mmu.c 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS MMU handling in the KVM module.
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 */

12
#include <linux/highmem.h>
13 14
#include <linux/kvm_host.h>
#include <asm/mmu_context.h>
15
#include <asm/pgalloc.h>
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
 * for which pages need to be cached.
 */
#if defined(__PAGETABLE_PMD_FOLDED)
#define KVM_MMU_CACHE_MIN_PAGES 1
#else
#define KVM_MMU_CACHE_MIN_PAGES 2
#endif

static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

/**
 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
 * @pgd:	Page directory pointer.
 * @addr:	Address to index page table using.
 * @cache:	MMU page cache to allocate new page tables from, or NULL.
 *
 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
 * address @addr. If page tables don't exist for @addr, they will be created
 * from the MMU cache if @cache is not NULL.
 *
 * Returns:	Pointer to pte_t corresponding to @addr.
 *		NULL if a page table doesn't exist for @addr and !@cache.
 *		NULL if a page table allocation failed.
 */
static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
				unsigned long addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pgd += pgd_index(addr);
	if (pgd_none(*pgd)) {
		/* Not used on MIPS yet */
		BUG();
		return NULL;
	}
	pud = pud_offset(pgd, addr);
	if (pud_none(*pud)) {
		pmd_t *new_pmd;

		if (!cache)
			return NULL;
		new_pmd = mmu_memory_cache_alloc(cache);
		pmd_init((unsigned long)new_pmd,
			 (unsigned long)invalid_pte_table);
		pud_populate(NULL, pud, new_pmd);
	}
	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd)) {
		pte_t *new_pte;

		if (!cache)
			return NULL;
		new_pte = mmu_memory_cache_alloc(cache);
		clear_page(new_pte);
		pmd_populate_kernel(NULL, pmd, new_pte);
	}
	return pte_offset(pmd, addr);
}

114 115 116 117 118 119 120 121 122
static int kvm_mips_map_page(struct kvm *kvm, gfn_t gfn)
{
	int srcu_idx, err = 0;
	kvm_pfn_t pfn;

	if (kvm->arch.guest_pmap[gfn] != KVM_INVALID_PAGE)
		return 0;

	srcu_idx = srcu_read_lock(&kvm->srcu);
123
	pfn = gfn_to_pfn(kvm, gfn);
124

125
	if (is_error_noslot_pfn(pfn)) {
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
		kvm_err("Couldn't get pfn for gfn %#llx!\n", gfn);
		err = -EFAULT;
		goto out;
	}

	kvm->arch.guest_pmap[gfn] = pfn;
out:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return err;
}

/* Translate guest KSEG0 addresses to Host PA */
unsigned long kvm_mips_translate_guest_kseg0_to_hpa(struct kvm_vcpu *vcpu,
						    unsigned long gva)
{
	gfn_t gfn;
	unsigned long offset = gva & ~PAGE_MASK;
	struct kvm *kvm = vcpu->kvm;

	if (KVM_GUEST_KSEGX(gva) != KVM_GUEST_KSEG0) {
		kvm_err("%s/%p: Invalid gva: %#lx\n", __func__,
			__builtin_return_address(0), gva);
		return KVM_INVALID_PAGE;
	}

	gfn = (KVM_GUEST_CPHYSADDR(gva) >> PAGE_SHIFT);

	if (gfn >= kvm->arch.guest_pmap_npages) {
		kvm_err("%s: Invalid gfn: %#llx, GVA: %#lx\n", __func__, gfn,
			gva);
		return KVM_INVALID_PAGE;
	}

	if (kvm_mips_map_page(vcpu->kvm, gfn) < 0)
		return KVM_INVALID_ADDR;

	return (kvm->arch.guest_pmap[gfn] << PAGE_SHIFT) + offset;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
					unsigned long addr)
{
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
	pgd_t *pgdp;
	int ret;

	/* We need a minimum of cached pages ready for page table creation */
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
	if (ret)
		return NULL;

	if (KVM_GUEST_KERNEL_MODE(vcpu))
		pgdp = vcpu->arch.guest_kernel_mm.pgd;
	else
		pgdp = vcpu->arch.guest_user_mm.pgd;

	return kvm_mips_walk_pgd(pgdp, memcache, addr);
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
				  bool user)
{
	pgd_t *pgdp;
	pte_t *ptep;

	addr &= PAGE_MASK << 1;

	pgdp = vcpu->arch.guest_kernel_mm.pgd;
	ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
	if (ptep) {
		ptep[0] = pfn_pte(0, __pgprot(0));
		ptep[1] = pfn_pte(0, __pgprot(0));
	}

	if (user) {
		pgdp = vcpu->arch.guest_user_mm.pgd;
		ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
		if (ptep) {
			ptep[0] = pfn_pte(0, __pgprot(0));
			ptep[1] = pfn_pte(0, __pgprot(0));
		}
	}
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
 * Flush a range of guest physical address space from the VM's GPA page tables.
 */

static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
				   unsigned long end_gva)
{
	int i_min = __pte_offset(start_gva);
	int i_max = __pte_offset(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
	int i;

	/*
	 * There's no freeing to do, so there's no point clearing individual
	 * entries unless only part of the last level page table needs flushing.
	 */
	if (safe_to_remove)
		return true;

	for (i = i_min; i <= i_max; ++i) {
		if (!pte_present(pte[i]))
			continue;

		set_pte(pte + i, __pte(0));
	}
	return false;
}

static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
				   unsigned long end_gva)
{
	pte_t *pte;
	unsigned long end = ~0ul;
	int i_min = __pmd_offset(start_gva);
	int i_max = __pmd_offset(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
		if (!pmd_present(pmd[i]))
			continue;

		pte = pte_offset(pmd + i, 0);
		if (i == i_max)
			end = end_gva;

		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
			pmd_clear(pmd + i);
			pte_free_kernel(NULL, pte);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
				   unsigned long end_gva)
{
	pmd_t *pmd;
	unsigned long end = ~0ul;
	int i_min = __pud_offset(start_gva);
	int i_max = __pud_offset(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
		if (!pud_present(pud[i]))
			continue;

		pmd = pmd_offset(pud + i, 0);
		if (i == i_max)
			end = end_gva;

		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
			pud_clear(pud + i);
			pmd_free(NULL, pmd);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
				   unsigned long end_gva)
{
	pud_t *pud;
	unsigned long end = ~0ul;
	int i_min = pgd_index(start_gva);
	int i_max = pgd_index(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
		if (!pgd_present(pgd[i]))
			continue;

		pud = pud_offset(pgd + i, 0);
		if (i == i_max)
			end = end_gva;

		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
			pgd_clear(pgd + i);
			pud_free(NULL, pud);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
{
	if (flags & KMF_GPA) {
		/* all of guest virtual address space could be affected */
		if (flags & KMF_KERN)
			/* useg, kseg0, seg2/3 */
			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
		else
			/* useg */
			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
	} else {
		/* useg */
		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);

		/* kseg2/3 */
		if (flags & KMF_KERN)
			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
	}
}

344 345 346 347 348 349 350 351
/* XXXKYMA: Must be called with interrupts disabled */
int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
				    struct kvm_vcpu *vcpu)
{
	gfn_t gfn;
	kvm_pfn_t pfn0, pfn1;
	unsigned long vaddr = 0;
	struct kvm *kvm = vcpu->kvm;
352
	pte_t *ptep_gva;
353 354 355 356 357 358 359

	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
		kvm_mips_dump_host_tlbs();
		return -1;
	}

360 361
	/* Find host PFNs */

362
	gfn = (KVM_GUEST_CPHYSADDR(badvaddr) >> PAGE_SHIFT);
363
	if ((gfn | 1) >= kvm->arch.guest_pmap_npages) {
364 365 366 367 368 369 370 371 372 373 374 375 376
		kvm_err("%s: Invalid gfn: %#llx, BadVaddr: %#lx\n", __func__,
			gfn, badvaddr);
		kvm_mips_dump_host_tlbs();
		return -1;
	}
	vaddr = badvaddr & (PAGE_MASK << 1);

	if (kvm_mips_map_page(vcpu->kvm, gfn) < 0)
		return -1;

	if (kvm_mips_map_page(vcpu->kvm, gfn ^ 0x1) < 0)
		return -1;

377 378
	pfn0 = kvm->arch.guest_pmap[gfn & ~0x1];
	pfn1 = kvm->arch.guest_pmap[gfn | 0x1];
379

380 381 382 383 384 385 386
	/* Find GVA page table entry */

	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, vaddr);
	if (!ptep_gva) {
		kvm_err("No ptep for gva %lx\n", vaddr);
		return -1;
	}
387

388 389 390
	/* Write host PFNs into GVA page table */
	ptep_gva[0] = pte_mkyoung(pte_mkdirty(pfn_pte(pfn0, PAGE_SHARED)));
	ptep_gva[1] = pte_mkyoung(pte_mkdirty(pfn_pte(pfn1, PAGE_SHARED)));
391

392 393 394
	/* Invalidate this entry in the TLB, guest kernel ASID only */
	kvm_mips_host_tlb_inv(vcpu, vaddr, false, true);
	return 0;
395 396 397
}

int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
398 399
					 struct kvm_mips_tlb *tlb,
					 unsigned long gva)
400 401
{
	struct kvm *kvm = vcpu->kvm;
402 403 404 405 406 407
	kvm_pfn_t pfn;
	gfn_t gfn;
	long tlb_lo = 0;
	pte_t *ptep_gva;
	unsigned int idx;
	bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
408 409 410 411 412

	/*
	 * The commpage address must not be mapped to anything else if the guest
	 * TLB contains entries nearby, or commpage accesses will break.
	 */
413 414 415 416 417 418 419 420 421
	idx = TLB_LO_IDX(*tlb, gva);
	if ((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & PAGE_MASK)
		tlb_lo = tlb->tlb_lo[idx];

	/* Find host PFN */
	gfn = mips3_tlbpfn_to_paddr(tlb_lo) >> PAGE_SHIFT;
	if (gfn >= kvm->arch.guest_pmap_npages) {
		kvm_err("%s: Invalid gfn: %#llx, EHi: %#lx\n",
			__func__, gfn, tlb->tlb_hi);
422 423 424
		kvm_mips_dump_guest_tlbs(vcpu);
		return -1;
	}
425
	if (kvm_mips_map_page(kvm, gfn) < 0)
426
		return -1;
427
	pfn = kvm->arch.guest_pmap[gfn];
428

429 430 431 432
	/* Find GVA page table entry */
	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva);
	if (!ptep_gva) {
		kvm_err("No ptep for gva %lx\n", gva);
433
		return -1;
434
	}
435

436 437 438 439 440 441
	/* Write PFN into GVA page table, taking attributes from Guest TLB */
	*ptep_gva = pfn_pte(pfn, (!(tlb_lo & ENTRYLO_V)) ? __pgprot(0) :
				 (tlb_lo & ENTRYLO_D) ? PAGE_SHARED :
				 PAGE_READONLY);
	if (pte_present(*ptep_gva))
		*ptep_gva = pte_mkyoung(pte_mkdirty(*ptep_gva));
442

443 444
	/* Invalidate this entry in the TLB, current guest mode ASID only */
	kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
445 446

	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
447
		  tlb->tlb_lo[0], tlb->tlb_lo[1]);
448

449
	return 0;
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
}

void kvm_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu,
			     struct kvm_vcpu *vcpu)
{
	unsigned long asid = asid_cache(cpu);

	asid += cpu_asid_inc();
	if (!(asid & cpu_asid_mask(&cpu_data[cpu]))) {
		if (cpu_has_vtag_icache)
			flush_icache_all();

		kvm_local_flush_tlb_all();      /* start new asid cycle */

		if (!asid)      /* fix version if needed */
			asid = asid_first_version(cpu);
	}

	cpu_context(cpu, mm) = asid_cache(cpu) = asid;
}

/**
 * kvm_mips_migrate_count() - Migrate timer.
 * @vcpu:	Virtual CPU.
 *
 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
 * if it was running prior to being cancelled.
 *
 * Must be called when the VCPU is migrated to a different CPU to ensure that
 * timer expiry during guest execution interrupts the guest and causes the
 * interrupt to be delivered in a timely manner.
 */
static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
{
	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
		hrtimer_restart(&vcpu->arch.comparecount_timer);
}

/* Restore ASID once we are scheduled back after preemption */
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	unsigned long flags;

	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);

	local_irq_save(flags);

	if (vcpu->arch.last_sched_cpu != cpu) {
		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
		/*
		 * Migrate the timer interrupt to the current CPU so that it
		 * always interrupts the guest and synchronously triggers a
		 * guest timer interrupt.
		 */
		kvm_mips_migrate_count(vcpu);
	}

	/* restore guest state to registers */
509
	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

	local_irq_restore(flags);
}

/* ASID can change if another task is scheduled during preemption */
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	unsigned long flags;
	int cpu;

	local_irq_save(flags);

	cpu = smp_processor_id();
	vcpu->arch.last_sched_cpu = cpu;

	/* save guest state in registers */
526
	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
527 528 529 530 531 532 533 534

	local_irq_restore(flags);
}

u32 kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned long paddr, flags, vpn2, asid;
535
	unsigned long va = (unsigned long)opc;
536
	void *vaddr;
537 538 539
	u32 inst;
	int index;

540 541
	if (KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0 ||
	    KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
542
		local_irq_save(flags);
543
		index = kvm_mips_host_tlb_lookup(vcpu, va);
544 545 546
		if (index >= 0) {
			inst = *(opc);
		} else {
547
			vpn2 = va & VPN2_MASK;
548 549 550 551 552 553 554
			asid = kvm_read_c0_guest_entryhi(cop0) &
						KVM_ENTRYHI_ASID;
			index = kvm_mips_guest_tlb_lookup(vcpu, vpn2 | asid);
			if (index < 0) {
				kvm_err("%s: get_user_failed for %p, vcpu: %p, ASID: %#lx\n",
					__func__, opc, vcpu, read_c0_entryhi());
				kvm_mips_dump_host_tlbs();
555
				kvm_mips_dump_guest_tlbs(vcpu);
556 557 558
				local_irq_restore(flags);
				return KVM_INVALID_INST;
			}
559
			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu,
560
					&vcpu->arch.guest_tlb[index], va)) {
561 562 563 564 565 566 567
				kvm_err("%s: handling mapped seg tlb fault failed for %p, index: %u, vcpu: %p, ASID: %#lx\n",
					__func__, opc, index, vcpu,
					read_c0_entryhi());
				kvm_mips_dump_guest_tlbs(vcpu);
				local_irq_restore(flags);
				return KVM_INVALID_INST;
			}
568 569 570
			inst = *(opc);
		}
		local_irq_restore(flags);
571 572
	} else if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
		paddr = kvm_mips_translate_guest_kseg0_to_hpa(vcpu, va);
573 574 575 576
		vaddr = kmap_atomic(pfn_to_page(PHYS_PFN(paddr)));
		vaddr += paddr & ~PAGE_MASK;
		inst = *(u32 *)vaddr;
		kunmap_atomic(vaddr);
577 578 579 580 581 582 583
	} else {
		kvm_err("%s: illegal address: %p\n", __func__, opc);
		return KVM_INVALID_INST;
	}

	return inst;
}