repair.c 24.6 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright (C) 2018 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_extent_busy.h"
#include "xfs_ag_resv.h"
#include "xfs_trans_space.h"
31
#include "xfs_quota.h"
32 33 34 35 36
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
37
#include "scrub/bitmap.h"
38 39 40 41 42 43 44

/*
 * Attempt to repair some metadata, if the metadata is corrupt and userspace
 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
 * and will set *fixed to true if it thinks it repaired anything.
 */
int
45
xrep_attempt(
46
	struct xfs_inode	*ip,
47
	struct xfs_scrub	*sc,
48
	bool			*fixed)
49
{
50
	int			error = 0;
51

52
	trace_xrep_attempt(ip, sc->sm, error);
53

D
Darrick J. Wong 已提交
54
	xchk_ag_btcur_free(&sc->sa);
55 56 57 58

	/* Repair whatever's broken. */
	ASSERT(sc->ops->repair);
	error = sc->ops->repair(sc);
59
	trace_xrep_done(ip, sc->sm, error);
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	switch (error) {
	case 0:
		/*
		 * Repair succeeded.  Commit the fixes and perform a second
		 * scrub so that we can tell userspace if we fixed the problem.
		 */
		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
		*fixed = true;
		return -EAGAIN;
	case -EDEADLOCK:
	case -EAGAIN:
		/* Tell the caller to try again having grabbed all the locks. */
		if (!sc->try_harder) {
			sc->try_harder = true;
			return -EAGAIN;
		}
		/*
		 * We tried harder but still couldn't grab all the resources
		 * we needed to fix it.  The corruption has not been fixed,
		 * so report back to userspace.
		 */
		return -EFSCORRUPTED;
	default:
		return error;
	}
}

/*
 * Complain about unfixable problems in the filesystem.  We don't log
 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
 * administrator isn't running xfs_scrub in no-repairs mode.
 *
 * Use this helper function because _ratelimited silently declares a static
 * structure to track rate limiting information.
 */
void
97
xrep_failure(
98
	struct xfs_mount	*mp)
99 100 101 102 103 104 105 106 107 108
{
	xfs_alert_ratelimited(mp,
"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
}

/*
 * Repair probe -- userspace uses this to probe if we're willing to repair a
 * given mountpoint.
 */
int
109
xrep_probe(
110
	struct xfs_scrub	*sc)
111
{
112
	int			error = 0;
113

D
Darrick J. Wong 已提交
114
	if (xchk_should_terminate(sc, &error))
115 116 117 118
		return error;

	return 0;
}
119 120 121 122 123 124

/*
 * Roll a transaction, keeping the AG headers locked and reinitializing
 * the btree cursors.
 */
int
125
xrep_roll_ag_trans(
126
	struct xfs_scrub	*sc)
127
{
128
	int			error;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

	/* Keep the AG header buffers locked so we can keep going. */
	xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
	xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
	xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);

	/* Roll the transaction. */
	error = xfs_trans_roll(&sc->tp);
	if (error)
		goto out_release;

	/* Join AG headers to the new transaction. */
	xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
	xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
	xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);

	return 0;

out_release:
	/*
	 * Rolling failed, so release the hold on the buffers.  The
	 * buffers will be released during teardown on our way out
	 * of the kernel.
	 */
	xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
	xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
	xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp);

	return error;
}

/*
 * Does the given AG have enough space to rebuild a btree?  Neither AG
 * reservation can be critical, and we must have enough space (factoring
 * in AG reservations) to construct a whole btree.
 */
bool
166
xrep_ag_has_space(
167 168 169
	struct xfs_perag	*pag,
	xfs_extlen_t		nr_blocks,
	enum xfs_ag_resv_type	type)
170 171 172 173 174 175 176 177 178 179 180 181
{
	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
}

/*
 * Figure out how many blocks to reserve for an AG repair.  We calculate the
 * worst case estimate for the number of blocks we'd need to rebuild one of
 * any type of per-AG btree.
 */
xfs_extlen_t
182
xrep_calc_ag_resblks(
183
	struct xfs_scrub		*sc)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
{
	struct xfs_mount		*mp = sc->mp;
	struct xfs_scrub_metadata	*sm = sc->sm;
	struct xfs_perag		*pag;
	struct xfs_buf			*bp;
	xfs_agino_t			icount = 0;
	xfs_extlen_t			aglen = 0;
	xfs_extlen_t			usedlen;
	xfs_extlen_t			freelen;
	xfs_extlen_t			bnobt_sz;
	xfs_extlen_t			inobt_sz;
	xfs_extlen_t			rmapbt_sz;
	xfs_extlen_t			refcbt_sz;
	int				error;

	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
		return 0;

	/* Use in-core counters if possible. */
	pag = xfs_perag_get(mp, sm->sm_agno);
	if (pag->pagi_init)
		icount = pag->pagi_count;

	/*
	 * Otherwise try to get the actual counters from disk; if not, make
	 * some worst case assumptions.
	 */
	if (icount == 0) {
		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
		if (error) {
			icount = mp->m_sb.sb_agblocks / mp->m_sb.sb_inopblock;
		} else {
			icount = pag->pagi_count;
			xfs_buf_relse(bp);
		}
	}

	/* Now grab the block counters from the AGF. */
	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
	if (error) {
		aglen = mp->m_sb.sb_agblocks;
		freelen = aglen;
		usedlen = aglen;
	} else {
		aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
		freelen = pag->pagf_freeblks;
		usedlen = aglen - freelen;
		xfs_buf_relse(bp);
	}
	xfs_perag_put(pag);

235
	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
			freelen, usedlen);

	/*
	 * Figure out how many blocks we'd need worst case to rebuild
	 * each type of btree.  Note that we can only rebuild the
	 * bnobt/cntbt or inobt/finobt as pairs.
	 */
	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_HOLEMASK_BIT);
	else
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_CHUNK);
	if (xfs_sb_version_hasfinobt(&mp->m_sb))
		inobt_sz *= 2;
	if (xfs_sb_version_hasreflink(&mp->m_sb))
		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
	else
		refcbt_sz = 0;
	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
		/*
		 * Guess how many blocks we need to rebuild the rmapbt.
		 * For non-reflink filesystems we can't have more records than
		 * used blocks.  However, with reflink it's possible to have
		 * more than one rmap record per AG block.  We don't know how
		 * many rmaps there could be in the AG, so we start off with
		 * what we hope is an generous over-estimation.
		 */
		if (xfs_sb_version_hasreflink(&mp->m_sb))
			rmapbt_sz = xfs_rmapbt_calc_size(mp,
					(unsigned long long)aglen * 2);
		else
			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
	} else {
		rmapbt_sz = 0;
	}

274
	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
275 276 277 278
			inobt_sz, rmapbt_sz, refcbt_sz);

	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
}
279 280 281

/* Allocate a block in an AG. */
int
282
xrep_alloc_ag_block(
283
	struct xfs_scrub	*sc,
284 285 286
	struct xfs_owner_info	*oinfo,
	xfs_fsblock_t		*fsbno,
	enum xfs_ag_resv_type	resv)
287
{
288 289 290
	struct xfs_alloc_arg	args = {0};
	xfs_agblock_t		bno;
	int			error;
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

	switch (resv) {
	case XFS_AG_RESV_AGFL:
	case XFS_AG_RESV_RMAPBT:
		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
		if (error)
			return error;
		if (bno == NULLAGBLOCK)
			return -ENOSPC;
		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
				1, false);
		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
		if (resv == XFS_AG_RESV_RMAPBT)
			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
		return 0;
	default:
		break;
	}

	args.tp = sc->tp;
	args.mp = sc->mp;
	args.oinfo = *oinfo;
	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
	args.minlen = 1;
	args.maxlen = 1;
	args.prod = 1;
	args.type = XFS_ALLOCTYPE_THIS_AG;
	args.resv = resv;

	error = xfs_alloc_vextent(&args);
	if (error)
		return error;
	if (args.fsbno == NULLFSBLOCK)
		return -ENOSPC;
	ASSERT(args.len == 1);
	*fsbno = args.fsbno;

	return 0;
}

/* Initialize a new AG btree root block with zero entries. */
int
333
xrep_init_btblock(
334
	struct xfs_scrub		*sc,
335 336 337 338 339 340 341 342 343
	xfs_fsblock_t			fsb,
	struct xfs_buf			**bpp,
	xfs_btnum_t			btnum,
	const struct xfs_buf_ops	*ops)
{
	struct xfs_trans		*tp = sc->tp;
	struct xfs_mount		*mp = sc->mp;
	struct xfs_buf			*bp;

344
	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
345 346 347 348 349 350 351 352 353 354 355 356 357 358
			XFS_FSB_TO_AGBNO(mp, fsb), btnum);

	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
	bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
			XFS_FSB_TO_BB(mp, 1), 0);
	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
	xfs_trans_log_buf(tp, bp, 0, bp->b_length);
	bp->b_ops = ops;
	*bpp = bp;

	return 0;
}
359 360 361 362 363 364 365 366 367 368 369 370

/*
 * Reconstructing per-AG Btrees
 *
 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
 * we scan secondary space metadata to derive the records that should be in
 * the damaged btree, initialize a fresh btree root, and insert the records.
 * Note that for rebuilding the rmapbt we scan all the primary data to
 * generate the new records.
 *
 * However, that leaves the matter of removing all the metadata describing the
 * old broken structure.  For primary metadata we use the rmap data to collect
371
 * every extent with a matching rmap owner (bitmap); we then iterate all other
372
 * metadata structures with the same rmap owner to collect the extents that
373
 * cannot be removed (sublist).  We then subtract sublist from bitmap to
374 375 376 377 378 379
 * derive the blocks that were used by the old btree.  These blocks can be
 * reaped.
 *
 * For rmapbt reconstructions we must use different tactics for extent
 * collection.  First we iterate all primary metadata (this excludes the old
 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
380 381
 * records are collected as bitmap.  The bnobt records are collected as
 * sublist.  As with the other btrees we subtract sublist from bitmap, and the
382 383 384
 * result (since the rmapbt lives in the free space) are the blocks from the
 * old rmapbt.
 *
385 386 387 388
 * Disposal of Blocks from Old per-AG Btrees
 *
 * Now that we've constructed a new btree to replace the damaged one, we want
 * to dispose of the blocks that (we think) the old btree was using.
389
 * Previously, we used the rmapbt to collect the extents (bitmap) with the
390 391
 * rmap owner corresponding to the tree we rebuilt, collected extents for any
 * blocks with the same rmap owner that are owned by another data structure
392 393
 * (sublist), and subtracted sublist from bitmap.  In theory the extents
 * remaining in bitmap are the old btree's blocks.
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
 *
 * Unfortunately, it's possible that the btree was crosslinked with other
 * blocks on disk.  The rmap data can tell us if there are multiple owners, so
 * if the rmapbt says there is an owner of this block other than @oinfo, then
 * the block is crosslinked.  Remove the reverse mapping and continue.
 *
 * If there is one rmap record, we can free the block, which removes the
 * reverse mapping but doesn't add the block to the free space.  Our repair
 * strategy is to hope the other metadata objects crosslinked on this block
 * will be rebuilt (atop different blocks), thereby removing all the cross
 * links.
 *
 * If there are no rmap records at all, we also free the block.  If the btree
 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
 * supposed to be a rmap record and everything is ok.  For other btrees there
409
 * had to have been an rmap entry for the block to have ended up on @bitmap,
410 411 412 413 414 415 416 417 418 419 420 421
 * so if it's gone now there's something wrong and the fs will shut down.
 *
 * Note: If there are multiple rmap records with only the same rmap owner as
 * the btree we're trying to rebuild and the block is indeed owned by another
 * data structure with the same rmap owner, then the block will be in sublist
 * and therefore doesn't need disposal.  If there are multiple rmap records
 * with only the same rmap owner but the block is not owned by something with
 * the same rmap owner, the block will be freed.
 *
 * The caller is responsible for locking the AG headers for the entire rebuild
 * operation so that nothing else can sneak in and change the AG state while
 * we're not looking.  We also assume that the caller already invalidated any
422
 * buffers associated with @bitmap.
423 424 425 426 427 428 429
 */

/*
 * Invalidate buffers for per-AG btree blocks we're dumping.  This function
 * is not intended for use with file data repairs; we have bunmapi for that.
 */
int
430
xrep_invalidate_blocks(
431
	struct xfs_scrub	*sc,
432
	struct xfs_bitmap	*bitmap)
433
{
434 435
	struct xfs_bitmap_range	*bmr;
	struct xfs_bitmap_range	*n;
436 437
	struct xfs_buf		*bp;
	xfs_fsblock_t		fsbno;
438 439 440 441 442 443 444 445 446

	/*
	 * For each block in each extent, see if there's an incore buffer for
	 * exactly that block; if so, invalidate it.  The buffer cache only
	 * lets us look for one buffer at a time, so we have to look one block
	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
	 * because we never own those; and if we can't TRYLOCK the buffer we
	 * assume it's owned by someone else.
	 */
447 448 449 450 451 452 453 454 455 456
	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
		/* Skip AG headers and post-EOFS blocks */
		if (!xfs_verify_fsbno(sc->mp, fsbno))
			continue;
		bp = xfs_buf_incore(sc->mp->m_ddev_targp,
				XFS_FSB_TO_DADDR(sc->mp, fsbno),
				XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
		if (bp) {
			xfs_trans_bjoin(sc->tp, bp);
			xfs_trans_binval(sc->tp, bp);
457 458 459 460 461 462 463 464
		}
	}

	return 0;
}

/* Ensure the freelist is the correct size. */
int
465
xrep_fix_freelist(
466
	struct xfs_scrub	*sc,
467
	bool			can_shrink)
468
{
469
	struct xfs_alloc_arg	args = {0};
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

	args.mp = sc->mp;
	args.tp = sc->tp;
	args.agno = sc->sa.agno;
	args.alignment = 1;
	args.pag = sc->sa.pag;

	return xfs_alloc_fix_freelist(&args,
			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
}

/*
 * Put a block back on the AGFL.
 */
STATIC int
485
xrep_put_freelist(
486
	struct xfs_scrub	*sc,
487
	xfs_agblock_t		agbno)
488
{
489 490
	struct xfs_owner_info	oinfo;
	int			error;
491 492

	/* Make sure there's space on the freelist. */
493
	error = xrep_fix_freelist(sc, true);
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	if (error)
		return error;

	/*
	 * Since we're "freeing" a lost block onto the AGFL, we have to
	 * create an rmap for the block prior to merging it or else other
	 * parts will break.
	 */
	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_AG);
	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
			&oinfo);
	if (error)
		return error;

	/* Put the block on the AGFL. */
	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
			agbno, 0);
	if (error)
		return error;
	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
			XFS_EXTENT_BUSY_SKIP_DISCARD);

	return 0;
}

519
/* Dispose of a single block. */
520
STATIC int
521
xrep_reap_block(
522
	struct xfs_scrub	*sc,
523 524 525
	xfs_fsblock_t		fsbno,
	struct xfs_owner_info	*oinfo,
	enum xfs_ag_resv_type	resv)
526
{
527 528 529 530 531 532
	struct xfs_btree_cur	*cur;
	struct xfs_buf		*agf_bp = NULL;
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	bool			has_other_rmap;
	int			error;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);

	/*
	 * If we are repairing per-inode metadata, we need to read in the AGF
	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
	 * the AGF buffer that the setup functions already grabbed.
	 */
	if (sc->ip) {
		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
		if (error)
			return error;
		if (!agf_bp)
			return -ENOMEM;
	} else {
		agf_bp = sc->sa.agf_bp;
	}
	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);

	/* Can we find any other rmappings? */
	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
555
	xfs_btree_del_cursor(cur, error);
556
	if (error)
557
		goto out_free;
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

	/*
	 * If there are other rmappings, this block is cross linked and must
	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
	 * we were the only owner of the block, so free the extent, which will
	 * also remove the rmap.
	 *
	 * XXX: XFS doesn't support detecting the case where a single block
	 * metadata structure is crosslinked with a multi-block structure
	 * because the buffer cache doesn't detect aliasing problems, so we
	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
	 * blow on writeout, the filesystem will shut down, and the admin gets
	 * to run xfs_repair.
	 */
	if (has_other_rmap)
		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
	else if (resv == XFS_AG_RESV_AGFL)
575
		error = xrep_put_freelist(sc, agbno);
576 577 578 579 580 581 582 583 584
	else
		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
	if (agf_bp != sc->sa.agf_bp)
		xfs_trans_brelse(sc->tp, agf_bp);
	if (error)
		return error;

	if (sc->ip)
		return xfs_trans_roll_inode(&sc->tp, sc->ip);
585
	return xrep_roll_ag_trans(sc);
586

587
out_free:
588 589 590 591 592
	if (agf_bp != sc->sa.agf_bp)
		xfs_trans_brelse(sc->tp, agf_bp);
	return error;
}

593
/* Dispose of every block of every extent in the bitmap. */
594
int
595
xrep_reap_extents(
596
	struct xfs_scrub	*sc,
597
	struct xfs_bitmap	*bitmap,
598 599
	struct xfs_owner_info	*oinfo,
	enum xfs_ag_resv_type	type)
600
{
601 602 603
	struct xfs_bitmap_range	*bmr;
	struct xfs_bitmap_range	*n;
	xfs_fsblock_t		fsbno;
604
	int			error = 0;
605 606 607

	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));

608
	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
609
		ASSERT(sc->ip != NULL ||
610
		       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
611
		trace_xrep_dispose_btree_extent(sc->mp,
612 613 614 615 616 617
				XFS_FSB_TO_AGNO(sc->mp, fsbno),
				XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);

		error = xrep_reap_block(sc, fsbno, oinfo, type);
		if (error)
			goto out;
618 619 620
	}

out:
621
	xfs_bitmap_destroy(bitmap);
622 623
	return error;
}
624 625 626 627 628 629 630 631 632

/*
 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
 *
 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
 * the AG headers by using the rmap data to rummage through the AG looking for
 * btree roots.  This is not guaranteed to work if the AG is heavily damaged
 * or the rmap data are corrupt.
 *
633
 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
634 635 636 637
 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
 * AGI is being rebuilt.  It must maintain these locks until it's safe for
 * other threads to change the btrees' shapes.  The caller provides
 * information about the btrees to look for by passing in an array of
638
 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
639 640 641 642 643 644 645 646 647 648 649 650 651
 * The (root, height) fields will be set on return if anything is found.  The
 * last element of the array should have a NULL buf_ops to mark the end of the
 * array.
 *
 * For every rmapbt record matching any of the rmap owners in btree_info,
 * read each block referenced by the rmap record.  If the block is a btree
 * block from this filesystem matching any of the magic numbers and has a
 * level higher than what we've already seen, remember the block and the
 * height of the tree required to have such a block.  When the call completes,
 * we return the highest block we've found for each btree description; those
 * should be the roots.
 */

652
struct xrep_findroot {
653
	struct xfs_scrub		*sc;
654 655
	struct xfs_buf			*agfl_bp;
	struct xfs_agf			*agf;
656
	struct xrep_find_ag_btree	*btree_info;
657 658 659 660
};

/* See if our block is in the AGFL. */
STATIC int
661
xrep_findroot_agfl_walk(
662 663 664
	struct xfs_mount	*mp,
	xfs_agblock_t		bno,
	void			*priv)
665
{
666
	xfs_agblock_t		*agbno = priv;
667 668 669 670 671 672

	return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
}

/* Does this block match the btree information passed in? */
STATIC int
673 674 675
xrep_findroot_block(
	struct xrep_findroot		*ri,
	struct xrep_find_ag_btree	*fab,
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	uint64_t			owner,
	xfs_agblock_t			agbno,
	bool				*found_it)
{
	struct xfs_mount		*mp = ri->sc->mp;
	struct xfs_buf			*bp;
	struct xfs_btree_block		*btblock;
	xfs_daddr_t			daddr;
	int				error;

	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);

	/*
	 * Blocks in the AGFL have stale contents that might just happen to
	 * have a matching magic and uuid.  We don't want to pull these blocks
	 * in as part of a tree root, so we have to filter out the AGFL stuff
	 * here.  If the AGFL looks insane we'll just refuse to repair.
	 */
	if (owner == XFS_RMAP_OWN_AG) {
		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
696
				xrep_findroot_agfl_walk, &agbno);
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		if (error == XFS_BTREE_QUERY_RANGE_ABORT)
			return 0;
		if (error)
			return error;
	}

	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
			mp->m_bsize, 0, &bp, NULL);
	if (error)
		return error;

	/*
	 * Does this look like a block matching our fs and higher than any
	 * other block we've found so far?  If so, reattach buffer verifiers
	 * so the AIL won't complain if the buffer is also dirty.
	 */
	btblock = XFS_BUF_TO_BLOCK(bp);
	if (be32_to_cpu(btblock->bb_magic) != fab->magic)
		goto out;
	if (xfs_sb_version_hascrc(&mp->m_sb) &&
	    !uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
		goto out;
	bp->b_ops = fab->buf_ops;

	/* Ignore this block if it's lower in the tree than we've seen. */
	if (fab->root != NULLAGBLOCK &&
	    xfs_btree_get_level(btblock) < fab->height)
		goto out;

	/* Make sure we pass the verifiers. */
	bp->b_ops->verify_read(bp);
	if (bp->b_error)
		goto out;
	fab->root = agbno;
	fab->height = xfs_btree_get_level(btblock) + 1;
	*found_it = true;

734
	trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
735 736 737 738 739 740 741 742 743 744 745
			be32_to_cpu(btblock->bb_magic), fab->height - 1);
out:
	xfs_trans_brelse(ri->sc->tp, bp);
	return error;
}

/*
 * Do any of the blocks in this rmap record match one of the btrees we're
 * looking for?
 */
STATIC int
746
xrep_findroot_rmap(
747 748 749 750
	struct xfs_btree_cur		*cur,
	struct xfs_rmap_irec		*rec,
	void				*priv)
{
751 752
	struct xrep_findroot		*ri = priv;
	struct xrep_find_ag_btree	*fab;
753 754 755 756 757 758 759 760 761 762 763 764 765 766
	xfs_agblock_t			b;
	bool				found_it;
	int				error = 0;

	/* Ignore anything that isn't AG metadata. */
	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
		return 0;

	/* Otherwise scan each block + btree type. */
	for (b = 0; b < rec->rm_blockcount; b++) {
		found_it = false;
		for (fab = ri->btree_info; fab->buf_ops; fab++) {
			if (rec->rm_owner != fab->rmap_owner)
				continue;
767
			error = xrep_findroot_block(ri, fab,
768 769 770 771 772 773 774 775 776 777 778 779 780 781
					rec->rm_owner, rec->rm_startblock + b,
					&found_it);
			if (error)
				return error;
			if (found_it)
				break;
		}
	}

	return 0;
}

/* Find the roots of the per-AG btrees described in btree_info. */
int
782
xrep_find_ag_btree_roots(
783
	struct xfs_scrub		*sc,
784
	struct xfs_buf			*agf_bp,
785
	struct xrep_find_ag_btree	*btree_info,
786 787 788
	struct xfs_buf			*agfl_bp)
{
	struct xfs_mount		*mp = sc->mp;
789 790
	struct xrep_findroot		ri;
	struct xrep_find_ag_btree	*fab;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	struct xfs_btree_cur		*cur;
	int				error;

	ASSERT(xfs_buf_islocked(agf_bp));
	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));

	ri.sc = sc;
	ri.btree_info = btree_info;
	ri.agf = XFS_BUF_TO_AGF(agf_bp);
	ri.agfl_bp = agfl_bp;
	for (fab = btree_info; fab->buf_ops; fab++) {
		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
		fab->root = NULLAGBLOCK;
		fab->height = 0;
	}

	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
809
	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
810
	xfs_btree_del_cursor(cur, error);
811 812 813

	return error;
}
814 815 816

/* Force a quotacheck the next time we mount. */
void
817
xrep_force_quotacheck(
818
	struct xfs_scrub	*sc,
819
	uint			dqtype)
820
{
821
	uint			flag;
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

	flag = xfs_quota_chkd_flag(dqtype);
	if (!(flag & sc->mp->m_qflags))
		return;

	sc->mp->m_qflags &= ~flag;
	spin_lock(&sc->mp->m_sb_lock);
	sc->mp->m_sb.sb_qflags &= ~flag;
	spin_unlock(&sc->mp->m_sb_lock);
	xfs_log_sb(sc->tp);
}

/*
 * Attach dquots to this inode, or schedule quotacheck to fix them.
 *
 * This function ensures that the appropriate dquots are attached to an inode.
 * We cannot allow the dquot code to allocate an on-disk dquot block here
 * because we're already in transaction context with the inode locked.  The
 * on-disk dquot should already exist anyway.  If the quota code signals
 * corruption or missing quota information, schedule quotacheck, which will
 * repair corruptions in the quota metadata.
 */
int
845
xrep_ino_dqattach(
846
	struct xfs_scrub	*sc)
847
{
848
	int			error;
849 850 851 852 853 854 855 856 857 858

	error = xfs_qm_dqattach_locked(sc->ip, false);
	switch (error) {
	case -EFSBADCRC:
	case -EFSCORRUPTED:
	case -ENOENT:
		xfs_err_ratelimited(sc->mp,
"inode %llu repair encountered quota error %d, quotacheck forced.",
				(unsigned long long)sc->ip->i_ino, error);
		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
859
			xrep_force_quotacheck(sc, XFS_DQ_USER);
860
		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
861
			xrep_force_quotacheck(sc, XFS_DQ_GROUP);
862
		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
863
			xrep_force_quotacheck(sc, XFS_DQ_PROJ);
864 865 866 867 868 869 870 871 872 873
		/* fall through */
	case -ESRCH:
		error = 0;
		break;
	default:
		break;
	}

	return error;
}