mmu.c 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS MMU handling in the KVM module.
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 */

12
#include <linux/highmem.h>
13 14
#include <linux/kvm_host.h>
#include <asm/mmu_context.h>
15
#include <asm/pgalloc.h>
16 17 18

static u32 kvm_mips_get_kernel_asid(struct kvm_vcpu *vcpu)
{
19
	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
20 21
	int cpu = smp_processor_id();

22
	return cpu_asid(cpu, kern_mm);
23 24 25 26
}

static u32 kvm_mips_get_user_asid(struct kvm_vcpu *vcpu)
{
27
	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
28 29
	int cpu = smp_processor_id();

30
	return cpu_asid(cpu, user_mm);
31 32 33 34 35 36 37 38 39 40 41
}

static int kvm_mips_map_page(struct kvm *kvm, gfn_t gfn)
{
	int srcu_idx, err = 0;
	kvm_pfn_t pfn;

	if (kvm->arch.guest_pmap[gfn] != KVM_INVALID_PAGE)
		return 0;

	srcu_idx = srcu_read_lock(&kvm->srcu);
42
	pfn = gfn_to_pfn(kvm, gfn);
43

44
	if (is_error_noslot_pfn(pfn)) {
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
		kvm_err("Couldn't get pfn for gfn %#llx!\n", gfn);
		err = -EFAULT;
		goto out;
	}

	kvm->arch.guest_pmap[gfn] = pfn;
out:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return err;
}

/* Translate guest KSEG0 addresses to Host PA */
unsigned long kvm_mips_translate_guest_kseg0_to_hpa(struct kvm_vcpu *vcpu,
						    unsigned long gva)
{
	gfn_t gfn;
	unsigned long offset = gva & ~PAGE_MASK;
	struct kvm *kvm = vcpu->kvm;

	if (KVM_GUEST_KSEGX(gva) != KVM_GUEST_KSEG0) {
		kvm_err("%s/%p: Invalid gva: %#lx\n", __func__,
			__builtin_return_address(0), gva);
		return KVM_INVALID_PAGE;
	}

	gfn = (KVM_GUEST_CPHYSADDR(gva) >> PAGE_SHIFT);

	if (gfn >= kvm->arch.guest_pmap_npages) {
		kvm_err("%s: Invalid gfn: %#llx, GVA: %#lx\n", __func__, gfn,
			gva);
		return KVM_INVALID_PAGE;
	}

	if (kvm_mips_map_page(vcpu->kvm, gfn) < 0)
		return KVM_INVALID_ADDR;

	return (kvm->arch.guest_pmap[gfn] << PAGE_SHIFT) + offset;
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
 * Flush a range of guest physical address space from the VM's GPA page tables.
 */

static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
				   unsigned long end_gva)
{
	int i_min = __pte_offset(start_gva);
	int i_max = __pte_offset(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
	int i;

	/*
	 * There's no freeing to do, so there's no point clearing individual
	 * entries unless only part of the last level page table needs flushing.
	 */
	if (safe_to_remove)
		return true;

	for (i = i_min; i <= i_max; ++i) {
		if (!pte_present(pte[i]))
			continue;

		set_pte(pte + i, __pte(0));
	}
	return false;
}

static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
				   unsigned long end_gva)
{
	pte_t *pte;
	unsigned long end = ~0ul;
	int i_min = __pmd_offset(start_gva);
	int i_max = __pmd_offset(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
		if (!pmd_present(pmd[i]))
			continue;

		pte = pte_offset(pmd + i, 0);
		if (i == i_max)
			end = end_gva;

		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
			pmd_clear(pmd + i);
			pte_free_kernel(NULL, pte);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
				   unsigned long end_gva)
{
	pmd_t *pmd;
	unsigned long end = ~0ul;
	int i_min = __pud_offset(start_gva);
	int i_max = __pud_offset(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
		if (!pud_present(pud[i]))
			continue;

		pmd = pmd_offset(pud + i, 0);
		if (i == i_max)
			end = end_gva;

		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
			pud_clear(pud + i);
			pmd_free(NULL, pmd);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
				   unsigned long end_gva)
{
	pud_t *pud;
	unsigned long end = ~0ul;
	int i_min = pgd_index(start_gva);
	int i_max = pgd_index(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
		if (!pgd_present(pgd[i]))
			continue;

		pud = pud_offset(pgd + i, 0);
		if (i == i_max)
			end = end_gva;

		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
			pgd_clear(pgd + i);
			pud_free(NULL, pud);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
{
	if (flags & KMF_GPA) {
		/* all of guest virtual address space could be affected */
		if (flags & KMF_KERN)
			/* useg, kseg0, seg2/3 */
			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
		else
			/* useg */
			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
	} else {
		/* useg */
		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);

		/* kseg2/3 */
		if (flags & KMF_KERN)
			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
	}
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/* XXXKYMA: Must be called with interrupts disabled */
int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
				    struct kvm_vcpu *vcpu)
{
	gfn_t gfn;
	kvm_pfn_t pfn0, pfn1;
	unsigned long vaddr = 0;
	unsigned long entryhi = 0, entrylo0 = 0, entrylo1 = 0;
	struct kvm *kvm = vcpu->kvm;
	const int flush_dcache_mask = 0;
	int ret;

	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
		kvm_mips_dump_host_tlbs();
		return -1;
	}

	gfn = (KVM_GUEST_CPHYSADDR(badvaddr) >> PAGE_SHIFT);
236
	if ((gfn | 1) >= kvm->arch.guest_pmap_npages) {
237 238 239 240 241 242 243 244 245 246 247 248 249
		kvm_err("%s: Invalid gfn: %#llx, BadVaddr: %#lx\n", __func__,
			gfn, badvaddr);
		kvm_mips_dump_host_tlbs();
		return -1;
	}
	vaddr = badvaddr & (PAGE_MASK << 1);

	if (kvm_mips_map_page(vcpu->kvm, gfn) < 0)
		return -1;

	if (kvm_mips_map_page(vcpu->kvm, gfn ^ 0x1) < 0)
		return -1;

250 251
	pfn0 = kvm->arch.guest_pmap[gfn & ~0x1];
	pfn1 = kvm->arch.guest_pmap[gfn | 0x1];
252

253
	entrylo0 = mips3_paddr_to_tlbpfn(pfn0 << PAGE_SHIFT) |
254 255
		((_page_cachable_default >> _CACHE_SHIFT) << ENTRYLO_C_SHIFT) |
		ENTRYLO_D | ENTRYLO_V;
256
	entrylo1 = mips3_paddr_to_tlbpfn(pfn1 << PAGE_SHIFT) |
257 258
		((_page_cachable_default >> _CACHE_SHIFT) << ENTRYLO_C_SHIFT) |
		ENTRYLO_D | ENTRYLO_V;
259 260 261 262 263 264 265 266 267 268 269

	preempt_disable();
	entryhi = (vaddr | kvm_mips_get_kernel_asid(vcpu));
	ret = kvm_mips_host_tlb_write(vcpu, entryhi, entrylo0, entrylo1,
				      flush_dcache_mask);
	preempt_enable();

	return ret;
}

int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
270
					 struct kvm_mips_tlb *tlb)
271 272 273 274
{
	unsigned long entryhi = 0, entrylo0 = 0, entrylo1 = 0;
	struct kvm *kvm = vcpu->kvm;
	kvm_pfn_t pfn0, pfn1;
275
	gfn_t gfn0, gfn1;
276
	long tlb_lo[2];
277 278
	int ret;

279 280 281 282 283 284 285 286 287 288 289
	tlb_lo[0] = tlb->tlb_lo[0];
	tlb_lo[1] = tlb->tlb_lo[1];

	/*
	 * The commpage address must not be mapped to anything else if the guest
	 * TLB contains entries nearby, or commpage accesses will break.
	 */
	if (!((tlb->tlb_hi ^ KVM_GUEST_COMMPAGE_ADDR) &
			VPN2_MASK & (PAGE_MASK << 1)))
		tlb_lo[(KVM_GUEST_COMMPAGE_ADDR >> PAGE_SHIFT) & 1] = 0;

290 291 292 293 294 295 296 297 298 299 300
	gfn0 = mips3_tlbpfn_to_paddr(tlb_lo[0]) >> PAGE_SHIFT;
	gfn1 = mips3_tlbpfn_to_paddr(tlb_lo[1]) >> PAGE_SHIFT;
	if (gfn0 >= kvm->arch.guest_pmap_npages ||
	    gfn1 >= kvm->arch.guest_pmap_npages) {
		kvm_err("%s: Invalid gfn: [%#llx, %#llx], EHi: %#lx\n",
			__func__, gfn0, gfn1, tlb->tlb_hi);
		kvm_mips_dump_guest_tlbs(vcpu);
		return -1;
	}

	if (kvm_mips_map_page(kvm, gfn0) < 0)
301 302
		return -1;

303
	if (kvm_mips_map_page(kvm, gfn1) < 0)
304 305
		return -1;

306 307
	pfn0 = kvm->arch.guest_pmap[gfn0];
	pfn1 = kvm->arch.guest_pmap[gfn1];
308 309

	/* Get attributes from the Guest TLB */
310
	entrylo0 = mips3_paddr_to_tlbpfn(pfn0 << PAGE_SHIFT) |
311
		((_page_cachable_default >> _CACHE_SHIFT) << ENTRYLO_C_SHIFT) |
312 313
		(tlb_lo[0] & ENTRYLO_D) |
		(tlb_lo[0] & ENTRYLO_V);
314
	entrylo1 = mips3_paddr_to_tlbpfn(pfn1 << PAGE_SHIFT) |
315
		((_page_cachable_default >> _CACHE_SHIFT) << ENTRYLO_C_SHIFT) |
316 317
		(tlb_lo[1] & ENTRYLO_D) |
		(tlb_lo[1] & ENTRYLO_V);
318 319

	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
320
		  tlb->tlb_lo[0], tlb->tlb_lo[1]);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

	preempt_disable();
	entryhi = (tlb->tlb_hi & VPN2_MASK) | (KVM_GUEST_KERNEL_MODE(vcpu) ?
					       kvm_mips_get_kernel_asid(vcpu) :
					       kvm_mips_get_user_asid(vcpu));
	ret = kvm_mips_host_tlb_write(vcpu, entryhi, entrylo0, entrylo1,
				      tlb->tlb_mask);
	preempt_enable();

	return ret;
}

void kvm_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu,
			     struct kvm_vcpu *vcpu)
{
	unsigned long asid = asid_cache(cpu);

	asid += cpu_asid_inc();
	if (!(asid & cpu_asid_mask(&cpu_data[cpu]))) {
		if (cpu_has_vtag_icache)
			flush_icache_all();

		kvm_local_flush_tlb_all();      /* start new asid cycle */

		if (!asid)      /* fix version if needed */
			asid = asid_first_version(cpu);
	}

	cpu_context(cpu, mm) = asid_cache(cpu) = asid;
}

/**
 * kvm_mips_migrate_count() - Migrate timer.
 * @vcpu:	Virtual CPU.
 *
 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
 * if it was running prior to being cancelled.
 *
 * Must be called when the VCPU is migrated to a different CPU to ensure that
 * timer expiry during guest execution interrupts the guest and causes the
 * interrupt to be delivered in a timely manner.
 */
static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
{
	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
		hrtimer_restart(&vcpu->arch.comparecount_timer);
}

/* Restore ASID once we are scheduled back after preemption */
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	unsigned long flags;

	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);

	local_irq_save(flags);

	if (vcpu->arch.last_sched_cpu != cpu) {
		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
		/*
		 * Migrate the timer interrupt to the current CPU so that it
		 * always interrupts the guest and synchronously triggers a
		 * guest timer interrupt.
		 */
		kvm_mips_migrate_count(vcpu);
	}

	/* restore guest state to registers */
390
	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	local_irq_restore(flags);
}

/* ASID can change if another task is scheduled during preemption */
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	unsigned long flags;
	int cpu;

	local_irq_save(flags);

	cpu = smp_processor_id();
	vcpu->arch.last_sched_cpu = cpu;

	/* save guest state in registers */
407
	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
408 409 410 411 412 413 414 415

	local_irq_restore(flags);
}

u32 kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned long paddr, flags, vpn2, asid;
416
	unsigned long va = (unsigned long)opc;
417
	void *vaddr;
418 419 420
	u32 inst;
	int index;

421 422
	if (KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0 ||
	    KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
423
		local_irq_save(flags);
424
		index = kvm_mips_host_tlb_lookup(vcpu, va);
425 426 427
		if (index >= 0) {
			inst = *(opc);
		} else {
428
			vpn2 = va & VPN2_MASK;
429 430 431 432 433 434 435
			asid = kvm_read_c0_guest_entryhi(cop0) &
						KVM_ENTRYHI_ASID;
			index = kvm_mips_guest_tlb_lookup(vcpu, vpn2 | asid);
			if (index < 0) {
				kvm_err("%s: get_user_failed for %p, vcpu: %p, ASID: %#lx\n",
					__func__, opc, vcpu, read_c0_entryhi());
				kvm_mips_dump_host_tlbs();
436
				kvm_mips_dump_guest_tlbs(vcpu);
437 438 439
				local_irq_restore(flags);
				return KVM_INVALID_INST;
			}
440 441 442 443 444 445 446 447 448
			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu,
						&vcpu->arch.guest_tlb[index])) {
				kvm_err("%s: handling mapped seg tlb fault failed for %p, index: %u, vcpu: %p, ASID: %#lx\n",
					__func__, opc, index, vcpu,
					read_c0_entryhi());
				kvm_mips_dump_guest_tlbs(vcpu);
				local_irq_restore(flags);
				return KVM_INVALID_INST;
			}
449 450 451
			inst = *(opc);
		}
		local_irq_restore(flags);
452 453
	} else if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
		paddr = kvm_mips_translate_guest_kseg0_to_hpa(vcpu, va);
454 455 456 457
		vaddr = kmap_atomic(pfn_to_page(PHYS_PFN(paddr)));
		vaddr += paddr & ~PAGE_MASK;
		inst = *(u32 *)vaddr;
		kunmap_atomic(vaddr);
458 459 460 461 462 463 464
	} else {
		kvm_err("%s: illegal address: %p\n", __func__, opc);
		return KVM_INVALID_INST;
	}

	return inst;
}