_rate().
	 */
	if ((atomic_read(&c->idle_counter) <
	     atomic_read(&c->attached_dev_nr) * 6) ||
	    !atomic_read(&c->at_max_writeback_rate))
		return false;

	return true;
}

K
Kent Overstreet 已提交
169 170 171 172 173
static void update_writeback_rate(struct work_struct *work)
{
	struct cached_dev *dc = container_of(to_delayed_work(work),
					     struct cached_dev,
					     writeback_rate_update);
174
	struct cache_set *c = dc->disk.c;
K
Kent Overstreet 已提交
175

176 177 178 179 180 181 182 183
	/*
	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
	 * cancel_delayed_work_sync().
	 */
	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
	smp_mb();

184 185 186 187 188 189
	/*
	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
	 * check it here too.
	 */
	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
190 191 192 193 194 195
		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
		smp_mb();
		return;
	}

196 197 198 199 200 201 202 203 204 205
	if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
		/*
		 * If the whole cache set is idle, set_at_max_writeback_rate()
		 * will set writeback rate to a max number. Then it is
		 * unncessary to update writeback rate for an idle cache set
		 * in maximum writeback rate number(s).
		 */
		if (!set_at_max_writeback_rate(c, dc)) {
			down_read(&dc->writeback_lock);
			__update_writeback_rate(dc);
206
			update_gc_after_writeback(c);
207 208 209
			up_read(&dc->writeback_lock);
		}
	}
K
Kent Overstreet 已提交
210

211

212 213 214 215 216 217
	/*
	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
	 * check it here too.
	 */
	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
218
		schedule_delayed_work(&dc->writeback_rate_update,
219
			      dc->writeback_rate_update_seconds * HZ);
220 221 222 223 224 225 226 227 228
	}

	/*
	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
	 * cancel_delayed_work_sync().
	 */
	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
	smp_mb();
K
Kent Overstreet 已提交
229 230
}

231 232
static unsigned int writeback_delay(struct cached_dev *dc,
				    unsigned int sectors)
K
Kent Overstreet 已提交
233
{
234
	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
K
Kent Overstreet 已提交
235 236 237
	    !dc->writeback_percent)
		return 0;

238
	return bch_next_delay(&dc->writeback_rate, sectors);
K
Kent Overstreet 已提交
239 240
}

241 242 243
struct dirty_io {
	struct closure		cl;
	struct cached_dev	*dc;
244
	uint16_t		sequence;
245 246
	struct bio		bio;
};
K
Kent Overstreet 已提交
247

K
Kent Overstreet 已提交
248 249 250 251 252
static void dirty_init(struct keybuf_key *w)
{
	struct dirty_io *io = w->private;
	struct bio *bio = &io->bio;

253 254
	bio_init(bio, bio->bi_inline_vecs,
		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
K
Kent Overstreet 已提交
255 256 257
	if (!io->dc->writeback_percent)
		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));

258
	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
K
Kent Overstreet 已提交
259
	bio->bi_private		= w;
260
	bch_bio_map(bio, NULL);
K
Kent Overstreet 已提交
261 262 263 264 265
}

static void dirty_io_destructor(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
266

K
Kent Overstreet 已提交
267 268 269 270 271 272 273 274 275
	kfree(io);
}

static void write_dirty_finish(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
	struct cached_dev *dc = io->dc;

276
	bio_free_pages(&io->bio);
K
Kent Overstreet 已提交
277 278 279

	/* This is kind of a dumb way of signalling errors. */
	if (KEY_DIRTY(&w->key)) {
280
		int ret;
281
		unsigned int i;
282 283 284
		struct keylist keys;

		bch_keylist_init(&keys);
K
Kent Overstreet 已提交
285

K
Kent Overstreet 已提交
286 287 288
		bkey_copy(keys.top, &w->key);
		SET_KEY_DIRTY(keys.top, false);
		bch_keylist_push(&keys);
K
Kent Overstreet 已提交
289 290 291 292

		for (i = 0; i < KEY_PTRS(&w->key); i++)
			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);

293
		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
K
Kent Overstreet 已提交
294

295
		if (ret)
K
Kent Overstreet 已提交
296 297
			trace_bcache_writeback_collision(&w->key);

298
		atomic_long_inc(ret
K
Kent Overstreet 已提交
299 300 301 302 303
				? &dc->disk.c->writeback_keys_failed
				: &dc->disk.c->writeback_keys_done);
	}

	bch_keybuf_del(&dc->writeback_keys, w);
304
	up(&dc->in_flight);
K
Kent Overstreet 已提交
305 306 307 308

	closure_return_with_destructor(cl, dirty_io_destructor);
}

309
static void dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
310 311 312 313
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

314
	if (bio->bi_status) {
K
Kent Overstreet 已提交
315
		SET_KEY_DIRTY(&w->key, false);
316 317
		bch_count_backing_io_errors(io->dc, bio);
	}
K
Kent Overstreet 已提交
318 319 320 321 322 323 324 325

	closure_put(&io->cl);
}

static void write_dirty(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
	struct keybuf_key *w = io->bio.bi_private;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	struct cached_dev *dc = io->dc;

	uint16_t next_sequence;

	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
		/* Not our turn to write; wait for a write to complete */
		closure_wait(&dc->writeback_ordering_wait, cl);

		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
			/*
			 * Edge case-- it happened in indeterminate order
			 * relative to when we were added to wait list..
			 */
			closure_wake_up(&dc->writeback_ordering_wait);
		}

		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
		return;
	}

	next_sequence = io->sequence + 1;
K
Kent Overstreet 已提交
347

348 349 350 351 352 353 354 355 356 357 358 359
	/*
	 * IO errors are signalled using the dirty bit on the key.
	 * If we failed to read, we should not attempt to write to the
	 * backing device.  Instead, immediately go to write_dirty_finish
	 * to clean up.
	 */
	if (KEY_DIRTY(&w->key)) {
		dirty_init(w);
		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
		bio_set_dev(&io->bio, io->dc->bdev);
		io->bio.bi_end_io	= dirty_endio;
K
Kent Overstreet 已提交
360

361
		/* I/O request sent to backing device */
362
		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
363
	}
K
Kent Overstreet 已提交
364

365 366 367
	atomic_set(&dc->writeback_sequence_next, next_sequence);
	closure_wake_up(&dc->writeback_ordering_wait);

368
	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
369 370
}

371
static void read_dirty_endio(struct bio *bio)
K
Kent Overstreet 已提交
372 373 374 375
{
	struct keybuf_key *w = bio->bi_private;
	struct dirty_io *io = w->private;

376
	/* is_read = 1 */
K
Kent Overstreet 已提交
377
	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
378 379
			    bio->bi_status, 1,
			    "reading dirty data from cache");
K
Kent Overstreet 已提交
380

381
	dirty_endio(bio);
K
Kent Overstreet 已提交
382 383 384 385 386 387
}

static void read_dirty_submit(struct closure *cl)
{
	struct dirty_io *io = container_of(cl, struct dirty_io, cl);

388
	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
K
Kent Overstreet 已提交
389

390
	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
K
Kent Overstreet 已提交
391 392
}

393
static void read_dirty(struct cached_dev *dc)
K
Kent Overstreet 已提交
394
{
395
	unsigned int delay = 0;
396 397 398
	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
	size_t size;
	int nk, i;
K
Kent Overstreet 已提交
399
	struct dirty_io *io;
400
	struct closure cl;
401
	uint16_t sequence = 0;
402

403 404
	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
	atomic_set(&dc->writeback_sequence_next, sequence);
405
	closure_init_stack(&cl);
K
Kent Overstreet 已提交
406 407 408 409 410 411

	/*
	 * XXX: if we error, background writeback just spins. Should use some
	 * mempools.
	 */

412 413
	next = bch_keybuf_next(&dc->writeback_keys);

414 415 416
	while (!kthread_should_stop() &&
	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
	       next) {
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
		size = 0;
		nk = 0;

		do {
			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));

			/*
			 * Don't combine too many operations, even if they
			 * are all small.
			 */
			if (nk >= MAX_WRITEBACKS_IN_PASS)
				break;

			/*
			 * If the current operation is very large, don't
			 * further combine operations.
			 */
			if (size >= MAX_WRITESIZE_IN_PASS)
				break;

			/*
			 * Operations are only eligible to be combined
			 * if they are contiguous.
			 *
			 * TODO: add a heuristic willing to fire a
			 * certain amount of non-contiguous IO per pass,
			 * so that we can benefit from backing device
			 * command queueing.
			 */
			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
						&START_KEY(&next->key)))
				break;

			size += KEY_SIZE(&next->key);
			keys[nk++] = next;
		} while ((next = bch_keybuf_next(&dc->writeback_keys)));

		/* Now we have gathered a set of 1..5 keys to write back. */
		for (i = 0; i < nk; i++) {
			w = keys[i];

			io = kzalloc(sizeof(struct dirty_io) +
				     sizeof(struct bio_vec) *
460 461
				     DIV_ROUND_UP(KEY_SIZE(&w->key),
						  PAGE_SECTORS),
462 463 464 465 466 467
				     GFP_KERNEL);
			if (!io)
				goto err;

			w->private	= io;
			io->dc		= dc;
468
			io->sequence    = sequence++;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

			dirty_init(w);
			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
			bio_set_dev(&io->bio,
				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
			io->bio.bi_end_io	= read_dirty_endio;

			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
				goto err_free;

			trace_bcache_writeback(&w->key);

			down(&dc->in_flight);

C
Coly Li 已提交
484 485
			/*
			 * We've acquired a semaphore for the maximum
486 487 488 489 490 491 492 493
			 * simultaneous number of writebacks; from here
			 * everything happens asynchronously.
			 */
			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
		}

		delay = writeback_delay(dc, size);

494 495 496
		while (!kthread_should_stop() &&
		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
		       delay) {
497 498 499
			schedule_timeout_interruptible(delay);
			delay = writeback_delay(dc, 0);
		}
K
Kent Overstreet 已提交
500 501 502 503 504 505 506 507 508
	}

	if (0) {
err_free:
		kfree(w->private);
err:
		bch_keybuf_del(&dc->writeback_keys, w);
	}

509 510 511 512
	/*
	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
	 * freed) before refilling again
	 */
513 514 515 516 517
	closure_sync(&cl);
}

/* Scan for dirty data */

518
void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
519 520 521
				  uint64_t offset, int nr_sectors)
{
	struct bcache_device *d = c->devices[inode];
522
	unsigned int stripe_offset, stripe, sectors_dirty;
523 524 525 526

	if (!d)
		return;

527 528 529
	if (UUID_FLASH_ONLY(&c->uuids[inode]))
		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);

530
	stripe = offset_to_stripe(d, offset);
531 532 533
	stripe_offset = offset & (d->stripe_size - 1);

	while (nr_sectors) {
534
		int s = min_t(unsigned int, abs(nr_sectors),
535 536 537 538 539
			      d->stripe_size - stripe_offset);

		if (nr_sectors < 0)
			s = -s;

540 541 542 543 544 545 546 547 548 549
		if (stripe >= d->nr_stripes)
			return;

		sectors_dirty = atomic_add_return(s,
					d->stripe_sectors_dirty + stripe);
		if (sectors_dirty == d->stripe_size)
			set_bit(stripe, d->full_dirty_stripes);
		else
			clear_bit(stripe, d->full_dirty_stripes);

550 551 552 553 554 555 556 557
		nr_sectors -= s;
		stripe_offset = 0;
		stripe++;
	}
}

static bool dirty_pred(struct keybuf *buf, struct bkey *k)
{
558 559 560
	struct cached_dev *dc = container_of(buf,
					     struct cached_dev,
					     writeback_keys);
561 562 563

	BUG_ON(KEY_INODE(k) != dc->disk.id);

564 565 566
	return KEY_DIRTY(k);
}

567
static void refill_full_stripes(struct cached_dev *dc)
568
{
569
	struct keybuf *buf = &dc->writeback_keys;
570
	unsigned int start_stripe, stripe, next_stripe;
571 572 573
	bool wrapped = false;

	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
574

575 576
	if (stripe >= dc->disk.nr_stripes)
		stripe = 0;
577

578
	start_stripe = stripe;
579 580

	while (1) {
581 582
		stripe = find_next_bit(dc->disk.full_dirty_stripes,
				       dc->disk.nr_stripes, stripe);
583

584 585
		if (stripe == dc->disk.nr_stripes)
			goto next;
586

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
						 dc->disk.nr_stripes, stripe);

		buf->last_scanned = KEY(dc->disk.id,
					stripe * dc->disk.stripe_size, 0);

		bch_refill_keybuf(dc->disk.c, buf,
				  &KEY(dc->disk.id,
				       next_stripe * dc->disk.stripe_size, 0),
				  dirty_pred);

		if (array_freelist_empty(&buf->freelist))
			return;

		stripe = next_stripe;
next:
		if (wrapped && stripe > start_stripe)
			return;

		if (stripe == dc->disk.nr_stripes) {
			stripe = 0;
			wrapped = true;
		}
610 611 612
	}
}

613 614 615
/*
 * Returns true if we scanned the entire disk
 */
616 617 618
static bool refill_dirty(struct cached_dev *dc)
{
	struct keybuf *buf = &dc->writeback_keys;
619
	struct bkey start = KEY(dc->disk.id, 0, 0);
620
	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
621 622 623 624 625 626 627 628 629 630
	struct bkey start_pos;

	/*
	 * make sure keybuf pos is inside the range for this disk - at bringup
	 * we might not be attached yet so this disk's inode nr isn't
	 * initialized then
	 */
	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
	    bkey_cmp(&buf->last_scanned, &end) > 0)
		buf->last_scanned = start;
631 632 633 634 635 636

	if (dc->partial_stripes_expensive) {
		refill_full_stripes(dc);
		if (array_freelist_empty(&buf->freelist))
			return false;
	}
637

638
	start_pos = buf->last_scanned;
639
	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
640

641 642 643 644 645 646 647 648 649 650 651
	if (bkey_cmp(&buf->last_scanned, &end) < 0)
		return false;

	/*
	 * If we get to the end start scanning again from the beginning, and
	 * only scan up to where we initially started scanning from:
	 */
	buf->last_scanned = start;
	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);

	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
652 653 654 655 656
}

static int bch_writeback_thread(void *arg)
{
	struct cached_dev *dc = arg;
657
	struct cache_set *c = dc->disk.c;
658 659
	bool searched_full_index;

660 661
	bch_ratelimit_reset(&dc->writeback_rate);

662 663
	while (!kthread_should_stop() &&
	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
664
		down_write(&dc->writeback_lock);
665
		set_current_state(TASK_INTERRUPTIBLE);
666 667 668 669 670 671 672 673 674
		/*
		 * If the bache device is detaching, skip here and continue
		 * to perform writeback. Otherwise, if no dirty data on cache,
		 * or there is dirty data on cache but writeback is disabled,
		 * the writeback thread should sleep here and wait for others
		 * to wake up it.
		 */
		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
675 676
			up_write(&dc->writeback_lock);

677 678
			if (kthread_should_stop() ||
			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
679
				set_current_state(TASK_RUNNING);
680
				break;
681
			}
682 683 684 685

			schedule();
			continue;
		}
686
		set_current_state(TASK_RUNNING);
687 688 689 690 691 692 693 694

		searched_full_index = refill_dirty(dc);

		if (searched_full_index &&
		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
			atomic_set(&dc->has_dirty, 0);
			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
			bch_write_bdev_super(dc, NULL);
695 696 697 698 699 700
			/*
			 * If bcache device is detaching via sysfs interface,
			 * writeback thread should stop after there is no dirty
			 * data on cache. BCACHE_DEV_DETACHING flag is set in
			 * bch_cached_dev_detach().
			 */
701 702
			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
				up_write(&dc->writeback_lock);
703
				break;
704
			}
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

			/*
			 * When dirty data rate is high (e.g. 50%+), there might
			 * be heavy buckets fragmentation after writeback
			 * finished, which hurts following write performance.
			 * If users really care about write performance they
			 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
			 * BCH_DO_AUTO_GC is set, garbage collection thread
			 * will be wake up here. After moving gc, the shrunk
			 * btree and discarded free buckets SSD space may be
			 * helpful for following write requests.
			 */
			if (c->gc_after_writeback ==
			    (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
				c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
				force_wake_up_gc(c);
			}
722 723 724 725 726 727 728
		}

		up_write(&dc->writeback_lock);

		read_dirty(dc);

		if (searched_full_index) {
729
			unsigned int delay = dc->writeback_delay * HZ;
730 731 732

			while (delay &&
			       !kthread_should_stop() &&
733
			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
734
			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
735
				delay = schedule_timeout_interruptible(delay);
736 737

			bch_ratelimit_reset(&dc->writeback_rate);
738 739 740
		}
	}

741
	cached_dev_put(dc);
742
	wait_for_kthread_stop();
743

744
	return 0;
K
Kent Overstreet 已提交
745 746
}

747
/* Init */
748 749
#define INIT_KEYS_EACH_TIME	500000
#define INIT_KEYS_SLEEP_MS	100
750

K
Kent Overstreet 已提交
751 752
struct sectors_dirty_init {
	struct btree_op	op;
753
	unsigned int	inode;
754 755
	size_t		count;
	struct bkey	start;
K
Kent Overstreet 已提交
756 757 758
};

static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
759
				 struct bkey *k)
760
{
K
Kent Overstreet 已提交
761 762
	struct sectors_dirty_init *op = container_of(_op,
						struct sectors_dirty_init, op);
763 764
	if (KEY_INODE(k) > op->inode)
		return MAP_DONE;
765

766 767 768 769
	if (KEY_DIRTY(k))
		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
					     KEY_START(k), KEY_SIZE(k));

770 771 772 773 774 775 776
	op->count++;
	if (atomic_read(&b->c->search_inflight) &&
	    !(op->count % INIT_KEYS_EACH_TIME)) {
		bkey_copy_key(&op->start, k);
		return -EAGAIN;
	}

777
	return MAP_CONTINUE;
778 779
}

780
void bch_sectors_dirty_init(struct bcache_device *d)
781
{
K
Kent Overstreet 已提交
782
	struct sectors_dirty_init op;
783
	int ret;
784

K
Kent Overstreet 已提交
785
	bch_btree_op_init(&op.op, -1);
786
	op.inode = d->id;
787 788 789 790 791 792 793 794 795 796 797 798 799 800
	op.count = 0;
	op.start = KEY(op.inode, 0, 0);

	do {
		ret = bch_btree_map_keys(&op.op, d->c, &op.start,
					 sectors_dirty_init_fn, 0);
		if (ret == -EAGAIN)
			schedule_timeout_interruptible(
				msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
		else if (ret < 0) {
			pr_warn("sectors dirty init failed, ret=%d!", ret);
			break;
		}
	} while (ret == -EAGAIN);
801 802
}

803
void bch_cached_dev_writeback_init(struct cached_dev *dc)
K
Kent Overstreet 已提交
804
{
805
	sema_init(&dc->in_flight, 64);
K
Kent Overstreet 已提交
806
	init_rwsem(&dc->writeback_lock);
K
Kent Overstreet 已提交
807
	bch_keybuf_init(&dc->writeback_keys);
K
Kent Overstreet 已提交
808 809

	dc->writeback_metadata		= true;
810
	dc->writeback_running		= false;
K
Kent Overstreet 已提交
811 812
	dc->writeback_percent		= 10;
	dc->writeback_delay		= 30;
813
	atomic_long_set(&dc->writeback_rate.rate, 1024);
814
	dc->writeback_rate_minimum	= 8;
K
Kent Overstreet 已提交
815

816
	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
817 818
	dc->writeback_rate_p_term_inverse = 40;
	dc->writeback_rate_i_term_inverse = 10000;
K
Kent Overstreet 已提交
819

820
	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
821 822 823 824 825
	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
}

int bch_cached_dev_writeback_start(struct cached_dev *dc)
{
826 827 828 829 830
	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
						WQ_MEM_RECLAIM, 0);
	if (!dc->writeback_write_wq)
		return -ENOMEM;

831
	cached_dev_get(dc);
832 833
	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
					      "bcache_writeback");
834 835
	if (IS_ERR(dc->writeback_thread)) {
		cached_dev_put(dc);
836
		destroy_workqueue(dc->writeback_write_wq);
837
		return PTR_ERR(dc->writeback_thread);
838
	}
839
	dc->writeback_running = true;
840

841
	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
K
Kent Overstreet 已提交
842 843 844
	schedule_delayed_work(&dc->writeback_rate_update,
			      dc->writeback_rate_update_seconds * HZ);

845 846
	bch_writeback_queue(dc);

K
Kent Overstreet 已提交
847 848
	return 0;
}