i915_scheduler.c 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2018 Intel Corporation
 */

#include <linux/mutex.h>

#include "i915_drv.h"
10
#include "i915_globals.h"
11 12 13
#include "i915_request.h"
#include "i915_scheduler.h"

14
static struct i915_global_scheduler {
15
	struct i915_global base;
16 17 18 19
	struct kmem_cache *slab_dependencies;
	struct kmem_cache *slab_priorities;
} global;

20 21 22 23 24 25 26 27
static DEFINE_SPINLOCK(schedule_lock);

static const struct i915_request *
node_to_request(const struct i915_sched_node *node)
{
	return container_of(node, const struct i915_request, sched);
}

28 29 30 31 32
static inline bool node_started(const struct i915_sched_node *node)
{
	return i915_request_started(node_to_request(node));
}

33 34 35 36 37 38 39 40 41 42
static inline bool node_signaled(const struct i915_sched_node *node)
{
	return i915_request_completed(node_to_request(node));
}

static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

43
static void assert_priolists(struct intel_engine_execlists * const execlists)
44 45 46 47 48 49 50 51 52 53
{
	struct rb_node *rb;
	long last_prio, i;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
		   rb_first(&execlists->queue.rb_root));

54
	last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1;
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		const struct i915_priolist *p = to_priolist(rb);

		GEM_BUG_ON(p->priority >= last_prio);
		last_prio = p->priority;

		GEM_BUG_ON(!p->used);
		for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
			if (list_empty(&p->requests[i]))
				continue;

			GEM_BUG_ON(!(p->used & BIT(i)));
		}
	}
}

struct list_head *
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;
	int idx, i;

80
	lockdep_assert_held(&engine->active.lock);
81
	assert_priolists(execlists);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

	/* buckets sorted from highest [in slot 0] to lowest priority */
	idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
	prio >>= I915_USER_PRIORITY_SHIFT;
	if (unlikely(execlists->no_priolist))
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	parent = &execlists->queue.rb_root.rb_node;
	while (*parent) {
		rb = *parent;
		p = to_priolist(rb);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
			goto out;
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
		p = &execlists->default_priolist;
	} else {
109
		p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
			execlists->no_priolist = true;
			goto find_priolist;
		}
	}

	p->priority = prio;
	for (i = 0; i < ARRAY_SIZE(p->requests); i++)
		INIT_LIST_HEAD(&p->requests[i]);
	rb_link_node(&p->node, rb, parent);
	rb_insert_color_cached(&p->node, &execlists->queue, first);
	p->used = 0;

out:
	p->used |= BIT(idx);
	return &p->requests[idx];
}

139 140 141 142 143
void __i915_priolist_free(struct i915_priolist *p)
{
	kmem_cache_free(global.slab_priorities, p);
}

144 145 146 147
struct sched_cache {
	struct list_head *priolist;
};

148
static struct intel_engine_cs *
149 150 151
sched_lock_engine(const struct i915_sched_node *node,
		  struct intel_engine_cs *locked,
		  struct sched_cache *cache)
152
{
153 154
	const struct i915_request *rq = node_to_request(node);
	struct intel_engine_cs *engine;
155 156 157

	GEM_BUG_ON(!locked);

158 159 160 161 162 163 164
	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	while (locked != (engine = READ_ONCE(rq->engine))) {
165
		spin_unlock(&locked->active.lock);
166
		memset(cache, 0, sizeof(*cache));
167
		spin_lock(&engine->active.lock);
168
		locked = engine;
169 170
	}

171 172
	GEM_BUG_ON(locked != engine);
	return locked;
173 174
}

175
static inline int rq_prio(const struct i915_request *rq)
176
{
177 178 179
	return rq->sched.attr.priority | __NO_PREEMPTION;
}

180 181 182 183 184 185 186 187 188 189 190 191
static inline bool need_preempt(int prio, int active)
{
	/*
	 * Allow preemption of low -> normal -> high, but we do
	 * not allow low priority tasks to preempt other low priority
	 * tasks under the impression that latency for low priority
	 * tasks does not matter (as much as background throughput),
	 * so kiss.
	 */
	return prio >= max(I915_PRIORITY_NORMAL, active);
}

192 193 194
static void kick_submission(struct intel_engine_cs *engine,
			    const struct i915_request *rq,
			    int prio)
195
{
196 197 198 199 200 201 202 203 204
	const struct i915_request *inflight;

	/*
	 * We only need to kick the tasklet once for the high priority
	 * new context we add into the queue.
	 */
	if (prio <= engine->execlists.queue_priority_hint)
		return;

205 206
	rcu_read_lock();

207 208 209
	/* Nothing currently active? We're overdue for a submission! */
	inflight = execlists_active(&engine->execlists);
	if (!inflight)
210
		goto unlock;
211

212 213
	/*
	 * If we are already the currently executing context, don't
214
	 * bother evaluating if we should preempt ourselves.
215
	 */
216
	if (inflight->hw_context == rq->hw_context)
217
		goto unlock;
218

219 220 221
	engine->execlists.queue_priority_hint = prio;
	if (need_preempt(prio, rq_prio(inflight)))
		tasklet_hi_schedule(&engine->execlists.tasklet);
222 223 224

unlock:
	rcu_read_unlock();
225 226
}

227
static void __i915_schedule(struct i915_sched_node *node,
228
			    const struct i915_sched_attr *attr)
229
{
230
	struct intel_engine_cs *engine;
231 232 233
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	const int prio = attr->priority;
234
	struct sched_cache cache;
235 236
	LIST_HEAD(dfs);

237 238
	/* Needed in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&schedule_lock);
239 240
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

241
	if (prio <= READ_ONCE(node->attr.priority))
242 243
		return;

244
	if (node_signaled(node))
245 246
		return;

247
	stack.signaler = node;
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	list_add(&stack.dfs_link, &dfs);

	/*
	 * Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	queue_request(node);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry(dep, &dfs, dfs_link) {
		struct i915_sched_node *node = dep->signaler;

271 272 273 274
		/* If we are already flying, we know we have no signalers */
		if (node_started(node))
			continue;

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		/*
		 * Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &node->signalers_list, signal_link) {
			GEM_BUG_ON(p == dep); /* no cycles! */

			if (node_signaled(p->signaler))
				continue;

			if (prio > READ_ONCE(p->signaler->attr.priority))
				list_move_tail(&p->dfs_link, &dfs);
		}
	}

	/*
	 * If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
298 299 300
	if (node->attr.priority == I915_PRIORITY_INVALID) {
		GEM_BUG_ON(!list_empty(&node->link));
		node->attr = *attr;
301 302

		if (stack.dfs_link.next == stack.dfs_link.prev)
303
			return;
304 305 306 307

		__list_del_entry(&stack.dfs_link);
	}

308
	memset(&cache, 0, sizeof(cache));
309
	engine = node_to_request(node)->engine;
310
	spin_lock(&engine->active.lock);
311 312

	/* Fifo and depth-first replacement ensure our deps execute before us */
313
	engine = sched_lock_engine(node, engine, &cache);
314 315 316
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		INIT_LIST_HEAD(&dep->dfs_link);

317
		node = dep->signaler;
318
		engine = sched_lock_engine(node, engine, &cache);
319
		lockdep_assert_held(&engine->active.lock);
320 321 322 323 324

		/* Recheck after acquiring the engine->timeline.lock */
		if (prio <= node->attr.priority || node_signaled(node))
			continue;

325 326
		GEM_BUG_ON(node_to_request(node)->engine != engine);

327
		node->attr.priority = prio;
328 329

		if (list_empty(&node->link)) {
330 331 332 333 334 335 336 337
			/*
			 * If the request is not in the priolist queue because
			 * it is not yet runnable, then it doesn't contribute
			 * to our preemption decisions. On the other hand,
			 * if the request is on the HW, it too is not in the
			 * queue; but in that case we may still need to reorder
			 * the inflight requests.
			 */
338 339 340 341 342 343 344 345 346 347
			continue;
		}

		if (!intel_engine_is_virtual(engine) &&
		    !i915_request_is_active(node_to_request(node))) {
			if (!cache.priolist)
				cache.priolist =
					i915_sched_lookup_priolist(engine,
								   prio);
			list_move_tail(&node->link, cache.priolist);
348 349 350
		}

		/* Defer (tasklet) submission until after all of our updates. */
351
		kick_submission(engine, node_to_request(node), prio);
352 353
	}

354
	spin_unlock(&engine->active.lock);
355
}
356

357 358
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
{
359
	spin_lock_irq(&schedule_lock);
360
	__i915_schedule(&rq->sched, attr);
361
	spin_unlock_irq(&schedule_lock);
362
}
363

364 365 366 367 368 369 370 371
static void __bump_priority(struct i915_sched_node *node, unsigned int bump)
{
	struct i915_sched_attr attr = node->attr;

	attr.priority |= bump;
	__i915_schedule(node, &attr);
}

372 373
void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
{
374
	unsigned long flags;
375 376

	GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
377
	if (READ_ONCE(rq->sched.attr.priority) & bump)
378 379
		return;

380
	spin_lock_irqsave(&schedule_lock, flags);
381
	__bump_priority(&rq->sched, bump);
382
	spin_unlock_irqrestore(&schedule_lock, flags);
383
}
384

385
void i915_sched_node_init(struct i915_sched_node *node)
386
{
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	INIT_LIST_HEAD(&node->signalers_list);
	INIT_LIST_HEAD(&node->waiters_list);
	INIT_LIST_HEAD(&node->link);
	node->attr.priority = I915_PRIORITY_INVALID;
	node->semaphores = 0;
	node->flags = 0;
}

static struct i915_dependency *
i915_dependency_alloc(void)
{
	return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct i915_dependency *dep)
{
	kmem_cache_free(global.slab_dependencies, dep);
}

bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
				      struct i915_sched_node *signal,
				      struct i915_dependency *dep,
				      unsigned long flags)
{
	bool ret = false;

	spin_lock_irq(&schedule_lock);

	if (!node_signaled(signal)) {
		INIT_LIST_HEAD(&dep->dfs_link);
		list_add(&dep->wait_link, &signal->waiters_list);
		list_add(&dep->signal_link, &node->signalers_list);
		dep->signaler = signal;
421
		dep->waiter = node;
422 423 424 425 426 427 428
		dep->flags = flags;

		/* Keep track of whether anyone on this chain has a semaphore */
		if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN &&
		    !node_started(signal))
			node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;

429 430 431 432 433 434 435 436 437 438
		/*
		 * As we do not allow WAIT to preempt inflight requests,
		 * once we have executed a request, along with triggering
		 * any execution callbacks, we must preserve its ordering
		 * within the non-preemptible FIFO.
		 */
		BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK);
		if (flags & I915_DEPENDENCY_EXTERNAL)
			__bump_priority(signal, __NO_PREEMPTION);

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
		ret = true;
	}

	spin_unlock_irq(&schedule_lock);

	return ret;
}

int i915_sched_node_add_dependency(struct i915_sched_node *node,
				   struct i915_sched_node *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc();
	if (!dep)
		return -ENOMEM;

	if (!__i915_sched_node_add_dependency(node, signal, dep,
457
					      I915_DEPENDENCY_EXTERNAL |
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
					      I915_DEPENDENCY_ALLOC))
		i915_dependency_free(dep);

	return 0;
}

void i915_sched_node_fini(struct i915_sched_node *node)
{
	struct i915_dependency *dep, *tmp;

	spin_lock_irq(&schedule_lock);

	/*
	 * Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
		GEM_BUG_ON(!node_signaled(dep->signaler));
		GEM_BUG_ON(!list_empty(&dep->dfs_link));

		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
		GEM_BUG_ON(dep->signaler != node);
		GEM_BUG_ON(!list_empty(&dep->dfs_link));

		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(dep);
	}

	spin_unlock_irq(&schedule_lock);
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
static void i915_global_scheduler_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_priorities);
}

static void i915_global_scheduler_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_priorities);
}

static struct i915_global_scheduler global = { {
	.shrink = i915_global_scheduler_shrink,
	.exit = i915_global_scheduler_exit,
} };

515 516 517 518 519 520 521 522 523 524 525 526
int __init i915_global_scheduler_init(void)
{
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN);
	if (!global.slab_dependencies)
		return -ENOMEM;

	global.slab_priorities = KMEM_CACHE(i915_priolist,
					    SLAB_HWCACHE_ALIGN);
	if (!global.slab_priorities)
		goto err_priorities;

527
	i915_global_register(&global.base);
528 529 530 531 532 533
	return 0;

err_priorities:
	kmem_cache_destroy(global.slab_priorities);
	return -ENOMEM;
}