random.c 5.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6
/*
 * Copyright (C) 2016 Linaro Ltd;  <ard.biesheuvel@linaro.org>
 */

#include <linux/efi.h>
7
#include <linux/log2.h>
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <asm/efi.h>

#include "efistub.h"

struct efi_rng_protocol {
	efi_status_t (*get_info)(struct efi_rng_protocol *,
				 unsigned long *, efi_guid_t *);
	efi_status_t (*get_rng)(struct efi_rng_protocol *,
				efi_guid_t *, unsigned long, u8 *out);
};

efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
				  unsigned long size, u8 *out)
{
	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
	efi_status_t status;
	struct efi_rng_protocol *rng;

	status = efi_call_early(locate_protocol, &rng_proto, NULL,
				(void **)&rng);
	if (status != EFI_SUCCESS)
		return status;

	return rng->get_rng(rng, NULL, size, out);
}
33 34 35 36 37 38 39 40

/*
 * Return the number of slots covered by this entry, i.e., the number of
 * addresses it covers that are suitably aligned and supply enough room
 * for the allocation.
 */
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
					 unsigned long size,
41
					 unsigned long align_shift)
42
{
43
	unsigned long align = 1UL << align_shift;
44
	u64 first_slot, last_slot, region_end;
45 46 47 48

	if (md->type != EFI_CONVENTIONAL_MEMORY)
		return 0;

49
	region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
50

51 52 53 54
	first_slot = round_up(md->phys_addr, align);
	last_slot = round_down(region_end - size + 1, align);

	if (first_slot > last_slot)
55 56
		return 0;

57
	return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
}

/*
 * The UEFI memory descriptors have a virtual address field that is only used
 * when installing the virtual mapping using SetVirtualAddressMap(). Since it
 * is unused here, we can reuse it to keep track of each descriptor's slot
 * count.
 */
#define MD_NUM_SLOTS(md)	((md)->virt_addr)

efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
			      unsigned long size,
			      unsigned long align,
			      unsigned long *addr,
			      unsigned long random_seed)
{
	unsigned long map_size, desc_size, total_slots = 0, target_slot;
75
	unsigned long buff_size;
76 77 78
	efi_status_t status;
	efi_memory_desc_t *memory_map;
	int map_offset;
79
	struct efi_boot_memmap map;
80

81 82 83 84 85 86 87 88
	map.map =	&memory_map;
	map.map_size =	&map_size;
	map.desc_size =	&desc_size;
	map.desc_ver =	NULL;
	map.key_ptr =	NULL;
	map.buff_size =	&buff_size;

	status = efi_get_memory_map(sys_table_arg, &map);
89 90 91 92 93 94 95 96 97 98 99
	if (status != EFI_SUCCESS)
		return status;

	if (align < EFI_ALLOC_ALIGN)
		align = EFI_ALLOC_ALIGN;

	/* count the suitable slots in each memory map entry */
	for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
		efi_memory_desc_t *md = (void *)memory_map + map_offset;
		unsigned long slots;

100
		slots = get_entry_num_slots(md, size, ilog2(align));
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
		MD_NUM_SLOTS(md) = slots;
		total_slots += slots;
	}

	/* find a random number between 0 and total_slots */
	target_slot = (total_slots * (u16)random_seed) >> 16;

	/*
	 * target_slot is now a value in the range [0, total_slots), and so
	 * it corresponds with exactly one of the suitable slots we recorded
	 * when iterating over the memory map the first time around.
	 *
	 * So iterate over the memory map again, subtracting the number of
	 * slots of each entry at each iteration, until we have found the entry
	 * that covers our chosen slot. Use the residual value of target_slot
	 * to calculate the randomly chosen address, and allocate it directly
	 * using EFI_ALLOCATE_ADDRESS.
	 */
	for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
		efi_memory_desc_t *md = (void *)memory_map + map_offset;
		efi_physical_addr_t target;
		unsigned long pages;

		if (target_slot >= MD_NUM_SLOTS(md)) {
			target_slot -= MD_NUM_SLOTS(md);
			continue;
		}

		target = round_up(md->phys_addr, align) + target_slot * align;
		pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;

		status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
					EFI_LOADER_DATA, pages, &target);
		if (status == EFI_SUCCESS)
			*addr = target;
		break;
	}

	efi_call_early(free_pool, memory_map);

	return status;
}
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
{
	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
	efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
	efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
	struct efi_rng_protocol *rng;
	struct linux_efi_random_seed *seed;
	efi_status_t status;

	status = efi_call_early(locate_protocol, &rng_proto, NULL,
				(void **)&rng);
	if (status != EFI_SUCCESS)
		return status;

	status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
159
				sizeof(*seed) + EFI_RANDOM_SEED_SIZE,
160 161 162 163
				(void **)&seed);
	if (status != EFI_SUCCESS)
		return status;

164
	status = rng->get_rng(rng, &rng_algo_raw, EFI_RANDOM_SEED_SIZE,
165 166 167 168 169 170
			      seed->bits);
	if (status == EFI_UNSUPPORTED)
		/*
		 * Use whatever algorithm we have available if the raw algorithm
		 * is not implemented.
		 */
171
		status = rng->get_rng(rng, NULL, EFI_RANDOM_SEED_SIZE,
172 173 174 175 176
				      seed->bits);

	if (status != EFI_SUCCESS)
		goto err_freepool;

177
	seed->size = EFI_RANDOM_SEED_SIZE;
178 179 180 181 182 183 184 185 186 187 188
	status = efi_call_early(install_configuration_table, &rng_table_guid,
				seed);
	if (status != EFI_SUCCESS)
		goto err_freepool;

	return EFI_SUCCESS;

err_freepool:
	efi_call_early(free_pool, seed);
	return status;
}