random.c 5.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6
/*
 * Copyright (C) 2016 Linaro Ltd;  <ard.biesheuvel@linaro.org>
 */

#include <linux/efi.h>
7
#include <linux/log2.h>
8 9 10 11
#include <asm/efi.h>

#include "efistub.h"

12 13 14 15 16 17 18 19 20 21 22 23
typedef struct efi_rng_protocol efi_rng_protocol_t;

typedef struct {
	u32 get_info;
	u32 get_rng;
} efi_rng_protocol_32_t;

typedef struct {
	u64 get_info;
	u64 get_rng;
} efi_rng_protocol_64_t;

24 25 26 27 28 29 30 31 32 33 34 35
struct efi_rng_protocol {
	efi_status_t (*get_info)(struct efi_rng_protocol *,
				 unsigned long *, efi_guid_t *);
	efi_status_t (*get_rng)(struct efi_rng_protocol *,
				efi_guid_t *, unsigned long, u8 *out);
};

efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
				  unsigned long size, u8 *out)
{
	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
	efi_status_t status;
36
	struct efi_rng_protocol *rng = NULL;
37 38 39 40 41 42

	status = efi_call_early(locate_protocol, &rng_proto, NULL,
				(void **)&rng);
	if (status != EFI_SUCCESS)
		return status;

43
	return efi_call_proto(efi_rng_protocol, get_rng, rng, NULL, size, out);
44
}
45 46 47 48 49 50 51 52

/*
 * Return the number of slots covered by this entry, i.e., the number of
 * addresses it covers that are suitably aligned and supply enough room
 * for the allocation.
 */
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
					 unsigned long size,
53
					 unsigned long align_shift)
54
{
55
	unsigned long align = 1UL << align_shift;
56
	u64 first_slot, last_slot, region_end;
57 58 59 60

	if (md->type != EFI_CONVENTIONAL_MEMORY)
		return 0;

61 62 63 64
	if (efi_soft_reserve_enabled() &&
	    (md->attribute & EFI_MEMORY_SP))
		return 0;

65
	region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
66

67 68 69 70
	first_slot = round_up(md->phys_addr, align);
	last_slot = round_down(region_end - size + 1, align);

	if (first_slot > last_slot)
71 72
		return 0;

73
	return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
}

/*
 * The UEFI memory descriptors have a virtual address field that is only used
 * when installing the virtual mapping using SetVirtualAddressMap(). Since it
 * is unused here, we can reuse it to keep track of each descriptor's slot
 * count.
 */
#define MD_NUM_SLOTS(md)	((md)->virt_addr)

efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
			      unsigned long size,
			      unsigned long align,
			      unsigned long *addr,
			      unsigned long random_seed)
{
	unsigned long map_size, desc_size, total_slots = 0, target_slot;
91
	unsigned long buff_size;
92 93 94
	efi_status_t status;
	efi_memory_desc_t *memory_map;
	int map_offset;
95
	struct efi_boot_memmap map;
96

97 98 99 100 101 102 103 104
	map.map =	&memory_map;
	map.map_size =	&map_size;
	map.desc_size =	&desc_size;
	map.desc_ver =	NULL;
	map.key_ptr =	NULL;
	map.buff_size =	&buff_size;

	status = efi_get_memory_map(sys_table_arg, &map);
105 106 107 108 109 110 111 112 113 114 115
	if (status != EFI_SUCCESS)
		return status;

	if (align < EFI_ALLOC_ALIGN)
		align = EFI_ALLOC_ALIGN;

	/* count the suitable slots in each memory map entry */
	for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
		efi_memory_desc_t *md = (void *)memory_map + map_offset;
		unsigned long slots;

116
		slots = get_entry_num_slots(md, size, ilog2(align));
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
		MD_NUM_SLOTS(md) = slots;
		total_slots += slots;
	}

	/* find a random number between 0 and total_slots */
	target_slot = (total_slots * (u16)random_seed) >> 16;

	/*
	 * target_slot is now a value in the range [0, total_slots), and so
	 * it corresponds with exactly one of the suitable slots we recorded
	 * when iterating over the memory map the first time around.
	 *
	 * So iterate over the memory map again, subtracting the number of
	 * slots of each entry at each iteration, until we have found the entry
	 * that covers our chosen slot. Use the residual value of target_slot
	 * to calculate the randomly chosen address, and allocate it directly
	 * using EFI_ALLOCATE_ADDRESS.
	 */
	for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
		efi_memory_desc_t *md = (void *)memory_map + map_offset;
		efi_physical_addr_t target;
		unsigned long pages;

		if (target_slot >= MD_NUM_SLOTS(md)) {
			target_slot -= MD_NUM_SLOTS(md);
			continue;
		}

		target = round_up(md->phys_addr, align) + target_slot * align;
		pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;

		status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
					EFI_LOADER_DATA, pages, &target);
		if (status == EFI_SUCCESS)
			*addr = target;
		break;
	}

	efi_call_early(free_pool, memory_map);

	return status;
}
159 160 161 162 163 164

efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
{
	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
	efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
	efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
165 166
	struct efi_rng_protocol *rng = NULL;
	struct linux_efi_random_seed *seed = NULL;
167 168 169 170 171 172 173 174
	efi_status_t status;

	status = efi_call_early(locate_protocol, &rng_proto, NULL,
				(void **)&rng);
	if (status != EFI_SUCCESS)
		return status;

	status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
175
				sizeof(*seed) + EFI_RANDOM_SEED_SIZE,
176 177 178 179
				(void **)&seed);
	if (status != EFI_SUCCESS)
		return status;

180 181 182
	status = efi_call_proto(efi_rng_protocol, get_rng, rng, &rng_algo_raw,
				 EFI_RANDOM_SEED_SIZE, seed->bits);

183 184 185 186 187
	if (status == EFI_UNSUPPORTED)
		/*
		 * Use whatever algorithm we have available if the raw algorithm
		 * is not implemented.
		 */
188 189
		status = efi_call_proto(efi_rng_protocol, get_rng, rng, NULL,
					 EFI_RANDOM_SEED_SIZE, seed->bits);
190 191 192 193

	if (status != EFI_SUCCESS)
		goto err_freepool;

194
	seed->size = EFI_RANDOM_SEED_SIZE;
195 196 197 198 199 200 201 202 203 204 205
	status = efi_call_early(install_configuration_table, &rng_table_guid,
				seed);
	if (status != EFI_SUCCESS)
		goto err_freepool;

	return EFI_SUCCESS;

err_freepool:
	efi_call_early(free_pool, seed);
	return status;
}