meson-gx-mmc.c 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
 *
 * Copyright (c) 2016 BayLibre, SAS.
 * Author: Kevin Hilman <khilman@baylibre.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 * The full GNU General Public License is included in this distribution
 * in the file called COPYING.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/regulator/consumer.h>
38
#include <linux/interrupt.h>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

#define DRIVER_NAME "meson-gx-mmc"

#define SD_EMMC_CLOCK 0x0
#define   CLK_DIV_SHIFT 0
#define   CLK_DIV_WIDTH 6
#define   CLK_DIV_MASK 0x3f
#define   CLK_DIV_MAX 63
#define   CLK_SRC_SHIFT 6
#define   CLK_SRC_WIDTH 2
#define   CLK_SRC_MASK 0x3
#define   CLK_SRC_XTAL 0   /* external crystal */
#define   CLK_SRC_XTAL_RATE 24000000
#define   CLK_SRC_PLL 1    /* FCLK_DIV2 */
#define   CLK_SRC_PLL_RATE 1000000000
#define   CLK_PHASE_SHIFT 8
#define   CLK_PHASE_MASK 0x3
#define   CLK_PHASE_0 0
#define   CLK_PHASE_90 1
#define   CLK_PHASE_180 2
#define   CLK_PHASE_270 3
#define   CLK_ALWAYS_ON BIT(24)

#define SD_EMMC_DElAY 0x4
#define SD_EMMC_ADJUST 0x8
#define SD_EMMC_CALOUT 0x10
#define SD_EMMC_START 0x40
#define   START_DESC_INIT BIT(0)
#define   START_DESC_BUSY BIT(1)
#define   START_DESC_ADDR_SHIFT 2
#define   START_DESC_ADDR_MASK (~0x3)

#define SD_EMMC_CFG 0x44
#define   CFG_BUS_WIDTH_SHIFT 0
#define   CFG_BUS_WIDTH_MASK 0x3
#define   CFG_BUS_WIDTH_1 0x0
#define   CFG_BUS_WIDTH_4 0x1
#define   CFG_BUS_WIDTH_8 0x2
#define   CFG_DDR BIT(2)
#define   CFG_BLK_LEN_SHIFT 4
#define   CFG_BLK_LEN_MASK 0xf
#define   CFG_RESP_TIMEOUT_SHIFT 8
#define   CFG_RESP_TIMEOUT_MASK 0xf
#define   CFG_RC_CC_SHIFT 12
#define   CFG_RC_CC_MASK 0xf
#define   CFG_STOP_CLOCK BIT(22)
#define   CFG_CLK_ALWAYS_ON BIT(18)
#define   CFG_AUTO_CLK BIT(23)

#define SD_EMMC_STATUS 0x48
#define   STATUS_BUSY BIT(31)

#define SD_EMMC_IRQ_EN 0x4c
#define   IRQ_EN_MASK 0x3fff
#define   IRQ_RXD_ERR_SHIFT 0
#define   IRQ_RXD_ERR_MASK 0xff
#define   IRQ_TXD_ERR BIT(8)
#define   IRQ_DESC_ERR BIT(9)
#define   IRQ_RESP_ERR BIT(10)
#define   IRQ_RESP_TIMEOUT BIT(11)
#define   IRQ_DESC_TIMEOUT BIT(12)
#define   IRQ_END_OF_CHAIN BIT(13)
#define   IRQ_RESP_STATUS BIT(14)
#define   IRQ_SDIO BIT(15)

#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68

#define SD_EMMC_RXD 0x94
#define SD_EMMC_TXD 0x94
#define SD_EMMC_LAST_REG SD_EMMC_TXD

#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
#define MUX_CLK_NUM_PARENTS 2

struct meson_host {
	struct	device		*dev;
	struct	mmc_host	*mmc;
	struct	mmc_request	*mrq;
	struct	mmc_command	*cmd;

	spinlock_t lock;
	void __iomem *regs;
	int irq;
	u32 ocr_mask;
	struct clk *core_clk;
	struct clk_mux mux;
	struct clk *mux_clk;
	struct clk *mux_parent[MUX_CLK_NUM_PARENTS];
135
	unsigned long current_clock;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

	struct clk_divider cfg_div;
	struct clk *cfg_div_clk;

	unsigned int bounce_buf_size;
	void *bounce_buf;
	dma_addr_t bounce_dma_addr;

	bool vqmmc_enabled;
};

struct sd_emmc_desc {
	u32 cmd_cfg;
	u32 cmd_arg;
	u32 cmd_data;
	u32 cmd_resp;
};
#define CMD_CFG_LENGTH_SHIFT 0
#define CMD_CFG_LENGTH_MASK 0x1ff
#define CMD_CFG_BLOCK_MODE BIT(9)
#define CMD_CFG_R1B BIT(10)
#define CMD_CFG_END_OF_CHAIN BIT(11)
#define CMD_CFG_TIMEOUT_SHIFT 12
#define CMD_CFG_TIMEOUT_MASK 0xf
#define CMD_CFG_NO_RESP BIT(16)
#define CMD_CFG_NO_CMD BIT(17)
#define CMD_CFG_DATA_IO BIT(18)
#define CMD_CFG_DATA_WR BIT(19)
#define CMD_CFG_RESP_NOCRC BIT(20)
#define CMD_CFG_RESP_128 BIT(21)
#define CMD_CFG_RESP_NUM BIT(22)
#define CMD_CFG_DATA_NUM BIT(23)
#define CMD_CFG_CMD_INDEX_SHIFT 24
#define CMD_CFG_CMD_INDEX_MASK 0x3f
#define CMD_CFG_ERROR BIT(30)
#define CMD_CFG_OWNER BIT(31)

#define CMD_DATA_MASK (~0x3)
#define CMD_DATA_BIG_ENDIAN BIT(1)
#define CMD_DATA_SRAM BIT(0)
#define CMD_RESP_MASK (~0x1)
#define CMD_RESP_SRAM BIT(0)

static int meson_mmc_clk_set(struct meson_host *host, unsigned long clk_rate)
{
	struct mmc_host *mmc = host->mmc;
182
	int ret;
183 184 185 186 187 188 189 190 191
	u32 cfg;

	if (clk_rate) {
		if (WARN_ON(clk_rate > mmc->f_max))
			clk_rate = mmc->f_max;
		else if (WARN_ON(clk_rate < mmc->f_min))
			clk_rate = mmc->f_min;
	}

192
	if (clk_rate == host->current_clock)
193 194 195 196 197 198 199 200 201 202 203 204
		return 0;

	/* stop clock */
	cfg = readl(host->regs + SD_EMMC_CFG);
	if (!(cfg & CFG_STOP_CLOCK)) {
		cfg |= CFG_STOP_CLOCK;
		writel(cfg, host->regs + SD_EMMC_CFG);
	}

	dev_dbg(host->dev, "change clock rate %u -> %lu\n",
		mmc->actual_clock, clk_rate);

205
	if (!clk_rate) {
206
		mmc->actual_clock = 0;
207 208
		host->current_clock = 0;
		/* return with clock being stopped */
209 210 211 212
		return 0;
	}

	ret = clk_set_rate(host->cfg_div_clk, clk_rate);
213 214 215 216
	if (ret) {
		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
			clk_rate, ret);
		return ret;
217 218
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232
	mmc->actual_clock = clk_get_rate(host->cfg_div_clk);
	host->current_clock = clk_rate;

	if (clk_rate != mmc->actual_clock)
		dev_dbg(host->dev,
			"divider requested rate %lu != actual rate %u\n",
			clk_rate, mmc->actual_clock);

	/* (re)start clock */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg &= ~CFG_STOP_CLOCK;
	writel(cfg, host->regs + SD_EMMC_CFG);

	return 0;
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
}

/*
 * The SD/eMMC IP block has an internal mux and divider used for
 * generating the MMC clock.  Use the clock framework to create and
 * manage these clocks.
 */
static int meson_mmc_clk_init(struct meson_host *host)
{
	struct clk_init_data init;
	char clk_name[32];
	int i, ret = 0;
	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
	unsigned int mux_parent_count = 0;
	const char *clk_div_parents[1];
	u32 clk_reg, cfg;

	/* get the mux parents */
	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
		char name[16];

		snprintf(name, sizeof(name), "clkin%d", i);
		host->mux_parent[i] = devm_clk_get(host->dev, name);
		if (IS_ERR(host->mux_parent[i])) {
			ret = PTR_ERR(host->mux_parent[i]);
			if (PTR_ERR(host->mux_parent[i]) != -EPROBE_DEFER)
				dev_err(host->dev, "Missing clock %s\n", name);
			host->mux_parent[i] = NULL;
			return ret;
		}

		mux_parent_names[i] = __clk_get_name(host->mux_parent[i]);
		mux_parent_count++;
	}

	/* create the mux */
	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
	init.name = clk_name;
	init.ops = &clk_mux_ops;
	init.flags = 0;
	init.parent_names = mux_parent_names;
	init.num_parents = mux_parent_count;

	host->mux.reg = host->regs + SD_EMMC_CLOCK;
	host->mux.shift = CLK_SRC_SHIFT;
	host->mux.mask = CLK_SRC_MASK;
	host->mux.flags = 0;
	host->mux.table = NULL;
	host->mux.hw.init = &init;

	host->mux_clk = devm_clk_register(host->dev, &host->mux.hw);
	if (WARN_ON(IS_ERR(host->mux_clk)))
		return PTR_ERR(host->mux_clk);

	/* create the divider */
	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
	init.name = devm_kstrdup(host->dev, clk_name, GFP_KERNEL);
	init.ops = &clk_divider_ops;
	init.flags = CLK_SET_RATE_PARENT;
	clk_div_parents[0] = __clk_get_name(host->mux_clk);
	init.parent_names = clk_div_parents;
	init.num_parents = ARRAY_SIZE(clk_div_parents);

	host->cfg_div.reg = host->regs + SD_EMMC_CLOCK;
	host->cfg_div.shift = CLK_DIV_SHIFT;
	host->cfg_div.width = CLK_DIV_WIDTH;
	host->cfg_div.hw.init = &init;
	host->cfg_div.flags = CLK_DIVIDER_ONE_BASED |
		CLK_DIVIDER_ROUND_CLOSEST | CLK_DIVIDER_ALLOW_ZERO;

	host->cfg_div_clk = devm_clk_register(host->dev, &host->cfg_div.hw);
	if (WARN_ON(PTR_ERR_OR_ZERO(host->cfg_div_clk)))
		return PTR_ERR(host->cfg_div_clk);

	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
	clk_reg = 0;
	clk_reg |= CLK_PHASE_180 << CLK_PHASE_SHIFT;
	clk_reg |= CLK_SRC_XTAL << CLK_SRC_SHIFT;
	clk_reg |= CLK_DIV_MAX << CLK_DIV_SHIFT;
	clk_reg &= ~CLK_ALWAYS_ON;
	writel(clk_reg, host->regs + SD_EMMC_CLOCK);

	/* Ensure clock starts in "auto" mode, not "always on" */
	cfg = readl(host->regs + SD_EMMC_CFG);
	cfg &= ~CFG_CLK_ALWAYS_ON;
	cfg |= CFG_AUTO_CLK;
	writel(cfg, host->regs + SD_EMMC_CFG);

	ret = clk_prepare_enable(host->cfg_div_clk);
322 323 324 325 326
	if (ret)
		return ret;

	/* Get the nearest minimum clock to 400KHz */
	host->mmc->f_min = clk_round_rate(host->cfg_div_clk, 400000);
327

328
	ret = meson_mmc_clk_set(host, host->mmc->f_min);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
	if (!ret)
		clk_disable_unprepare(host->cfg_div_clk);

	return ret;
}

static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct meson_host *host = mmc_priv(mmc);
	u32 bus_width;
	u32 val, orig;

	/*
	 * GPIO regulator, only controls switching between 1v8 and
	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
	 */
	switch (ios->power_mode) {
	case MMC_POWER_OFF:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);

		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
			regulator_disable(mmc->supply.vqmmc);
			host->vqmmc_enabled = false;
		}

		break;

	case MMC_POWER_UP:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
		break;

	case MMC_POWER_ON:
		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
			int ret = regulator_enable(mmc->supply.vqmmc);

			if (ret < 0)
				dev_err(mmc_dev(mmc),
					"failed to enable vqmmc regulator\n");
			else
				host->vqmmc_enabled = true;
		}

		break;
	}


	meson_mmc_clk_set(host, ios->clock);

	/* Bus width */
	switch (ios->bus_width) {
	case MMC_BUS_WIDTH_1:
		bus_width = CFG_BUS_WIDTH_1;
		break;
	case MMC_BUS_WIDTH_4:
		bus_width = CFG_BUS_WIDTH_4;
		break;
	case MMC_BUS_WIDTH_8:
		bus_width = CFG_BUS_WIDTH_8;
		break;
	default:
		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
			ios->bus_width);
		bus_width = CFG_BUS_WIDTH_4;
	}

	val = readl(host->regs + SD_EMMC_CFG);
	orig = val;

	val &= ~(CFG_BUS_WIDTH_MASK << CFG_BUS_WIDTH_SHIFT);
	val |= bus_width << CFG_BUS_WIDTH_SHIFT;

	val &= ~(CFG_BLK_LEN_MASK << CFG_BLK_LEN_SHIFT);
	val |= ilog2(SD_EMMC_CFG_BLK_SIZE) << CFG_BLK_LEN_SHIFT;

	val &= ~(CFG_RESP_TIMEOUT_MASK << CFG_RESP_TIMEOUT_SHIFT);
	val |= ilog2(SD_EMMC_CFG_RESP_TIMEOUT) << CFG_RESP_TIMEOUT_SHIFT;

	val &= ~(CFG_RC_CC_MASK << CFG_RC_CC_SHIFT);
	val |= ilog2(SD_EMMC_CFG_CMD_GAP) << CFG_RC_CC_SHIFT;

	writel(val, host->regs + SD_EMMC_CFG);

	if (val != orig)
		dev_dbg(host->dev, "%s: SD_EMMC_CFG: 0x%08x -> 0x%08x\n",
			__func__, orig, val);
}

static int meson_mmc_request_done(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct meson_host *host = mmc_priv(mmc);

	WARN_ON(host->mrq != mrq);

	host->mrq = NULL;
	host->cmd = NULL;
	mmc_request_done(host->mmc, mrq);

	return 0;
}

static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
{
	struct meson_host *host = mmc_priv(mmc);
	struct sd_emmc_desc *desc, desc_tmp;
	u32 cfg;
	u8 blk_len, cmd_cfg_timeout;
	unsigned int xfer_bytes = 0;

	/* Setup descriptors */
	dma_rmb();
	desc = &desc_tmp;
	memset(desc, 0, sizeof(struct sd_emmc_desc));

	desc->cmd_cfg |= (cmd->opcode & CMD_CFG_CMD_INDEX_MASK)	<<
		CMD_CFG_CMD_INDEX_SHIFT;
	desc->cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
	desc->cmd_arg = cmd->arg;

	/* Response */
	if (cmd->flags & MMC_RSP_PRESENT) {
		desc->cmd_cfg &= ~CMD_CFG_NO_RESP;
		if (cmd->flags & MMC_RSP_136)
			desc->cmd_cfg |= CMD_CFG_RESP_128;
		desc->cmd_cfg |= CMD_CFG_RESP_NUM;
		desc->cmd_resp = 0;

		if (!(cmd->flags & MMC_RSP_CRC))
			desc->cmd_cfg |= CMD_CFG_RESP_NOCRC;

		if (cmd->flags & MMC_RSP_BUSY)
			desc->cmd_cfg |= CMD_CFG_R1B;
	} else {
		desc->cmd_cfg |= CMD_CFG_NO_RESP;
	}

	/* data? */
	if (cmd->data) {
		desc->cmd_cfg |= CMD_CFG_DATA_IO;
		if (cmd->data->blocks > 1) {
			desc->cmd_cfg |= CMD_CFG_BLOCK_MODE;
			desc->cmd_cfg |=
				(cmd->data->blocks & CMD_CFG_LENGTH_MASK) <<
				CMD_CFG_LENGTH_SHIFT;

			/* check if block-size matches, if not update */
			cfg = readl(host->regs + SD_EMMC_CFG);
			blk_len = cfg & (CFG_BLK_LEN_MASK << CFG_BLK_LEN_SHIFT);
			blk_len >>= CFG_BLK_LEN_SHIFT;
			if (blk_len != ilog2(cmd->data->blksz)) {
480
				dev_dbg(host->dev, "%s: update blk_len %d -> %d\n",
481
					__func__, blk_len,
482
					ilog2(cmd->data->blksz));
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
				blk_len = ilog2(cmd->data->blksz);
				cfg &= ~(CFG_BLK_LEN_MASK << CFG_BLK_LEN_SHIFT);
				cfg |= blk_len << CFG_BLK_LEN_SHIFT;
				writel(cfg, host->regs + SD_EMMC_CFG);
			}
		} else {
			desc->cmd_cfg &= ~CMD_CFG_BLOCK_MODE;
			desc->cmd_cfg |=
				(cmd->data->blksz & CMD_CFG_LENGTH_MASK) <<
				CMD_CFG_LENGTH_SHIFT;
		}

		cmd->data->bytes_xfered = 0;
		xfer_bytes = cmd->data->blksz * cmd->data->blocks;
		if (cmd->data->flags & MMC_DATA_WRITE) {
			desc->cmd_cfg |= CMD_CFG_DATA_WR;
			WARN_ON(xfer_bytes > host->bounce_buf_size);
			sg_copy_to_buffer(cmd->data->sg, cmd->data->sg_len,
					  host->bounce_buf, xfer_bytes);
			cmd->data->bytes_xfered = xfer_bytes;
			dma_wmb();
		} else {
			desc->cmd_cfg &= ~CMD_CFG_DATA_WR;
		}

		if (xfer_bytes > 0) {
			desc->cmd_cfg &= ~CMD_CFG_DATA_NUM;
			desc->cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
		} else {
			/* write data to data_addr */
			desc->cmd_cfg |= CMD_CFG_DATA_NUM;
			desc->cmd_data = 0;
		}

		cmd_cfg_timeout = 12;
	} else {
		desc->cmd_cfg &= ~CMD_CFG_DATA_IO;
		cmd_cfg_timeout = 10;
	}
	desc->cmd_cfg |= (cmd_cfg_timeout & CMD_CFG_TIMEOUT_MASK) <<
		CMD_CFG_TIMEOUT_SHIFT;

	host->cmd = cmd;

	/* Last descriptor */
	desc->cmd_cfg |= CMD_CFG_END_OF_CHAIN;
	writel(desc->cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
	writel(desc->cmd_data, host->regs + SD_EMMC_CMD_DAT);
	writel(desc->cmd_resp, host->regs + SD_EMMC_CMD_RSP);
	wmb(); /* ensure descriptor is written before kicked */
	writel(desc->cmd_arg, host->regs + SD_EMMC_CMD_ARG);
}

static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct meson_host *host = mmc_priv(mmc);

	WARN_ON(host->mrq != NULL);

	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

	host->mrq = mrq;

	if (mrq->sbc)
		meson_mmc_start_cmd(mmc, mrq->sbc);
	else
		meson_mmc_start_cmd(mmc, mrq->cmd);
}

static int meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
{
	struct meson_host *host = mmc_priv(mmc);

	if (cmd->flags & MMC_RSP_136) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
	} else if (cmd->flags & MMC_RSP_PRESENT) {
		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
	}

	return 0;
}

static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
	struct mmc_request *mrq;
573
	struct mmc_command *cmd;
574 575 576 577 578 579
	u32 irq_en, status, raw_status;
	irqreturn_t ret = IRQ_HANDLED;

	if (WARN_ON(!host))
		return IRQ_NONE;

580 581
	cmd = host->cmd;

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	mrq = host->mrq;

	if (WARN_ON(!mrq))
		return IRQ_NONE;

	if (WARN_ON(!cmd))
		return IRQ_NONE;

	spin_lock(&host->lock);
	irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
	raw_status = readl(host->regs + SD_EMMC_STATUS);
	status = raw_status & irq_en;

	if (!status) {
		dev_warn(host->dev, "Spurious IRQ! status=0x%08x, irq_en=0x%08x\n",
			 raw_status, irq_en);
		ret = IRQ_NONE;
		goto out;
	}

	cmd->error = 0;
	if (status & IRQ_RXD_ERR_MASK) {
		dev_dbg(host->dev, "Unhandled IRQ: RXD error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_TXD_ERR) {
		dev_dbg(host->dev, "Unhandled IRQ: TXD error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_DESC_ERR)
		dev_dbg(host->dev, "Unhandled IRQ: Descriptor error\n");
	if (status & IRQ_RESP_ERR) {
		dev_dbg(host->dev, "Unhandled IRQ: Response error\n");
		cmd->error = -EILSEQ;
	}
	if (status & IRQ_RESP_TIMEOUT) {
		dev_dbg(host->dev, "Unhandled IRQ: Response timeout\n");
		cmd->error = -ETIMEDOUT;
	}
	if (status & IRQ_DESC_TIMEOUT) {
		dev_dbg(host->dev, "Unhandled IRQ: Descriptor timeout\n");
		cmd->error = -ETIMEDOUT;
	}
	if (status & IRQ_SDIO)
		dev_dbg(host->dev, "Unhandled IRQ: SDIO.\n");

	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS))
		ret = IRQ_WAKE_THREAD;
	else  {
		dev_warn(host->dev, "Unknown IRQ! status=0x%04x: MMC CMD%u arg=0x%08x flags=0x%08x stop=%d\n",
			 status, cmd->opcode, cmd->arg,
			 cmd->flags, mrq->stop ? 1 : 0);
		if (cmd->data) {
			struct mmc_data *data = cmd->data;

			dev_warn(host->dev, "\tblksz %u blocks %u flags 0x%08x (%s%s)",
				 data->blksz, data->blocks, data->flags,
				 data->flags & MMC_DATA_WRITE ? "write" : "",
				 data->flags & MMC_DATA_READ ? "read" : "");
		}
	}

out:
	/* ack all (enabled) interrupts */
	writel(status, host->regs + SD_EMMC_STATUS);

	if (ret == IRQ_HANDLED) {
		meson_mmc_read_resp(host->mmc, cmd);
		meson_mmc_request_done(host->mmc, cmd->mrq);
	}

	spin_unlock(&host->lock);
	return ret;
}

static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
{
	struct meson_host *host = dev_id;
	struct mmc_request *mrq = host->mrq;
	struct mmc_command *cmd = host->cmd;
	struct mmc_data *data;
	unsigned int xfer_bytes;

	if (WARN_ON(!mrq))
666
		return IRQ_NONE;
667 668

	if (WARN_ON(!cmd))
669
		return IRQ_NONE;
670 671

	data = cmd->data;
672
	if (data && data->flags & MMC_DATA_READ) {
673
		xfer_bytes = data->blksz * data->blocks;
674 675 676 677
		WARN_ON(xfer_bytes > host->bounce_buf_size);
		sg_copy_from_buffer(data->sg, data->sg_len,
				    host->bounce_buf, xfer_bytes);
		data->bytes_xfered = xfer_bytes;
678 679 680 681 682 683 684 685
	}

	meson_mmc_read_resp(host->mmc, cmd);
	if (!data || !data->stop || mrq->sbc)
		meson_mmc_request_done(host->mmc, mrq);
	else
		meson_mmc_start_cmd(host->mmc, data->stop);

686
	return IRQ_HANDLED;
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
}

/*
 * NOTE: we only need this until the GPIO/pinctrl driver can handle
 * interrupts.  For now, the MMC core will use this for polling.
 */
static int meson_mmc_get_cd(struct mmc_host *mmc)
{
	int status = mmc_gpio_get_cd(mmc);

	if (status == -ENOSYS)
		return 1; /* assume present */

	return status;
}

static const struct mmc_host_ops meson_mmc_ops = {
	.request	= meson_mmc_request,
	.set_ios	= meson_mmc_set_ios,
	.get_cd         = meson_mmc_get_cd,
};

static int meson_mmc_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct meson_host *host;
	struct mmc_host *mmc;
	int ret;

	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
	if (!mmc)
		return -ENOMEM;
	host = mmc_priv(mmc);
	host->mmc = mmc;
	host->dev = &pdev->dev;
	dev_set_drvdata(&pdev->dev, host);

	spin_lock_init(&host->lock);

	/* Get regulators and the supported OCR mask */
	host->vqmmc_enabled = false;
	ret = mmc_regulator_get_supply(mmc);
	if (ret == -EPROBE_DEFER)
		goto free_host;

	ret = mmc_of_parse(mmc);
	if (ret) {
734 735
		if (ret != -EPROBE_DEFER)
			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		goto free_host;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	host->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(host->regs)) {
		ret = PTR_ERR(host->regs);
		goto free_host;
	}

	host->irq = platform_get_irq(pdev, 0);
	if (host->irq == 0) {
		dev_err(&pdev->dev, "failed to get interrupt resource.\n");
		ret = -EINVAL;
		goto free_host;
	}

	host->core_clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(host->core_clk)) {
		ret = PTR_ERR(host->core_clk);
		goto free_host;
	}

	ret = clk_prepare_enable(host->core_clk);
	if (ret)
		goto free_host;

	ret = meson_mmc_clk_init(host);
	if (ret)
		goto free_host;

	/* Stop execution */
	writel(0, host->regs + SD_EMMC_START);

	/* clear, ack, enable all interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);
	writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS);
773
	writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN);
774 775 776 777 778 779 780

	ret = devm_request_threaded_irq(&pdev->dev, host->irq,
					meson_mmc_irq, meson_mmc_irq_thread,
					IRQF_SHARED, DRIVER_NAME, host);
	if (ret)
		goto free_host;

781 782 783
	mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	/* data bounce buffer */
	host->bounce_buf_size = SZ_512K;
	host->bounce_buf =
		dma_alloc_coherent(host->dev, host->bounce_buf_size,
				   &host->bounce_dma_addr, GFP_KERNEL);
	if (host->bounce_buf == NULL) {
		dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
		ret = -ENOMEM;
		goto free_host;
	}

	mmc->ops = &meson_mmc_ops;
	mmc_add_host(mmc);

	return 0;

free_host:
	clk_disable_unprepare(host->cfg_div_clk);
	clk_disable_unprepare(host->core_clk);
	mmc_free_host(mmc);
	return ret;
}

static int meson_mmc_remove(struct platform_device *pdev)
{
	struct meson_host *host = dev_get_drvdata(&pdev->dev);

	if (WARN_ON(!host))
		return 0;

814 815 816
	/* disable interrupts */
	writel(0, host->regs + SD_EMMC_IRQ_EN);

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	if (host->bounce_buf)
		dma_free_coherent(host->dev, host->bounce_buf_size,
				  host->bounce_buf, host->bounce_dma_addr);

	clk_disable_unprepare(host->cfg_div_clk);
	clk_disable_unprepare(host->core_clk);

	mmc_free_host(host->mmc);
	return 0;
}

static const struct of_device_id meson_mmc_of_match[] = {
	{ .compatible = "amlogic,meson-gx-mmc", },
	{ .compatible = "amlogic,meson-gxbb-mmc", },
	{ .compatible = "amlogic,meson-gxl-mmc", },
	{ .compatible = "amlogic,meson-gxm-mmc", },
	{}
};
MODULE_DEVICE_TABLE(of, meson_mmc_of_match);

static struct platform_driver meson_mmc_driver = {
	.probe		= meson_mmc_probe,
	.remove		= meson_mmc_remove,
	.driver		= {
		.name = DRIVER_NAME,
		.of_match_table = of_match_ptr(meson_mmc_of_match),
	},
};

module_platform_driver(meson_mmc_driver);

MODULE_DESCRIPTION("Amlogic S905*/GX* SD/eMMC driver");
MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
MODULE_LICENSE("GPL v2");