meson-gx-mmc.c 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
 *
 * Copyright (c) 2016 BayLibre, SAS.
 * Author: Kevin Hilman <khilman@baylibre.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 * The full GNU General Public License is included in this distribution
 * in the file called COPYING.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/regulator/consumer.h>
38
#include <linux/interrupt.h>
39
#include <linux/bitfield.h>
40 41 42 43

#define DRIVER_NAME "meson-gx-mmc"

#define SD_EMMC_CLOCK 0x0
44 45 46
#define   CLK_DIV_MASK GENMASK(5, 0)
#define   CLK_SRC_MASK GENMASK(7, 6)
#define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
47 48
#define   CLK_TX_PHASE_MASK GENMASK(11, 10)
#define   CLK_RX_PHASE_MASK GENMASK(13, 12)
49 50 51 52 53 54
#define   CLK_PHASE_0 0
#define   CLK_PHASE_90 1
#define   CLK_PHASE_180 2
#define   CLK_PHASE_270 3
#define   CLK_ALWAYS_ON BIT(24)

55
#define SD_EMMC_DELAY 0x4
56 57 58 59 60
#define SD_EMMC_ADJUST 0x8
#define SD_EMMC_CALOUT 0x10
#define SD_EMMC_START 0x40
#define   START_DESC_INIT BIT(0)
#define   START_DESC_BUSY BIT(1)
61
#define   START_DESC_ADDR_MASK GENMASK(31, 2)
62 63

#define SD_EMMC_CFG 0x44
64
#define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
65 66 67 68
#define   CFG_BUS_WIDTH_1 0x0
#define   CFG_BUS_WIDTH_4 0x1
#define   CFG_BUS_WIDTH_8 0x2
#define   CFG_DDR BIT(2)
69 70 71
#define   CFG_BLK_LEN_MASK GENMASK(7, 4)
#define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
#define   CFG_RC_CC_MASK GENMASK(15, 12)
72 73
#define   CFG_STOP_CLOCK BIT(22)
#define   CFG_CLK_ALWAYS_ON BIT(18)
74
#define   CFG_CHK_DS BIT(20)
75 76 77 78 79 80
#define   CFG_AUTO_CLK BIT(23)

#define SD_EMMC_STATUS 0x48
#define   STATUS_BUSY BIT(31)

#define SD_EMMC_IRQ_EN 0x4c
81 82
#define   IRQ_EN_MASK GENMASK(13, 0)
#define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define   IRQ_TXD_ERR BIT(8)
#define   IRQ_DESC_ERR BIT(9)
#define   IRQ_RESP_ERR BIT(10)
#define   IRQ_RESP_TIMEOUT BIT(11)
#define   IRQ_DESC_TIMEOUT BIT(12)
#define   IRQ_END_OF_CHAIN BIT(13)
#define   IRQ_RESP_STATUS BIT(14)
#define   IRQ_SDIO BIT(15)

#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68

#define SD_EMMC_RXD 0x94
#define SD_EMMC_TXD 0x94
#define SD_EMMC_LAST_REG SD_EMMC_TXD

#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
106 107
#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
108
#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
109 110 111 112 113
#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE

#define SD_EMMC_PRE_REQ_DONE BIT(0)
#define SD_EMMC_DESC_CHAIN_MODE BIT(1)

114 115
#define MUX_CLK_NUM_PARENTS 2

116 117 118 119 120 121
struct meson_tuning_params {
	u8 core_phase;
	u8 tx_phase;
	u8 rx_phase;
};

122 123 124 125 126 127 128
struct sd_emmc_desc {
	u32 cmd_cfg;
	u32 cmd_arg;
	u32 cmd_data;
	u32 cmd_resp;
};

129 130 131 132 133 134 135 136
struct meson_host {
	struct	device		*dev;
	struct	mmc_host	*mmc;
	struct	mmc_command	*cmd;

	spinlock_t lock;
	void __iomem *regs;
	struct clk *core_clk;
137
	struct clk *mmc_clk;
138
	unsigned long req_rate;
139 140 141 142

	unsigned int bounce_buf_size;
	void *bounce_buf;
	dma_addr_t bounce_dma_addr;
143 144
	struct sd_emmc_desc *descs;
	dma_addr_t descs_dma_addr;
145

146
	struct meson_tuning_params tp;
147 148 149
	bool vqmmc_enabled;
};

150
#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
151 152 153
#define CMD_CFG_BLOCK_MODE BIT(9)
#define CMD_CFG_R1B BIT(10)
#define CMD_CFG_END_OF_CHAIN BIT(11)
154
#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
155 156 157 158 159 160 161 162
#define CMD_CFG_NO_RESP BIT(16)
#define CMD_CFG_NO_CMD BIT(17)
#define CMD_CFG_DATA_IO BIT(18)
#define CMD_CFG_DATA_WR BIT(19)
#define CMD_CFG_RESP_NOCRC BIT(20)
#define CMD_CFG_RESP_128 BIT(21)
#define CMD_CFG_RESP_NUM BIT(22)
#define CMD_CFG_DATA_NUM BIT(23)
163
#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
164 165 166
#define CMD_CFG_ERROR BIT(30)
#define CMD_CFG_OWNER BIT(31)

167
#define CMD_DATA_MASK GENMASK(31, 2)
168 169
#define CMD_DATA_BIG_ENDIAN BIT(1)
#define CMD_DATA_SRAM BIT(0)
170
#define CMD_RESP_MASK GENMASK(31, 1)
171 172
#define CMD_RESP_SRAM BIT(0)

173 174 175 176 177 178 179 180 181 182 183 184
static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
{
	unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;

	if (!timeout)
		return SD_EMMC_CMD_TIMEOUT_DATA;

	timeout = roundup_pow_of_two(timeout);

	return min(timeout, 32768U); /* max. 2^15 ms */
}

H
Heiner Kallweit 已提交
185 186 187 188 189 190 191 192 193 194 195
static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
{
	if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
		return cmd->mrq->cmd;
	else if (mmc_op_multi(cmd->opcode) &&
		 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
		return cmd->mrq->stop;
	else
		return NULL;
}

196 197 198 199 200 201 202 203
static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
					struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;
	struct scatterlist *sg;
	int i;
	bool use_desc_chain_mode = true;

204 205 206 207 208 209 210 211 212
	/*
	 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
	 * reported. For some strange reason this occurs in descriptor
	 * chain mode only. So let's fall back to bounce buffer mode
	 * for command SD_IO_RW_EXTENDED.
	 */
	if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
		return;

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	for_each_sg(data->sg, sg, data->sg_len, i)
		/* check for 8 byte alignment */
		if (sg->offset & 7) {
			WARN_ONCE(1, "unaligned scatterlist buffer\n");
			use_desc_chain_mode = false;
			break;
		}

	if (use_desc_chain_mode)
		data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
}

static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
{
	return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
}

static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
{
	return data && data->flags & MMC_DATA_READ &&
	       !meson_mmc_desc_chain_mode(data);
}

static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;

	if (!data)
		return;

	meson_mmc_get_transfer_mode(mmc, mrq);
	data->host_cookie |= SD_EMMC_PRE_REQ_DONE;

	if (!meson_mmc_desc_chain_mode(data))
		return;

	data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
                                   mmc_get_dma_dir(data));
	if (!data->sg_count)
		dev_err(mmc_dev(mmc), "dma_map_sg failed");
}

static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
			       int err)
{
	struct mmc_data *data = mrq->data;

	if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
		dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
			     mmc_get_dma_dir(data));
}

265 266 267 268 269 270 271 272 273 274 275
static bool meson_mmc_timing_is_ddr(struct mmc_ios *ios)
{
	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
	    ios->timing == MMC_TIMING_UHS_DDR50 ||
	    ios->timing == MMC_TIMING_MMC_HS400)
		return true;

	return false;
}

static int meson_mmc_clk_set(struct meson_host *host, struct mmc_ios *ios)
276 277
{
	struct mmc_host *mmc = host->mmc;
278
	unsigned long rate = ios->clock;
279
	int ret;
280 281
	u32 cfg;

282 283 284 285
	/* DDR modes require higher module clock */
	if (meson_mmc_timing_is_ddr(ios))
		rate <<= 1;

286
	/* Same request - bail-out */
287
	if (host->req_rate == rate)
288 289 290 291
		return 0;

	/* stop clock */
	cfg = readl(host->regs + SD_EMMC_CFG);
292 293 294
	cfg |= CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);
	host->req_rate = 0;
295

296
	if (!rate) {
297
		mmc->actual_clock = 0;
298
		/* return with clock being stopped */
299 300 301
		return 0;
	}

302
	ret = clk_set_rate(host->mmc_clk, rate);
303 304
	if (ret) {
		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
305
			rate, ret);
306
		return ret;
307 308
	}

309
	host->req_rate = rate;
310
	mmc->actual_clock = clk_get_rate(host->mmc_clk);
311

312 313 314 315
	/* We should report the real output frequency of the controller */
	if (meson_mmc_timing_is_ddr(ios))
		mmc->actual_clock >>= 1;

316
	dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
317 318
	if (ios->clock != mmc->actual_clock)
		dev_dbg(host->dev, "requested rate was %u\n", ios->clock);
319 320 321 322 323 324 325

	/* (re)start clock */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg &= ~CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);

	return 0;
326 327 328 329 330 331 332 333 334 335
}

/*
 * The SD/eMMC IP block has an internal mux and divider used for
 * generating the MMC clock.  Use the clock framework to create and
 * manage these clocks.
 */
static int meson_mmc_clk_init(struct meson_host *host)
{
	struct clk_init_data init;
336 337 338
	struct clk_mux *mux;
	struct clk_divider *div;
	struct clk *clk;
339 340 341
	char clk_name[32];
	int i, ret = 0;
	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
342
	const char *clk_parent[1];
343
	u32 clk_reg;
344

345 346 347 348 349 350 351 352 353
	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	clk_reg = 0;
	clk_reg |= CLK_ALWAYS_ON;
	clk_reg |= CLK_DIV_MASK;
	clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, host->tp.core_phase);
	clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, host->tp.tx_phase);
	clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, host->tp.rx_phase);
	writel(clk_reg, host->regs + SD_EMMC_CLOCK);

354 355
	/* get the mux parents */
	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
356
		struct clk *clk;
357 358 359
		char name[16];

		snprintf(name, sizeof(name), "clkin%d", i);
360 361 362
		clk = devm_clk_get(host->dev, name);
		if (IS_ERR(clk)) {
			if (clk != ERR_PTR(-EPROBE_DEFER))
363
				dev_err(host->dev, "Missing clock %s\n", name);
364
			return PTR_ERR(clk);
365 366
		}

367
		mux_parent_names[i] = __clk_get_name(clk);
368 369 370
	}

	/* create the mux */
371 372 373 374
	mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
	if (!mux)
		return -ENOMEM;

375 376 377 378 379
	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &clk_mux_ops;
	init.flags = 0;
	init.parent_names = mux_parent_names;
380
	init.num_parents = MUX_CLK_NUM_PARENTS;
381

382 383 384 385 386 387 388 389
	mux->reg = host->regs + SD_EMMC_CLOCK;
	mux->shift = __bf_shf(CLK_SRC_MASK);
	mux->mask = CLK_SRC_MASK >> mux->shift;
	mux->hw.init = &init;

	clk = devm_clk_register(host->dev, &mux->hw);
	if (WARN_ON(IS_ERR(clk)))
		return PTR_ERR(clk);
390 391

	/* create the divider */
392 393 394 395
	div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
	if (!div)
		return -ENOMEM;

396
	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
397
	init.name = clk_name;
398 399
	init.ops = &clk_divider_ops;
	init.flags = CLK_SET_RATE_PARENT;
400 401 402 403 404 405 406 407 408 409
	clk_parent[0] = __clk_get_name(clk);
	init.parent_names = clk_parent;
	init.num_parents = 1;

	div->reg = host->regs + SD_EMMC_CLOCK;
	div->shift = __bf_shf(CLK_DIV_MASK);
	div->width = __builtin_popcountl(CLK_DIV_MASK);
	div->hw.init = &init;
	div->flags = (CLK_DIVIDER_ONE_BASED |
		      CLK_DIVIDER_ROUND_CLOSEST);
410

411 412 413
	host->mmc_clk = devm_clk_register(host->dev, &div->hw);
	if (WARN_ON(PTR_ERR_OR_ZERO(host->mmc_clk)))
		return PTR_ERR(host->mmc_clk);
414

415 416 417
	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
	ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
418
	if (ret)
419
		return ret;
420

421
	return clk_prepare_enable(host->mmc_clk);
422 423
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static void meson_mmc_set_tuning_params(struct mmc_host *mmc)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 regval;

	/* stop clock */
	regval = readl(host->regs + SD_EMMC_CFG);
	regval |= CFG_STOP_CLOCK;
	writel(regval, host->regs + SD_EMMC_CFG);

	regval = readl(host->regs + SD_EMMC_CLOCK);
	regval &= ~CLK_CORE_PHASE_MASK;
	regval |= FIELD_PREP(CLK_CORE_PHASE_MASK, host->tp.core_phase);
	regval &= ~CLK_TX_PHASE_MASK;
	regval |= FIELD_PREP(CLK_TX_PHASE_MASK, host->tp.tx_phase);
	regval &= ~CLK_RX_PHASE_MASK;
	regval |= FIELD_PREP(CLK_RX_PHASE_MASK, host->tp.rx_phase);
	writel(regval, host->regs + SD_EMMC_CLOCK);

	/* start clock */
	regval = readl(host->regs + SD_EMMC_CFG);
	regval &= ~CFG_STOP_CLOCK;
	writel(regval, host->regs + SD_EMMC_CFG);
}

449 450 451
static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct meson_host *host = mmc_priv(mmc);
452 453
	u32 bus_width, val;
	int err;
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	/*
	 * GPIO regulator, only controls switching between 1v8 and
	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
	 */
	switch (ios->power_mode) {
	case MMC_POWER_OFF:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);

		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
			regulator_disable(mmc->supply.vqmmc);
			host->vqmmc_enabled = false;
		}

		break;

	case MMC_POWER_UP:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
		break;

	case MMC_POWER_ON:
		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
			int ret = regulator_enable(mmc->supply.vqmmc);

			if (ret < 0)
481
				dev_err(host->dev,
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
					"failed to enable vqmmc regulator\n");
			else
				host->vqmmc_enabled = true;
		}

		break;
	}

	/* Bus width */
	switch (ios->bus_width) {
	case MMC_BUS_WIDTH_1:
		bus_width = CFG_BUS_WIDTH_1;
		break;
	case MMC_BUS_WIDTH_4:
		bus_width = CFG_BUS_WIDTH_4;
		break;
	case MMC_BUS_WIDTH_8:
		bus_width = CFG_BUS_WIDTH_8;
		break;
	default:
		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
			ios->bus_width);
		bus_width = CFG_BUS_WIDTH_4;
	}

	val = readl(host->regs + SD_EMMC_CFG);
508 509
	val &= ~CFG_BUS_WIDTH_MASK;
	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
510

511
	val &= ~CFG_DDR;
512
	if (meson_mmc_timing_is_ddr(ios))
513 514 515 516 517 518
		val |= CFG_DDR;

	val &= ~CFG_CHK_DS;
	if (ios->timing == MMC_TIMING_MMC_HS400)
		val |= CFG_CHK_DS;

519
	err = meson_mmc_clk_set(host, ios);
520 521 522 523 524
	if (err)
		dev_err(host->dev, "Failed to set clock: %d\n,", err);

	writel(val, host->regs + SD_EMMC_CFG);
	dev_dbg(host->dev, "SD_EMMC_CFG:  0x%08x\n", val);
525 526
}

527 528
static void meson_mmc_request_done(struct mmc_host *mmc,
				   struct mmc_request *mrq)
529 530 531 532 533 534 535
{
	struct meson_host *host = mmc_priv(mmc);

	host->cmd = NULL;
	mmc_request_done(host->mmc, mrq);
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 cfg, blksz_old;

	cfg = readl(host->regs + SD_EMMC_CFG);
	blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);

	if (!is_power_of_2(blksz))
		dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);

	blksz = ilog2(blksz);

	/* check if block-size matches, if not update */
	if (blksz == blksz_old)
		return;

	dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
		blksz_old, blksz);

	cfg &= ~CFG_BLK_LEN_MASK;
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
	writel(cfg, host->regs + SD_EMMC_CFG);
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
{
	if (cmd->flags & MMC_RSP_PRESENT) {
		if (cmd->flags & MMC_RSP_136)
			*cmd_cfg |= CMD_CFG_RESP_128;
		*cmd_cfg |= CMD_CFG_RESP_NUM;

		if (!(cmd->flags & MMC_RSP_CRC))
			*cmd_cfg |= CMD_CFG_RESP_NOCRC;

		if (cmd->flags & MMC_RSP_BUSY)
			*cmd_cfg |= CMD_CFG_R1B;
	} else {
		*cmd_cfg |= CMD_CFG_NO_RESP;
	}
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
{
	struct meson_host *host = mmc_priv(mmc);
	struct sd_emmc_desc *desc = host->descs;
	struct mmc_data *data = host->cmd->data;
	struct scatterlist *sg;
	u32 start;
	int i;

	if (data->flags & MMC_DATA_WRITE)
		cmd_cfg |= CMD_CFG_DATA_WR;

	if (data->blocks > 1) {
		cmd_cfg |= CMD_CFG_BLOCK_MODE;
		meson_mmc_set_blksz(mmc, data->blksz);
	}

	for_each_sg(data->sg, sg, data->sg_count, i) {
		unsigned int len = sg_dma_len(sg);

		if (data->blocks > 1)
			len /= data->blksz;

		desc[i].cmd_cfg = cmd_cfg;
		desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
		if (i > 0)
			desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
		desc[i].cmd_arg = host->cmd->arg;
		desc[i].cmd_resp = 0;
		desc[i].cmd_data = sg_dma_address(sg);
	}
	desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;

	dma_wmb(); /* ensure descriptor is written before kicked */
	start = host->descs_dma_addr | START_DESC_BUSY;
	writel(start, host->regs + SD_EMMC_START);
}

616 617 618
static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
{
	struct meson_host *host = mmc_priv(mmc);
619
	struct mmc_data *data = cmd->data;
620
	u32 cmd_cfg = 0, cmd_data = 0;
621 622 623 624 625
	unsigned int xfer_bytes = 0;

	/* Setup descriptors */
	dma_rmb();

626 627
	host->cmd = cmd;

628
	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
629
	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
630

631
	meson_mmc_set_response_bits(cmd, &cmd_cfg);
632 633

	/* data? */
634
	if (data) {
635
		data->bytes_xfered = 0;
636
		cmd_cfg |= CMD_CFG_DATA_IO;
637
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
638
				      ilog2(meson_mmc_get_timeout_msecs(data)));
639

640 641 642 643 644
		if (meson_mmc_desc_chain_mode(data)) {
			meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
			return;
		}

645
		if (data->blocks > 1) {
646
			cmd_cfg |= CMD_CFG_BLOCK_MODE;
647 648
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
					      data->blocks);
649
			meson_mmc_set_blksz(mmc, data->blksz);
650
		} else {
651
			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
652 653
		}

654 655
		xfer_bytes = data->blksz * data->blocks;
		if (data->flags & MMC_DATA_WRITE) {
656
			cmd_cfg |= CMD_CFG_DATA_WR;
657
			WARN_ON(xfer_bytes > host->bounce_buf_size);
658
			sg_copy_to_buffer(data->sg, data->sg_len,
659 660 661 662
					  host->bounce_buf, xfer_bytes);
			dma_wmb();
		}

663
		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
664
	} else {
665 666
		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
				      ilog2(SD_EMMC_CMD_TIMEOUT));
667 668 669
	}

	/* Last descriptor */
670 671 672 673
	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
	writel(0, host->regs + SD_EMMC_CMD_RSP);
674
	wmb(); /* ensure descriptor is written before kicked */
675
	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
676 677 678 679 680
}

static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct meson_host *host = mmc_priv(mmc);
681 682 683 684 685 686 687 688 689 690 691
	bool needs_pre_post_req = mrq->data &&
			!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);

	if (needs_pre_post_req) {
		meson_mmc_get_transfer_mode(mmc, mrq);
		if (!meson_mmc_desc_chain_mode(mrq->data))
			needs_pre_post_req = false;
	}

	if (needs_pre_post_req)
		meson_mmc_pre_req(mmc, mrq);
692 693 694 695

	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

696 697 698 699
	meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);

	if (needs_pre_post_req)
		meson_mmc_post_req(mmc, mrq, 0);
700 701
}

702
static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
{
	struct meson_host *host = mmc_priv(mmc);

	if (cmd->flags & MMC_RSP_136) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
	} else if (cmd->flags & MMC_RSP_PRESENT) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
	}
}

static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
719
	struct mmc_command *cmd;
720
	struct mmc_data *data;
721 722 723 724 725 726
	u32 irq_en, status, raw_status;
	irqreturn_t ret = IRQ_HANDLED;

	if (WARN_ON(!host))
		return IRQ_NONE;

727 728
	cmd = host->cmd;

729 730 731
	if (WARN_ON(!cmd))
		return IRQ_NONE;

732 733
	data = cmd->data;

734 735 736 737 738 739 740 741 742 743 744 745
	spin_lock(&host->lock);
	irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
	raw_status = readl(host->regs + SD_EMMC_STATUS);
	status = raw_status & irq_en;

	if (!status) {
		dev_warn(host->dev, "Spurious IRQ! status=0x%08x, irq_en=0x%08x\n",
			 raw_status, irq_en);
		ret = IRQ_NONE;
		goto out;
	}

746 747
	meson_mmc_read_resp(host->mmc, cmd);

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	cmd->error = 0;
	if (status & IRQ_RXD_ERR_MASK) {
		dev_dbg(host->dev, "Unhandled IRQ: RXD error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_TXD_ERR) {
		dev_dbg(host->dev, "Unhandled IRQ: TXD error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_DESC_ERR)
		dev_dbg(host->dev, "Unhandled IRQ: Descriptor error\n");
	if (status & IRQ_RESP_ERR) {
		dev_dbg(host->dev, "Unhandled IRQ: Response error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_RESP_TIMEOUT) {
		dev_dbg(host->dev, "Unhandled IRQ: Response timeout\n");
		cmd->error = -ETIMEDOUT;
	}
	if (status & IRQ_DESC_TIMEOUT) {
		dev_dbg(host->dev, "Unhandled IRQ: Descriptor timeout\n");
		cmd->error = -ETIMEDOUT;
	}
	if (status & IRQ_SDIO)
		dev_dbg(host->dev, "Unhandled IRQ: SDIO.\n");

774 775 776
	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
		if (data && !cmd->error)
			data->bytes_xfered = data->blksz * data->blocks;
777 778 779
		if (meson_mmc_bounce_buf_read(data) ||
		    meson_mmc_get_next_command(cmd))
			ret = IRQ_WAKE_THREAD;
780
	} else {
781 782
		dev_warn(host->dev, "Unknown IRQ! status=0x%04x: MMC CMD%u arg=0x%08x flags=0x%08x stop=%d\n",
			 status, cmd->opcode, cmd->arg,
783
			 cmd->flags, cmd->mrq->stop ? 1 : 0);
784 785 786 787 788 789 790 791 792 793 794 795 796 797
		if (cmd->data) {
			struct mmc_data *data = cmd->data;

			dev_warn(host->dev, "\tblksz %u blocks %u flags 0x%08x (%s%s)",
				 data->blksz, data->blocks, data->flags,
				 data->flags & MMC_DATA_WRITE ? "write" : "",
				 data->flags & MMC_DATA_READ ? "read" : "");
		}
	}

out:
	/* ack all (enabled) interrupts */
	writel(status, host->regs + SD_EMMC_STATUS);

798
	if (ret == IRQ_HANDLED)
799 800 801 802 803 804 805 806 807
		meson_mmc_request_done(host->mmc, cmd->mrq);

	spin_unlock(&host->lock);
	return ret;
}

static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
H
Heiner Kallweit 已提交
808
	struct mmc_command *next_cmd, *cmd = host->cmd;
809 810 811 812
	struct mmc_data *data;
	unsigned int xfer_bytes;

	if (WARN_ON(!cmd))
813
		return IRQ_NONE;
814 815

	data = cmd->data;
816
	if (meson_mmc_bounce_buf_read(data)) {
817
		xfer_bytes = data->blksz * data->blocks;
818 819 820
		WARN_ON(xfer_bytes > host->bounce_buf_size);
		sg_copy_from_buffer(data->sg, data->sg_len,
				    host->bounce_buf, xfer_bytes);
821 822
	}

H
Heiner Kallweit 已提交
823 824 825
	next_cmd = meson_mmc_get_next_command(cmd);
	if (next_cmd)
		meson_mmc_start_cmd(host->mmc, next_cmd);
826
	else
H
Heiner Kallweit 已提交
827
		meson_mmc_request_done(host->mmc, cmd->mrq);
828

829
	return IRQ_HANDLED;
830 831
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static int meson_mmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
	struct meson_host *host = mmc_priv(mmc);
	struct meson_tuning_params tp_old = host->tp;
	int ret = -EINVAL, i, cmd_error;

	dev_info(mmc_dev(mmc), "(re)tuning...\n");

	for (i = CLK_PHASE_0; i <= CLK_PHASE_270; i++) {
		host->tp.rx_phase = i;
		/* exclude the active parameter set if retuning */
		if (!memcmp(&tp_old, &host->tp, sizeof(tp_old)) &&
		    mmc->doing_retune)
			continue;
		meson_mmc_set_tuning_params(mmc);
		ret = mmc_send_tuning(mmc, opcode, &cmd_error);
		if (!ret)
			break;
	}

	return ret;
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868
/*
 * NOTE: we only need this until the GPIO/pinctrl driver can handle
 * interrupts.  For now, the MMC core will use this for polling.
 */
static int meson_mmc_get_cd(struct mmc_host *mmc)
{
	int status = mmc_gpio_get_cd(mmc);

	if (status == -ENOSYS)
		return 1; /* assume present */

	return status;
}

869 870 871 872
static void meson_mmc_cfg_init(struct meson_host *host)
{
	u32 cfg = 0;

873 874 875 876
	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
877 878 879 880

	writel(cfg, host->regs + SD_EMMC_CFG);
}

881 882 883 884
static const struct mmc_host_ops meson_mmc_ops = {
	.request	= meson_mmc_request,
	.set_ios	= meson_mmc_set_ios,
	.get_cd         = meson_mmc_get_cd,
885 886
	.pre_req	= meson_mmc_pre_req,
	.post_req	= meson_mmc_post_req,
887
	.execute_tuning = meson_mmc_execute_tuning,
888 889 890 891 892 893 894
};

static int meson_mmc_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct meson_host *host;
	struct mmc_host *mmc;
895
	int ret, irq;
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
	if (!mmc)
		return -ENOMEM;
	host = mmc_priv(mmc);
	host->mmc = mmc;
	host->dev = &pdev->dev;
	dev_set_drvdata(&pdev->dev, host);

	spin_lock_init(&host->lock);

	/* Get regulators and the supported OCR mask */
	host->vqmmc_enabled = false;
	ret = mmc_regulator_get_supply(mmc);
	if (ret == -EPROBE_DEFER)
		goto free_host;

	ret = mmc_of_parse(mmc);
	if (ret) {
915 916
		if (ret != -EPROBE_DEFER)
			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
917 918 919 920 921 922 923 924 925 926
		goto free_host;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	host->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(host->regs)) {
		ret = PTR_ERR(host->regs);
		goto free_host;
	}

927 928
	irq = platform_get_irq(pdev, 0);
	if (!irq) {
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
		dev_err(&pdev->dev, "failed to get interrupt resource.\n");
		ret = -EINVAL;
		goto free_host;
	}

	host->core_clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(host->core_clk)) {
		ret = PTR_ERR(host->core_clk);
		goto free_host;
	}

	ret = clk_prepare_enable(host->core_clk);
	if (ret)
		goto free_host;

944 945 946 947
	host->tp.core_phase = CLK_PHASE_180;
	host->tp.tx_phase = CLK_PHASE_0;
	host->tp.rx_phase = CLK_PHASE_0;

948 949
	ret = meson_mmc_clk_init(host);
	if (ret)
950
		goto err_core_clk;
951

952 953 954
	/* set config to sane default */
	meson_mmc_cfg_init(host);

955 956 957 958 959 960
	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

	/* clear, ack, enable all interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);
	writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS);
961
	writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN);
962

963 964
	ret = devm_request_threaded_irq(&pdev->dev, irq, meson_mmc_irq,
					meson_mmc_irq_thread, IRQF_SHARED,
965
					NULL, host);
966
	if (ret)
967
		goto err_init_clk;
968

H
Heiner Kallweit 已提交
969
	mmc->caps |= MMC_CAP_CMD23;
970 971
	mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
972 973
	mmc->max_segs = SD_EMMC_DESC_BUF_LEN / sizeof(struct sd_emmc_desc);
	mmc->max_seg_size = mmc->max_req_size;
974

975
	/* data bounce buffer */
976
	host->bounce_buf_size = mmc->max_req_size;
977 978 979 980 981 982
	host->bounce_buf =
		dma_alloc_coherent(host->dev, host->bounce_buf_size,
				   &host->bounce_dma_addr, GFP_KERNEL);
	if (host->bounce_buf == NULL) {
		dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
		ret = -ENOMEM;
983
		goto err_init_clk;
984 985
	}

986 987 988 989 990 991 992 993
	host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
		      &host->descs_dma_addr, GFP_KERNEL);
	if (!host->descs) {
		dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
		ret = -ENOMEM;
		goto err_bounce_buf;
	}

994 995 996 997 998
	mmc->ops = &meson_mmc_ops;
	mmc_add_host(mmc);

	return 0;

999 1000 1001
err_bounce_buf:
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
1002 1003
err_init_clk:
	clk_disable_unprepare(host->mmc_clk);
1004
err_core_clk:
1005
	clk_disable_unprepare(host->core_clk);
1006
free_host:
1007 1008 1009 1010 1011 1012 1013 1014
	mmc_free_host(mmc);
	return ret;
}

static int meson_mmc_remove(struct platform_device *pdev)
{
	struct meson_host *host = dev_get_drvdata(&pdev->dev);

1015 1016
	mmc_remove_host(host->mmc);

1017 1018 1019
	/* disable interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);

1020 1021
	dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
			  host->descs, host->descs_dma_addr);
1022 1023
	dma_free_coherent(host->dev, host->bounce_buf_size,
			  host->bounce_buf, host->bounce_dma_addr);
1024

1025
	clk_disable_unprepare(host->mmc_clk);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	clk_disable_unprepare(host->core_clk);

	mmc_free_host(host->mmc);
	return 0;
}

static const struct of_device_id meson_mmc_of_match[] = {
	{ .compatible = "amlogic,meson-gx-mmc", },
	{ .compatible = "amlogic,meson-gxbb-mmc", },
	{ .compatible = "amlogic,meson-gxl-mmc", },
	{ .compatible = "amlogic,meson-gxm-mmc", },
	{}
};
MODULE_DEVICE_TABLE(of, meson_mmc_of_match);

static struct platform_driver meson_mmc_driver = {
	.probe		= meson_mmc_probe,
	.remove		= meson_mmc_remove,
	.driver		= {
		.name = DRIVER_NAME,
		.of_match_table = of_match_ptr(meson_mmc_of_match),
	},
};

module_platform_driver(meson_mmc_driver);

MODULE_DESCRIPTION("Amlogic S905*/GX* SD/eMMC driver");
MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
MODULE_LICENSE("GPL v2");